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Abstract—Internal (inertial) waves in a uniformly stratified (ro-
tating) fluid obey a highly specific dispersion relation that admits
their propagation in form of oblique beams, which preserve their
inclination to the distinguished direction (prescribed by gravity
for internal waves and the angular velocity vector for the inertial
waves) upon reflection. In confined domains with sloping walls,
repeated reflections of the wave beams lead to concentration
of the wave energy at closed loops called wave attractors. The
dynamics of wave attractors is best studied in essentially two-
dimensional problems (plane or axisymmetric), progressing from
the ideal-fluid concept to more realistic ones, with consideration
of viscous effects, energy balance and cascades of wave-wave
interactions. Development of fully three-dimensional highly non-
linear regimes has not yet been unexplored.

The present paper considers direct numerical simulations of
inertial wave attractors in an axisymmetric rotating annulus hav-
ing a trapezoidal cross section and a vertical axis of revolution.
The rotating fluid volume is confined between two vertical co-
axial cylinders, with truncated cone as a bottom surface. The
large-scale forcing is applied to the fluid volume by specific
motion of the upper lid. The spectral element method (based on
Nek5000 open solver) is used to solve the Navier-Stokes equations
in rotating fluid, with the non-slip boundary conditions at all rigid
walls, and a prescribed vertical velocity field at the upper lid.

We consider two types of forcing. The first one simulates a
small-amplitude nutation (Euler-disk-type motion) of the rigid
lid, where the vector normal to the lid undergoes precession
in such a way that the tip of the vector describes a horizontal
circle of small radius around the axis of rotation of the annulus.
This motion is modelled by prescribing the vertical velocity field
with cosine-shaped running wave in azimuthal direction and
linear variation in the radial direction. The response to such
forcing mimics some essential features of tidal excitation. We
show that attractors are formed only when the sense of nutation
in azimuthal direction (in rotating coordinate system) is opposite
to the sense of the background rotation (in a fixed laboratory
system). In a horizontal cross-section of the flow we see then a
rotating pattern with ‘Yin-Yang’ interplay in laminar mode, and
when instability occurs with growth of the amplitude of external
forcing, we see the interplay between the large- and small-scale
‘Yin-Yang’ patterns.

The second type of forcing is purely axisymmetric. At the
upper lid we prescribe the vertical velocity profile in radial
direction, with the amplitude in form of half-wave of the Bessel
function, and simple harmonic time dependence. Such forcing
excites a purely axisymmetric motion in linear regime. As the
forcing increases, the axial symmetry of the inertial-wave motion

Figure 1. Scheme of the experimental setup

is broken: in the horizontal cross-section we observe the de-
velopment of fine-scale ‘Mandala’ patterns possessing rotational
symmetry whose complexity grow with time.

In both cases of forcing the triadic resonance is responsible
for development of instability, and at sufficiently large forcing
we observe a transition to three-dimensional wave turbulence.
We show thus for the first time that fully three-dimensional
simulations are necessary to capture the essential features of
nonlinear regimes in inertial wave attractors in a rotating fluid
annulus.

Index Terms—inertial waves, wave attractors, wave-wave in-
teractions

I. INTRODUCTION

Wave motions in fluids, which are uniformly stratified

in density and/or angular momentum, obey an anisotropic

dispersion relation. This dispersion relation admits oblique

wave beams as a generic form of wave motion. Being reflected

at a rigid boundary, the wave beams preserve their angle of

inclination with respect to the distinguished direction given

by the gravity (angular velocity) vector for internal (inertial)

waves, respectively. Reflection of wave beams at a sloping wall

leads to strong decrease (focussing) or increase (defocussing)

of their width. In closed fluid domains focussing prevails,

leading to concentration of wave energy at wave attractors,

whose linear ”skeletons” can be found by tracing the wave-ray
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Figure 2. Vertical component of velocity in the slice z = −15 cm, amplitude
a = 0.1 cm, ω0 = 2.4 rad/s, Ω = 2 rad/s for positive nutation.

Figure 3. Vertical component of velocity in the slice y = 0, amplitude
a = 0.1 cm, ω0 = 2.4 rad/s, Ω = 2 rad/s for positive nutation.

billiard. The 2D internal wave attractors have been described

in [24], [25