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Direct numerical simulations of the Navier-Stokes equations have been car-
ried out with the objective of studying turbulent boundary layers in adverse
pressure gradients. The boundary layer flows concerned are of the equilibrium
type which makes the analysis simpler and the results can be compared with
earlier experiments and simulations. This type of turbulent boundary layers
also permits an analysis of the equation of motion to predict separation. The
linear analysis based on the assumption of asymptotically high Reynolds num-
ber gives results that are not applicable to finite Reynolds number flows. A
different non-linear approach is presented to obtain a useful relation between
the freestream variation and other mean flow parameters. Comparison of tur-
bulent statistics from the zero pressure gradient case and two adverse pressure
gradient cases shows the development of an outer peak in the turbulent energy
in agreement with experiment. The turbulent flows have also been investigated
using a differential Reynolds stress model. Profiles for velocity and turbulence
quantities obtained from the direct numerical simulations were used as initial
data. The initial transients in the model predictions vanished rapidly. The
model predictions are compared with the direct simulations and low Reynolds
number effects are investigated.

1. Introduction

The analysis of adverse pressure gradient (APG) turbulent boundary layers has
been going on for a long time. Disagreement in the approach of analysis as well
as contradiction in results from experiments are found in the literature. Only
in recent years have direct numerical simulations (DNS) of these flows become
possible, albeit for low Reynolds numbers.

The conditions needed for self-similarity as well as for the onset of separa-
tion have been the subject of several investigations. Clauser (1954) performed
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experiments where he adjusted the pressure gradient such that a self-similar
turbulent boundary layer was obtained. A constant non-dimensional pressure
gradient,

β =
δ∗

τw

dP

dx
,

was shown to be a condition for self-similarity. Here δ∗ is the displacement
thickness, τw is the wall shear stress and dP/dx is the pressure gradient.
Townsend (1976) and Mellor & Gibson (1966) showed that self-similarity is
obtained if the freestream variation has the form of a power law in the down-
stream direction, U ∼ xm, where U is the freestream velocity and x is the
streamwise coordinate. Townsend used non-specified length and velocity scales
and analyzed the equation describing the outer part of the turbulent boundary
layer. His analysis showed that in addition to the condition U ∼ xm the length
scale must vary linearly with the downstream coordinate. Mellor & Gibson an-
alyzed the integrated momentum equation with the length and velocity scales
∆ = (U/uτ )δ∗ and uτ , where uτ is the friction velocity. Under certain approx-
imations they obtain that for flows with β = const. the freestream variation
is U ∼ xm and ∆ ∼ x. Tennekes & Lumley (1972) analyzed the integrated
momentum equation with an assumption of sufficiently high Reynolds number,
so that the velocity defect law could be linearized, and they obtained a rela-
tion between the exponent and Clauser’s non-dimensional pressure gradient β
which reads

m = − β

1 + 3β
.

Following Clauser, a number of measurements have been carried out in self-
similar adverse pressure gradient turbulent boundary layers near separation.
Bradshaw (1967) measured three self-similar turbulent boundary layers with
m = 0,−0.15,−0.255. In the last case the turbulence intensities showed peak
values in the outer part of the layer and the boundary layer was near separation.
Sk̊are & Krogstad (1994) experiments near separation showed that the shape
factor approaches 2 and m = −0.22. In their experiments β = 20 and the shape
factor as well as the ratio uτ/U was found to be constant. They also obtained
self-similar velocity profiles. Stratford (1959a) performed measurements on a
turbulent boundary layer near separation as well as an analysis of the inner
and outer equations (Stratford 1959b). He concluded that the asymptotic form
of the separation profile near the wall is proportional to y1/2, which was also
theoretically verified by Durbin & Belcher (1992).

The value of m near separation has also been investigated theoretically.
Head (1976) used an integral method to calculate the turbulent boundary layer
for m = −0.15,−0.255,−0.35 and concluded that the solution is unique in
the first case whereas multiple solutions exist in the second. No solution was
obtained in the third case. Schofield (1981) analyzed the self-similar boundary
layers based on the Schofield-Perry law. He concluded that there is no solution
for m < −0.3 and only one solution exists for m > −0.23.
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In recent years direct numerical simulations of turbulent boundary layers
have become an important complement to experiments. Spalart (1988) carried
out DNS of a zero pressure gradient turbulent boundary layer. Spalart &
Leonard (1987) performed DNS of self-similar APG turbulent boundary layer
using a similarity coordinate system. In these simulations the shape factor
approaches 2.3 and m = −0.22 near separation. Spalart & Watmuff (1993)
compared experiments and DNS of an APG turbulent boundary layer in a
varying pressure gradient and they found good agreement. Recent simulations
have also been made past the point of separation. Coleman & Spalart (1993)
and Spalart & Coleman (1997) performed DNS of a separation bubble with
heat transfer. Na & Moin (1996) have performed DNS of a separation bubble
and they presented the Reynolds stresses and turbulent energy budgets.

Regarding self-similar adverse pressure gradient turbulent boundary layer,
both theoretical work and experiments support the idea that a power law
freestream velocity is a requirement for self-similarity. The assumption of in-
finite Reynolds number and the use of specific velocity and length scales have
given a relation between m and β. The consensus from the experiments and
DNS performed for turbulent boundary layers near separations seems to be
that separation occurs for about −0.25 < m < −0.20 with a shape factor of
about 2.

The work presented here starts in section 2 with an introduction to the
concept of self-similarity of turbulent boundary layers subjected to adverse
pressure gradients. A relation between the non-dimensional pressure gradient
and m is also derived. The numerical code for the turbulence model prediction
and the code for the DNS is described in section 3. Section 4 is devoted to
results from the DNS as well as comparison with turbulence model predictions.
In section 5 we sum up and draw conclusions.

2. Analysis of the turbulent boundary layer equations

The first part of this section consists of a review of the asymptotic behavior of
adverse pressure gradient boundary layer flows. In the second part the analysis
is extended and the restriction to asymptotically high Reynolds number is
relaxed, and in the last part the relation to earlier work is discussed.

2.1. Linearized analysis

The equations for an incompressible two-dimensional turbulent boundary layer
are

∂u

∂x
+

∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
+ ν

∂2u

∂y2
− ∂

∂y
〈u′v′〉 (2)

where u is the mean streamwise velocity, v the mean wall normal velocity,
dP/dx the pressure gradient, 〈u′v′〉 the Reynolds stress, ρ the density and ν
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the kinematic viscosity. If the pressure gradient is not too large, the scalings
in the inner part of the boundary layer remain the same as in the zero pressure
gradient case. For the outer part however, the analysis must take into account
even a weak pressure gradient. The equation describing the outer part of an
incompressible turbulent boundary layer is given by

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
− ∂

∂y
〈u′v′〉. (3)

A self-similar solution has no explicit dependence on x. Thus we seek
solutions of the form

(u − U)/uτ = F (η), −〈u′v′〉/uτ
2 = R(η), (4)

where
η = y/∆(x), ∆ = Uδ∗/uτ . (5)

Substituting these expressions into equation (3) we obtain

−2βF − (1 + 2β)η
dF

dη
=

dR

dη
, (6)

when uτ/U → 0. The classical treatment of the equations which involves outer
and inner equations and a matching of the solutions, leads to the logarithmic
friction law,

uτ

U
=

1
C + 1

κ lnReδ∗
, (7)

where κ is the Kármán constant and Reδ∗ = Uδ∗/ν. Equation (7) shows that
uτ/U → 0 in the limit of very high Reynolds number, which is utilized in
the derivation of equation (6). This derivation is given in different ways by
Tennekes & Lumley (1972), Mellor & Gibson (1966) and Henkes (1998).

From equation (6) one obtains a condition for self-similarity as a parameter
β that should be constant

β =
δ∗

τw

dP

dx
. (8)

That β should be constant follows from a balance of the skin friction force and
the pressure gradient force, as argued by Clauser (1954).

Assuming a self-similar boundary layer, we proceed to give the Tennekes &
Lumley (1972) analysis resulting in a relationship between β and m. We start
with the integrated momentum equation,(

U

uτ

)2
d

dx
Θ − 2β

H
= 1 + β, (9)

which is equation (2) integrated from the wall to the freestream. We rewrite
the velocity defect term as

u(U − u) = U(U − u) − (U − u)2. (10)
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If the velocity defect is assumed to be of order uτ , the last term is an order
uτ/U smaller than the others and can be neglected, giving

u

U

(
1 − u

U

)
→

(
1 − u

U

)
(11)

if uτ/U → 0. From this equation it is clear that the linearization is equivalent
to the assumption of a shape factor equal to unity since Θ = δ∗. The linearized
version of equation (9) thus becomes

U

uτ
2

d

dx
(∆uτ ) = 1 + 2β. (12)

By keeping the ratio uτ/U approximately constant in equation (12) Ten-
nekes & Lumley obtain a relation between m and β which reads

m = − β

1 + 3β
(13)

with
U ∼ xm. (14)

2.2. Non-linear analysis

A shape factor equal to unity is an unrealistic approximation in most practical
cases, see Fernholz & Finley (1996) for an assessment of data from experiments
on zero pressure gradient turbulent boundary layers. Since we are interested
in using a relation such as (13) for separation prediction it would be useful to
obtain results that are not restricted to asymptotically high Reynolds numbers.
We will now derive a relation between β and m without this restriction.

The full integrated momentum equation (9) can be written as
U ′δ∗

Uδ∗′
= − β

H(1 + β) + 2β + (H − 1)β(1 − uτ
′U

uτ U ′ )
, (15)

where the ′ denotes x-derivative. We have used the relation

H =
1

1 − uτ

U G
(16)

with
G =

∫ ∞

0

F 2dη. (17)

G must be constant if the boundary layer is to be self-similar, i.e. F does not
change its shape. From equation (16) the limit H → 1 as uτ/U → 0 is con-
sistent with the linearization (11) described above. The use of the limit value
uτ/U → 0 as Re → ∞ is motivated by equation (7). Since the logarithmic func-
tion grows very slowly when the argument is large, a better assumption than
uτ/U → 0 for moderately high Reynolds numbers is that uτ/U ≈ constant,
which is consistent with many of the numerical investigations and experiments
described in the introduction. If uτ/U is kept constant, which implies that

u′
τU

uτU ′ = 1, (18)
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equation (15) can be written as

U ′δ∗

Uδ∗′
= − β

H(1 + β) + 2β
= m. (19)

Equation (19) can be integrated to give

U

U0
=

(
δ∗

δ∗0

)m

, (20)

where the subscript 0 refers to the initial values at x = 0 The definition of β,
equation (8), can be written as

β = − δ∗

u2
τ

U
dU

dx
. (21)

Combining equations (20) and (21) and integrating gives

U

U0
=

[
1 − β

mδ∗0

(uτ

U

)2

x

]m

(22)

and
δ∗

δ∗0
= 1 − β

mδ∗0

(uτ

U

)2

x. (23)

Introducing x0 as a virtual leading edge where δ∗ = 0 we derive from equation
(23) that

δ∗0 =
β

m

(uτ

U

)2

x0. (24)

Using equation (24), the equations (22) and (23) can be written as

U

U0
=

(
1 − x

x0

)m

,
δ∗

δ∗0
= 1 − x

x0
. (25)

The result is that
U ∼ xm, δ∗ ∼ x, (26)

with

m = − β

H(1 + β) + 2β
. (27)

Equation (13) is recovered from equation (27) by setting H = 1.
In section 4.2.2 a comparison between the relations (13) and (27) will show

that the linearization, which might be correct for asymptotically high Reynolds
number, is insufficient for low and moderate Reynolds number flows.

2.3. Relation to previous work

Equation (15) can be integrated if the right hand side is assumed to be constant.
This was done by Mellor & Gibson (1966) who found that

U ∼ x̃m (28)

with

x̃ =
∫ x

0

uτU0

uτ0U
dx, (29)
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where m in their case is equal to the right hand side of equation (15). With
uτ/U = const. the variable x̃ in equation (28) becomes x and the results in
equations (26) and (27) are recovered. Due to the slow increase of ln(Re) with
Re, H and uτ/U are far from their asymptotic values of 1 and 0 respectively
in many experiments and DNS. They are on the other hand fairly constant
in a large range of Reynolds numbers for the same reason. Thus it seems
as equations (28) and (29) do not add substantially new information to the
non-linear theory with a constant uτ/U as an approximation.

The relation (27) was obtained by Rotta (1962), although expressed in
G and uτ/U . This work was apparently unnoticed by Townsend (1976) and
Mellor & Gibson (1966), whose work is closely related to Rotta’s.

An alternative to the procedure of letting uτ/U → 0 for high Reynolds
numbers to obtain self-similar equations, is to scale the velocity defect with U
instead of uτ to obtain full similarity of equation (3). This is done by George
& Castillo (1993). One of the consequences is that the logarithmic region in
the velocity profile is substituted by a power law region. The same scaling was
used by Townsend (1960) for the near separation case, where he also used the
half-power law, u ∼ y1/2, of Stratford (1959b). He develops a theory to predict
the experiment by Stratford (1959a) with the assumption of constant eddy
viscosity. To predict the velocity profile Townsend had to change the values of
measured constants in his calculations, e.g. the exponent m is 0.234 instead of
the measured 0.25.

Using the constraint uτ/U = const. together with U ∼ xm in equation (3)
gives instead of equation (6) the following equation

2mF − (1 + m)η
dF

dη
− uτ

U
(1 + m)

dF

dη

∫ η

0

Fdη +
uτ

U
mF 2 = −dR

dη

m

β
. (30)

Integrating this equation gives m = −1/(H + 2) which is the same as relation
(27) for β → ∞. In equation (30) the viscous term is neglected, which means
that ν(∂u/∂y)(y = 0) = 0, i.e. we implicitly obtain the case at separation.
Adding the viscous term, which reads

ν
d2F

dη2

1
∆uτ

m

β
, (31)

to the right hand side of equation (30) and integrating gives the relation

m = − β

H(1 + β) + 2β
,

which is the same as (27). In the integrations above the following relations
have been used,

−
∫ ∞

0

Fdη =
∫ ∞

0

η
dF

dη
dη = 1, (32)

∫ ∞

0

F 2dη = −
∫ ∞

0

(
dF

dη

∫ η

0

Fdη

)
dη =

H − 1
H uτ

U

. (33)
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3. Computational tools and parameters

3.1. The DNS Code

The code used for the direct numerical simulations (DNS) is developed at KTH
and FFA (Lundbladh et al. 1992, 1994). The numerical approximation consists
of spectral methods with Fourier discretization in the horizontal directions
and Chebyshev discretization in the normal direction. Since the boundary
layer is developing in the downstream direction, it is necessary to use non-
periodic boundary conditions in the streamwise direction. This is possible while
retaining the Fourier discretization if a fringe region is added downstream of
the physical domain. In the fringe region the flow is forced from the outflow
of the physical domain to the inflow. In this way the physical domain and the
fringe region together satisfy periodic boundary conditions. The fringe region
is implemented by the addition of a volume force F , to the Navier-Stokes
equations:

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj
2

+ Fi. (34)

The force
Fi = λ(x)(ũi − ui) (35)

is non-zero only in the fringe region; ũi is the laminar inflow velocity profile the
solution ui is forced to and λ(x) is the strength of the forcing with a maximum
of about 1. The form of λ(x) is designed to minimize the upstream influence
and is sketched in Figure 1. The figure shows the whole computational box with
the fringe region at the end. The dotted line shows how the boundary layer
grows downstream and is forced back to its inflow value in the fringe region.
The forcing at the beginning of the fringe region is towards the boundary layer
as it would continue downstream. This is done to damp the disturbances before
the actual forcing towards the inflow profile starts. See Nordström et al. (1999)
for an investigation of the fringe region technique.

Time integration is performed using a third order Runge-Kutta method for
the advective and forcing terms and Crank-Nicolson for the viscous terms. A
2/3-dealizing rule is used in the streamwise and spanwise direction.

3.2. Numerical parameters

Results from two direct numerical simulations of APG turbulent boundary
layers as well as one zero pressure gradient case (ZPG) are presented. In the
first APG case (APG1) the pressure gradient is close to that for which the
corresponding laminar boundary layer would separate and in the second case
(APG2) the pressure gradient is the same as in Bradshaw’s first experimental
APG case (Bradshaw 1967). The pressure gradient is applied through the
variation of the freestream velocity, which is described by a power law, U ∼ xm.
For APG1 m = −0.077 and for APG2 m = −0.15, which corresponds to
β ≈ 0.24 and β ≈ 0.65 respectively. The results from the ZPG are taken from
a simulation by Henningson & Lundbladh (1995). This simulation was done
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Figure 1. Computational box with the fringe region — λ(x),
the fringe function. - - the boundary layer thickness.

with a different set of parameters, see Table 1, and is not as highly resolved
as the other two. The results are included only as a comparison to the two
APG simulations. The simulations start with a laminar boundary layer at
the inflow which is triggered to transition by a random volume force near the
wall. All the quantities are non-dimensionalized by the freestream velocity (U)
and the displacement thickness (δ∗) at the starting position of the simulation
(x = 0) where the flow is laminar. At that position Reδ∗ = 400. The length
(including the fringe), height and width of the computation box were 450 × 24
× 24 in these units for the largest case, APG2. The number of modes in this
simulation was 480 × 161 × 96, which gives a total of 7.5 million modes or 17
million collocation points. For comparison with the other cases, see Table 1.
In all simulations the fringe region has a length of 50 and the trip is located
at x = 10. The useful region starts at x = 150, which corresponds to different
values of ReΘ as also found in Table 1.

The simulations were run for a total of 4500 time units (δ∗/U), and the
sampling for the turbulent statistics was performed during the 2000 last time
units. It was verified that the accuracy of the DNS and its statistics was suf-
ficient by repeating the computation of the APG1 case on a coarser resolution
(320 × 101 × 64 modes) and with a shorter averaging time (1000 time units),
see Henkes et al. (1997). The differences between the two resolutions are shown
in Figures 2a and 2b, where the mean velocity and Reynolds stresses are shown.
The difference between the coarser grid case (APG1a) and the full resolution
case (APG1) is small even though the number of points is reduced by a factor
of almost 2/3 in all directions. The resolutions of the cases APG1 and APG2
were thus considered to be sufficient.
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Case Lx Ly Lz NX NY NZ ∆X+ ∆Z+ Useful region, ReΘ

ZPG 500 12 25 320 81 64 31 7.8 350 − 525
APG1a 450 18 24 320 101 64 24 6.5 390 − 620
APG1 450 18 24 480 121 96 16 4.3 390 − 620
APG2 450 24 24 480 161 96 13 3.6 430 − 690

Table 1. Numerical parameters.

3.3. The turbulent boundary layer code

To be able to investigate the relevance of the asymptotic analysis described
above the use of turbulence models is the only option. Direct numerical sim-
ulation is possible only for low Reynolds number flows and experiments are
performed at higher, but not high enough Reynolds number for the full asymp-
totic behavior to appear. We will also use model predictions at low Reynolds
number for comparison with DNS. It is possible to draw conclusions about the
low Reynolds number effects in the DNS data by comparing model predictions
at low and high Reynolds numbers.

The equations solved are (1) and (2) together with a closure for the Rey-
nolds shear tress 〈u′v′〉. In the calculations described here the Differential
Reynolds Stress Model of Hanjalić et al. (1995) is used. The model contains
transport equations for the Reynolds stresses, the turbulent kinetic energy and
the dissipation rate, see Appendix A. The ε equation contains a source term

Sε4 = Cε4
ε

k

(
〈v′2〉 − 〈u′2〉

) ∂u

∂x
, (36)

where ε is the dissipation rate, k the turbulent kinetic energy, 〈u′2〉 and 〈v′2〉
the streamwise and normal Reynolds stresses and Cε4 a constant. The term
(36) is a simplified version of the original term and introduced by Hanjalić &
Launder (1980). They also showed that (36) gives a significant contribution to
the ε equation in boundary layer flows with streamwise pressure gradient. For
a complete description of the model, see Henkes (1997). The calculations were
made with a parabolic boundary layer code. The discretization is based on the
finite volume method with a second-order upwind scheme in the downstream
direction. In the normal direction is either a central scheme or a first-order
upwind scheme used, depending on the ratio between the convection and dif-
fusion term. The grid is uniform in the downstream direction but stretched
in the normal direction. To account for the growth of the boundary layer in
the downstream direction, at several x positions the outer edge was increased
and the y grid points were redistributed. All the calculations presented in this
paper have been checked to be grid independent. This was done by doubling
the number of points in the x and y directions.
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Figure 2. (a) Velocity defect. (b) u+
rms and Reynolds stress

for — 480 × 121 × 96; · · · 320 × 101 × 64.

4. DNS Results

In this section the results from the direct numerical simulations are presented.
Section 4.1 deals with the flow structures. The downstream behavior of the
mean flow quantities is described in section 4.2. The results are compared with
the results obtained from the analysis of the integrated momentum equation
from section 2.2. Comparison with other DNS and experiments is also made.
In section 4.3, turbulent statistics are presented and results obtained from
the equations describing the inner part of the turbulent boundary layer are
compared with the statistics from the DNS. In the last section 4.4, results using
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Figure 3. APG2: Contours of vorticity.

the differential Reynolds stress model are compared with the low Reynolds
number DNS data. The model predictions are also extended to high Reynolds
numbers to determine the asymptotic behavior.

4.1. Flow structures

Figure 3 shows an instantaneous vorticity flow field from the APG2 case. At
x = 0 the boundary layer is laminar and at x = 10 the stochastic volume force
triggers transition. The transition to turbulence is rapid and at approximately
x = 150 the turbulent flow has become fully developed. In the turbulent region,
shear layers inclined in the downstream direction can be seen as red and yellow
contours. They indicate the presence of turbulent ’bursts’ in the near wall
region. In the outer part of the boundary layer larger scale vortical structures
can be seen. Note the ’fringe region’ at the end of the computational box,
starting at x = 400.

The streamwise velocity fluctuations close to the wall in Figure 4 show the
dominance of streamwise aligned streaks. The speed of the low speed streaks
is about 0.16 and 0.29 for the high speed streaks at the position of y+ = 10.
The spacing of the low speed streaks is about 100 plus-units. These values are
about the same as those found in zero pressure gradient turbulent boundary
layers, see Figure 5 for comparison. If the whole field in the normal direction is
shown at a value of x = 280 as in Figure 6, a second layer of ’streaks’ is found
at y = 3.5 − 8.
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Figure 4. APG2: Streamwise velocity fluctuation in a plane
y = 0.7 or y+ = 10, contours at -0.05 (dashed) and 0.05.
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Figure 5. ZPG: Streamwise velocity fluctuation in a plane
y = 0.5 or y+ = 10, contours at -0.05 (dashed) and 0.05.
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Figure 6. APG2: Streamwise velocity fluctuation in a plane
x = 280, contours at -0.05 (dashed) and 0.05.
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Figure 7. APG2: Streamwise velocity fluctuation in a plane
y = 4 or η = 0.6, contours at -0.05 (dashed) and 0.05.

If plotted in a plane at y = 4 (Figure 7) it can be seen that the streaky
structures in the outer part of the boundary layer are shorter and wider com-
pared to the ones closer to the wall. The upper streaks are also present in the
zero pressure gradient case and are not a consequence of the adverse pressure
gradient, but they are intensified by the pressure gradient and can be related
to the outer maximum observed in the turbulent kinetic energy and turbulent
production. This observation is further discussed in section 4.3.2. Comparing
Figures 4 and 5 the streaks close to the wall also become shorter for stronger
adverse pressure gradients. In the DNS of Spalart & Leonard (1987) for a tur-
bulent boundary layer near separation the streaks have become so thick and
short that they are instead aligned in the spanwise direction. A part of the
computational box is shown in Figure 8 for the APG2 case. The color bar in-
dicates the streamwise disturbance velocity. The contour plots are at the blue
level of -0.08. Notice the long streaks close to the wall and the shorter streaks
located in the upper part of the boundary layer.

4.2. Mean flow characteristics

4.2.1. Self-similarity

The β-parameter is shown for the two APG cases in Figure 9a, and H as a
function of ReΘ for all three cases in Figure 9b. The β-parameter is close to
constant and the shape factor varies slowly, particularly for the higher adverse
pressure gradient. As seen in Figure 10 the Clauser parameter, G (equation
17), is about 7.6 for APG1 and varies between 8.0 and 8.3 for APG2 (further
discussed in section 4.4.1). Thus we can conclude that the simulations fulfill the
requirements for self-similarity reasonably well. In Figure 11 the skin friction,
Cf , is shown together with the freestream velocity. Cf is lower for higher
pressure gradients and would become zero at separation. Note that the figures
showing β and Cf include the small laminar state and the transitional region.

The velocity profiles from the two present simulations are compared with
Spalart’s ZPG case (Spalart 1988) at almost the same Reynolds number ReΘ =
670 in Figure 12. There is a small shift downward of the logarithmic part, but



DNS of self-similar turbulent boundary layers 55

Figure 8. APG2: Streamwise velocity fluctuations. The
color bar indicates the streamwise disturbance velocity. The
level of the contour plot is −0.08. The streamwise direction is
upward in the figure. The extension of the box is x=246—319,
y=0—15, z=-12—12.

the log-region is too small to draw any conclusions about the effect of the
adverse pressure gradient on the log-law.

As the β-parameter is constant we might expect a self-similar boundary
layer. From the velocity profiles in the outer scaling at positions downstream
(Figure 13b), it is difficult to draw any conclusions about self-similarity in the
outer part of the boundary layer since the Reynolds number variation is small.
In the inner scaling, the self-similarity is very clear since the velocity profiles
collapse in the inner part as seen in Figure 13a.
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Figure 9. (a) β for the two APG cases. (b) H. — ZPG;
· · · APG1; - - APG2.

4.2.2. Separation prediction

In Table 2 we have compiled data from the present simulations, together with
data from existing experiments and numerical simulations. The relationship
between β and m obtained from the linear, equation (13), and non-linear,
equation (27), theories are evaluated. The overall conclusion from the table is
that the relation from the non-linear analysis is in much better agreement with
the measured and simulated cases than the linearized relation. It should be
noted that the considered cases have widely different Reynolds numbers.
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Figure 10. (a) G for APG1. (b) G for APG2. — DNS; - - DRSM.

The first two cases are the simulations presented here. The non-linear re-
lation is in better agreement for the stronger pressure gradient (APG2). This
might be explained from Figure 9b where the shape factor is closer to a con-
stant in APG2 than APG1. Bradshaw’s two measurements (Bradshaw 1967)
are shown next, where a better agreement is obtained for the stronger pres-
sure gradient. Sk̊are & Krogstad (1994) performed experiments on turbulent
boundary layers near separation. The agreement with the non-linear relation
is excellent while the linear counterpart does not agree. We also see that the
shape factor is about two and not one as the linear analysis requires. The data
from the measurements by Stratford (1959a) of a turbulent boundary layer near
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Figure 11. (a) Cf . (b) U. — ZPG; · · · APG1; - - APG2.

separation lead to the same conclusions as the previous case. The last five cases
are from the DNS of Spalart & Leonard (1987). The agreement is good for all
these cases, the first two are equivalent to the measurements by Clauser (1954),
and the third one is near separation. These simulations were performed using a
similarity coordinate system which permitted temporal simulations of spatially
developing boundary layer. They also performed simulations of Bradshaw’s
two cases by using the same value of β. The first case corresponds closely to
our APG2. The Reynolds number based on the displacement thickness is the
same in their simulation as at the end of our spatial simulation. Their value of
the shape factor is lower than ours, and m is more negative.
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Figure 12. Velocity profiles in the inner scaling for
— Spalart; · · · APG1; - - APG2.

Case β H m m = − β
H(1+β)+2β m = − β

1+3β

APG1 0.24 1.60 -0.077 -0.097 -0.14
APG2 0.65 1.63 -0.15 -0.16 -0.22

Bradshaw 1 0.9 1.4 -0.15 -0.20 -0.24
Bradshaw 2 5.4 1.54 -0.255 -0.26 -0.31

Sk̊are & 20.0 2.0 -0.22 -0.24 -0.33
Krogstad
Stratford ∞ 2.5 -0.23 -0.22 -0.33
Spalart & 1.8 1.65 -0.21 -0.22 -0.28
Leonard 8.0 1.92 -0.23 -0.24 -0.32

∞ 2.3 -0.22 -0.23 -0.33
0.9 1.55 -0.18 -0.19 -0.24
5.4 1.86 -0.24 -0.24 -0.31

Table 2. Comparison of m from the non-linear/linear theory.

Using the linearized relation (13) gives a value of the parameter m = −0.33
for all three investigations of near separation in Table 2. The non-linear relation
(27) reduces to m = −1/(H + 2), which gives much more realistic values of m
since the shape factor in the experiments is far from its asymptotic value of
one in the near separation cases.

The conclusion from this comparison is that the approximation uτ/U =
const. can be used successfully if one is interested in obtaining relations between
mean flow parameters at low and moderate Reynolds numbers. Even though
the Reynolds number in experiments is high enough to get self-similarity, the
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Figure 13. APG1: Velocity profiles for five positions down-
stream, starting at x = 150 with an increment of 50, ending
at x = 350. (a) Inner scaling. (b) Outer scaling.

slow variation of H and thus uτ/U makes the approximation uτ/U → 0 unsuit-
able as a starting point for the analysis of the equations. This slow variation is
also evident in the calculations with turbulence models, which will be described
later.
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Figure 14. Shear stress. — ZPG; · · · APG1; - - APG2.
Shear stress evaluated from equation (40) diverges, whereas
the total shear stress from DNS approaches zero for large y+.

4.3. Higher order statistics

4.3.1. Scalings in the inner part of the boundary layer

The equations governing the inner part of an adverse pressure gradient bound-
ary layer are the continuity equation (1) and the momentum equation (2) with
the non-linear, advective terms neglected, i.e.

0 = −1
ρ

dP

dx
+ ν

∂2u

∂y2
− ∂

∂y
〈u′v′〉. (37)

When using the inner length and velocity scales ν/uτ and uτ respectively,
equation (37) can be written as

0 = − β

Re∗
+

∂2u+

∂y+2 − ∂

∂y+
〈u′v′〉+, (38)

where Re∗ = (uτδ∗)/ν. If the ratio β/Re∗ is smaller than the other terms,
the equation reduces to the same one that governs the inner part of a ZPG
boundary layer. However, for APG cases at low Reynolds numbers or close to
separation this term cannot be neglected. Equation (38) can be written as

∂

∂y+

(
∂u+

∂y+
− 〈u′v′〉+

)
=

β

Re∗
=

ν

u3
τ

1
ρ

dP

dx
(39)

and after integration, one finds the following expression for the total shear
stress

τ+ ≡ ∂u+

∂y+
− 〈u′v′〉+ = 1 +

ν

u3
τ

1
ρ

dP

dx
y+. (40)
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The total shear stress, τ+, from the DNS and the curves τ+(y+) represented
by equation (40) are shown in Figure 14. The term

β

Re∗
=

ν

u3
τ

1
ρ

dP

dx
(41)

is evidently important for the shear stress distribution in the inner part of the
boundary layer at low Reynolds numbers. If we define a new velocity scale,

up =
(

ν
1
ρ

dP

dx

)1/3

, (42)

the term (41) can be written as

β

Re∗
=

(
up

uτ

)3

. (43)

One might expect that it is the magnitude of the ratio between the two velocity
scales up and uτ that determines which one to use in the scaling of equation
(37). If up and ν/up are used as the velocity and length scales respectively, the
integrated version of equation (37) becomes

∂up

∂yp
− 〈u′v′〉p = yp +

(
uτ

up

)2

. (44)

If uτ � up, i.e. the boundary layer is close to separation, the scalings based
on up should be used, but for the APG cases considered here, uτ is the proper
scaling, which is evident from Figure 13a, where the velocity profiles for down-
stream positions are shown. The profiles collapse on the curve u+ = y+ in the
viscous sub-layer, which is consistent with equation (40), which reduces to

∂u+

∂y+
= 1 (45)

when y+ → 0.
When multiplying equation (40) by ∂u+/∂y+ we get the mean energy bud-

get. (
∂u+

∂y+

)2

− 〈u′v′〉+ ∂u+

∂y+
=

∂u+

∂y+
+

β

Re∗
y+ ∂u+

∂y+
. (46)

The same equation is obtained if equation (38) is multiplied by u+. The terms
are noted from left to right: direct dissipation, production, transport and pres-
sure gradient term. The mean budget for the APG2 case in the inner region is
shown in Figure 15a. The largest contribution in the near wall region comes
from the direct dissipation which is balanced by the transport term. At y+ = 5
the pressure gradient term has reached its maximum and then stays constant.
The production of turbulent energy has its maximum at y+ = 9 where the pro-
duction and direct dissipation are equal in magnitude. All the terms balance
each other, though the total sum deviates from zero at large values of y+. If
the advective terms also are included in the total budget, the sum becomes
zero but these terms are small compared to the others.



DNS of self-similar turbulent boundary layers 63

0 5 10 15 20 25 30 35
−0.2

0

0.2

0.4

0.6

0.8

1

(a)

y+

0 5 10 15 20 25 30 35
−0.2

0

0.2

0.4

0.6

0.8

1

(b)

y+

Figure 15. Energy budget for DNS: - - Dissipation; · · · Pro-
duction; - · · - Transport; - · - Pressure gradient term; — Total.
(a) DNS. (b) DRSM, asymptotic.

The same energy budget but for the DRSM prediction is almost identical.
More interesting is to look at the budget for the high Reynolds number case,
which is shown in Figure 15b. Here the pressure gradient term has vanished
from the budget. This is due to the term 1/Re∗ in the pressure gradient term
in equation (46). The sum of the terms is zero which implies that the advective
terms no longer has any influence on the inner layer.
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Figure 16. u+
rms at x = 300. — ZPG; · · · APG1; - - APG2.

(a) Inner scaling. (b) Outer scaling.

4.3.2. The Reynolds stresses and turbulent production

In Figure 16 urms for the ZPG/APG cases are shown in inner and outer scaling
for the same streamwise station. There is only a slight difference between
the cases in the inner region but in the outer region the tendency towards a
second peak in the urms profile for the highest pressure gradient marks a clear
difference. This outer maximum has been observed in a number of experimental
studies, such as Bradshaw (1967), Samuel & Joubert (1974), Nagano et al.
(1992) and Sk̊are & Krogstad (1994). The production term in the turbulent
energy budget also has an outer peak for the higher pressure gradient case, as
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Figure 17. (a) Production at x = 300. (b) Dissipation at
x = 300. — ZPG; · · · APG1; - - APG2.

seen in Figure 17a. These outer peaks in the turbulent energy and production
might be related to the enhanced streak formation in the outer part of the
boundary described in section 4.1. There are no outer peaks in the vrms and
wrms profiles.

The location of the inner maximum of the production can be motivated by
the form of the near-wall limit of the turbulent boundary layer equations. The
integrated inner equation for the ZPG case can be written as

−〈u′v′〉+ = 1 − ∂u+

∂y+
. (47)
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Figure 18. APG1: Reynolds shear stress profiles for five po-
sitions downstream, starting at x = 150 with an increment of
50, ending at x = 350. (a) Inner scaling. (b) Outer scaling.

When used in the expression for the turbulent production

p+ = −〈u′v′〉+ ∂u+

∂y+
, (48)

this yields

p+ =
(

1 − ∂u+

∂y+

)
∂u+

∂y+
. (49)
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p+ has a maximum of 0.25 at the position where ∂u+/∂y+ = 0.5. The inner
maximum is increased due to the pressure gradient but the position is not
changed as can be seen in Figure 17a.

The dissipation is shown in Figure 17b, where an increased dissipation for
higher pressure gradients is observed near the wall.

The profiles for the Reynolds stress in the outer scaling (Figure 18b) show
that self-similarity is not yet obtained since the maximum grows downstream.
In the inner scaling the profiles collapse as seen in Figure 18a. This non-
similarity in the outer part is due to low Reynolds number, as will be more
clearly understood when a comparison with model predictions is made in the
next section, where also the higher order statistics from the DNS will be con-
sidered.

4.4. Comparison with turbulence model predictions

Henkes (1998) has tested some turbulence models for high Reynolds number
self-similar APG turbulent boundary layers at high Reynolds number. All the
tested models, k− ε, k−ω and differential Reynolds stress models, give results
that approach the same asymptotic scalings for the velocity and the Reynolds
shear stress. However, differences occur in the scaled similarity profiles, as
well as in parameters like H, G and Cf . When comparing with available
experiments at moderate Reynolds numbers, the differential Reynolds stress
model turns out to be superior to the others. Here we will use the Differential
Reynolds Stress Model (DRSM) of Hanjalić et al. (1995) described in section
3.3 for both the high and low Reynolds number predictions.

4.4.1. Low Reynolds number

In this section calculations with the DRSM performed at low Reynolds num-
bers for comparison with data from our DNS (Henkes et al. 1997) are presented.
Mean turbulent profiles for the velocities, Reynolds stresses and the dissipa-
tion from the DNS at x = 150 were used as initial data. Comparison was made
at x = 350 for APG1 and x = 335 for APG2. At these positions the ReΘ

is approximately 620 for APG1 and 690 for APG2. The DRSM calculations
show that transients are dominating in the beginning of the calculations but
at the point of comparison with the DNS-data the solution is not sensitive to
small changes in initial data. It was also checked that changes in the length and
velocity scales of the initial data did not affect the solution at the point of com-
parison. Thus the comparison is meaningful since the difference between the
model predictions at low and high Reynolds number are due to the dependence
on the Reynolds number and not to the influence of the initial conditions.

The shape factor is shown in Figures 19a and 19b for APG1 and APG2.
After the decay of the initial transients the Reynolds number dependence of
the shape factor is captured by the model, although there is a slight offset
in the numerical values. The comparison of the Clauser parameter G for the
DNS and DRSM is shown in Figures 10a and 10b. As in the case of the shape
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Figure 19. (a) H for APG1. (b) H for APG2. — DNS; - - DRSM.

factor, the Reynolds number dependence is captured after the decay of the
initial transients. The profiles for the mean velocity, the Reynolds stress and
urms from the model predictions are compared with the DNS data in Figures
20 to 22. Only the APG2 case is shown since here the differences between DNS
and DRSM are larger than for the APG1 case. The self-similar high Reynolds
number profiles according to the DRSM are also shown in these figures for
comparison, but will be discussed more thoroughly in the next section.

In Figures 20a and 20b the mean velocity profiles from the DNS and DRSM
are shown together with the self-similar high Reynolds number profile. At the
point of comparison, only a small logarithmic part in the inner layer is found as
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Figure 20. Velocity profiles for APG2. — DNS; - - DRSM;
· · · Asymptotic. (a) Inner scaling. (b) Outer scaling.

seen in Figure 20a. The agreement between the DRSM and DNS in the inner
part is excellent. The velocity profiles in the outer scaling do not show very
large differences between the DNS, DRSM and the asymptotic DRSM profile as
seen in Figure 20b. The Reynolds stress profiles in the inner and outer scalings
are shown in Figures 21a and 21b. In the near wall region, the DRSM profile
is in close agreement with DNS and the deviation from the asymptotic profile
is well captured by the model. The plateau value of 1 seen in the asymptotic
profile has not yet been developed. The peak in the profiles belongs to the outer
part of the boundary layer as seen in Figure 21b and is larger in the asymptotic
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Figure 21. Reynolds stress for APG2.— DNS; - - DRSM;
· · · Asymptotic. a) Inner scaling. b) Outer scaling.

profile. Figure 21b also reveals that the DRSM gives a profile below the DNS in
the outer part of the boundary layer. The urms profiles in the inner and outer
scalings are shown in Figures 22a and 22b. In the near wall region region, the
profile from the DRSM is closer to the asymptotic profile than the DNS profile.
The inner peak value in the asymptotic profile is lower than the peaks in the
low-Re profiles. In the outer scaling, shown in Figure 22b, the DRSM profile
is below the DNS profile in the same way as for the Reynolds stress profiles.
The outer peak seen in the low-Re profiles is still relatively far from its value
in the asymptotic DRSM profile. By comparing the inner and outer peaks in



DNS of self-similar turbulent boundary layers 71

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

(a)

u+
rms

y+

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

(b)

u+
rms

y/∆

Figure 22. u+
rms for APG2. — DNS; - - DRSM; · · · Asymp-

totic. a) Inner scaling. b) Outer scaling.

the urms profiles, we may conclude that turbulent energy is transfered from the
inner part to the outer part of the boundary layer when the self-similar state
is approached.

These results show that although differences between the DRSM solution
at Reθ = 690 and the similarity solution are significant, the results with the
DRSM closely agree with the DNS at ReΘ = 690. This suggests that the
DRSM reproduces the physics of adverse pressure gradient boundary layers at
relatively low Reynolds numbers.
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Figure 23. High Reynolds number profiles: a) Velocity de-
fect. b) u+

rms and −〈u′v′〉+. · · · APG1; - - APG2.

4.4.2. High Reynolds number

DRSM predictions of the two adverse pressure gradients cases, APG1 and
APG2, were started at the same Reynolds number at which the DNS was
performed and then continued up to very high Reynolds number. Above ReΘ

of about 104 the velocity and Reynolds stress profiles in the outer scaling are
self-similar.

The self-similar velocity profiles in the inner scaling, (Figure 23a), show
that the slope of the asymptotic profile, i.e. the Kármán constant, does not
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Figure 24. a) H. b) G. · · · APG1; - - APG2.

change with the pressure gradient. In Figure 23b the self-similar Reynolds
stress and urms profiles are shown in the outer scaling. The peaks in the
profiles are the outer ones. The inner peak of the urms and the plateau value
of 1 for the Reynolds shear stress are not visible in the outer scaling. Compare
with the Figures 21 and 22 where the asymptotic profiles are shown in both the
inner and outer scalings. It is only for the APG2 case that the outer peak in the
urms profile appears. Apparently the adverse pressure gradient in APG1 is too
weak for an outer peak to develop. The asymptotic behavior of H and G are
shown in Figures 24a and 24b. H should approach 1 and G a constant value at
infinite Re. The figures show that the asymptotic values and therefore complete
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self-similarity are far from being reached although the Reynolds number is very
large. The values are further from the asymptotic values for APG2 than for
APG1.

From the mean velocity and Reynolds stress profiles one might conclude
that self-similarity is obtained, but the downstream variation of H and G show
that the asymptotic state of the flow is very slowly approached. In the experi-
ments by Sk̊are & Krogstad (1994) the results were interpreted as self-similarity
although the constant shape factor was far from the asymptotic value. These
experiments were performed at ReΘ between 104 and 105, and the results can
be explained by the high Reynolds number behavior of the velocity profile and
the shape factor which appear to be constant if the Reynolds number is not
varied enough. The slow variation of mean flow parameters was also utilized
to derive the mean flow relations in section 2.2.

5. Summary and Conclusions

DNS of the Navier-Stokes equations has been carried out with the objective of
studying APG turbulent boundary layers. The pressure gradient parameter is
found to be constant when the freestream velocity varies according to a power
law, which has also been shown to follow from the turbulent boundary layer
equations. To relate the exponent in the power law to the pressure gradient
parameter, an analysis based on the assumption of asymptotically high Rey-
nolds number was first reviewed. The assumption implies that the ratio of
the friction velocity to the freestream velocity is zero. This is obtained from
the logarithmic friction law and the matching of inner and outer solution of
the mean turbulent boundary layer equations. Another consequence of the
assumption is that the shape factor becomes one, which is equivalent to a lin-
earization of the velocity defect. The mean turbulent flow was investigated
with a differential Reynolds stress model for high Reynolds numbers. These
investigations showed that even at very high Reynolds number the asymptotic
value for the shape factor is still far from being obtained although a self-similar
state of the velocity and Reynolds shear stress profiles has been reached. This
is also evident from a number of experiments and can also be related to the
fact that the logarithmic function increases slowly when the argument is large.
These observations motivated a different approach to the analysis of the mean
turbulent boundary layer equations.

A non-linear analysis of the equations describing the mean flow based on
the approximation of a constant ratio of the freestream velocity to the friction
velocity was presented. The analysis leads to a relation for the power law, in
which both the pressure gradient parameter and the shape factor appear. This
relation gives better agreement with available numerical and physical experi-
ments than the linearized analysis. It was shown that the agreement is better
over a range of different Reynolds numbers, particularly regarding the param-
eters for which separation occurs. The relation from the linearized, asymptotic
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analysis is recovered from the new relation obtained from the less restricted
analysis by letting the shape factor become one.

Comparison of turbulent statistics from the ZPG and the two APG cases
shows the development of a second peak in the turbulent energy in agreement
with experiment. The analysis of the inner equations and investigation of the
behavior of the total shear stress showed that the pressure gradient parameter
is also important in the inner layer at the low Reynolds number flows per-
formed with DNS. The Reynolds shear stress profiles showed no self-similar
state although the pressure gradient parameter was constant. This is due to
low Reynolds number effects and motivated the use of model predictions to
first try to reproduce the low Reynolds number effects and then increase the
Reynolds number as to obtain the self-similar state.

The differential Reynolds stress model was used to predict the mean flow
at the same low Reynolds number as the DNS. Initial data for the model pre-
dictions were taken from the DNS at the lowest Reynolds number where fully
developed turbulence was obtained. After the decay of some small initial tran-
sients the Reynolds number dependence of mean flow parameters such as the
shape factor and Clauser parameter, was captured by the model. Compari-
son with data from DNS at the highest Reynolds number obtained, showed
that low Reynolds number effects are well captured by the model. The model
predictions could be continued up to high Reynolds numbers to obtain self-
similarity. By comparing the profiles at low and high Reynolds numbers, the
lack of self-similarity in the Reynolds stress profiles in the DNS could thus be
attributed to effects of low Reynolds number.
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Appendix A.

The two-dimensional boundary layer equations for the Differential Reynolds
Stress Model of Hanjalić et al. (1995) are:

Conservation of mass:

∂u

∂x
+

∂v

∂y
= 0. (50)

Conservation of momentum:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dP

dx
+ ν

∂2u

∂y2
− ∂

∂y
〈u′v′〉. (51)

Equation for the Reynolds shear stress:
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u
∂〈u′v′〉

∂x
+ v

∂〈u′v′〉
∂y

=
∂

∂y

[(
ν + Cs

k

ε
〈v′2〉

)
∂〈u′v′〉

∂y

]
+ P12 + Φ12 − ε12, (52)

with

P12 = −〈v′2〉∂u

∂y
,

Φ12 = −
(

C1 +
3
2
Cw

1 fw

)
ε

k
〈u′v′〉 +

(
1 − 3

2
Cw

2 fw

)
C2〈v′2〉∂u

∂y
,

ε12 = εfs
〈u′v′〉

k

1 + fd

1 + 3
2
〈v′2〉

k fd

.

Equations for the Reynolds normal stresses:

u
∂〈u′2〉

∂x
+ v

∂〈u′2〉
∂y

=
∂

∂y

[(
ν + Cs

k

ε
〈v′2〉

)
∂〈u′2〉

∂y

]
+ P11 + Φ11 − ε11, (53)

u
∂〈v′2〉

∂x
+ v

∂〈v′2〉
∂y

=
∂

∂y

[(
ν + Cs

k

ε
〈v′2〉

)
∂〈v′2〉

∂y

]
+ P22 + Φ22 − ε22, (54)

u
∂〈w′2〉

∂x
+ v

∂〈w′2〉
∂y

=
∂

∂y

[(
ν + Cs

k

ε
〈v′2〉

)
∂〈w′2〉

∂y

]
+ P33 + Φ33 − ε33, (55)

with

P11 = 2Pk, P22 = 0, P33 = 0, Pk = −〈u′v′〉∂u

∂y
,

Φ11 = −C1ε

(
〈u′2〉

k
− 2

3

)
+ Cw

1 fw
ε

k
〈v′2〉 − 2

3
C2Pk(2 − Cw

2 fw),

Φ22 = −C1ε

(
〈v′2〉

k
− 2

3

)
− 2Cw

1 fw
ε

k
〈v′2〉 +

2
3
C2Pk(1 − 2Cw

2 fw),

Φ33 = −C1ε

(
〈w′2〉

k
− 2

3

)
+ Cw

1 fw
ε

k
〈v′2〉 +

2
3
C2Pk(1 + Cw

2 fw),

ε11 = ε

[
2
3
(1 − fs) + fs

〈u′2〉
k

1

1 + 3
2
〈v′2〉

k fd

]
,
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ε22 = ε

[
2
3
(1 − fs) + fs

〈v′2〉
k

1 + 3fd

1 + 3
2
〈v′2〉

k fd

]
,

ε33 = ε

[
2
3
(1 − fs) + fs

〈w′2〉
k

1

1 + 3
2
〈v′2〉

k fd

]
.

Equation for the turbulent kinetic energy:

u
∂k

∂x
+ v

∂k

∂y
=

∂

∂y

[(
ν + Cs

k

ε
〈v′2〉

)
∂k

∂y

]
+ Pk − ε. (56)

Equation for the dissipation rate of turbulent energy:

u
∂ε

∂x
+ v

∂ε

∂y
=

∂

∂y

[(
ν + Cε

k

ε
〈v′2〉

)
∂ε

∂y

]
+ Cε1fε1

ε

k
Pk − Cε2fε2

εε̃

k
+

+Cε3fµ〈v′2〉
(

∂2u

∂y2

)2

+ Sε4 + Sl, (57)

with

ε̃ = ε − 2ν

(
∂
√

k

∂y

)2

,

Sl = max

{[(
1
Cl

∂l

∂y

)2

− 1

] (
1
Cl

∂l

∂y

)2

; 0

}
εε̃

k
A,

l =
k3/2

ε
,

Sε4 = Cε4
ε

k

(
〈v′2〉 − 〈u′2〉

) ∂u

∂x
.

C1, C2, C
w
1 , Cw

2 are functions which depend on the local turbulence-based
Reynolds number, Ret = k2/(νε), the invariant parameter of the stress anisotropy
tensor, A, and the invariant parameter of the dissipation anisotropy tensor, E.

A is defined as
A = 1 − 9

8
(A2 − A3),

with A2 = aijaji, A3 = aijajkaki and aij = 〈u′
iu

′
j〉/k − (2/3)δij .

E is defined as
E = 1 − 9

8
(E2 − E3),

with E2 = eijeji, E3 = eijejkeki and eij = εij/ε − (2/3)δij .
The functions in the pressure-strain correlation in the equations for the

turbulent stresses are taken as

C1 = C +
√

AE2, C2 = 0.8
√

A,
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Cw
1 = max{1 − 0.7C; 0.3}, Cw

2 = min{A; 0.3},
with

C = 2.5AF 1/4f, F = min{0.6;A2}, f = min

{(
Ret

150

)3/2

; 1

}
.

The functions and constants in the equation for the dissipation rate are
taken as

fs = 1 −
√

AE2, fd =
1

1 + 0.1Ret
,

Cε = 0.18, Cε1 = 1.44, Cε2 = 1.92, Cε3 = 0.25, Cε4 = 2.6,

fµ = 1, fε1 = 1, fε2 = 1 − Cε2 − 1.4
Cε2

exp

[
−

(
Ret

6

)2
]

.

Finally, Cs = 0.22, Cl = 2.5 and

fw = min
{

k3/2

Cwεy
; 1.4

}
with Cw = 2.5.

For further details about the various terms included in the equations above,
see references Henkes (1997) and Hanjalić et al. (1995).
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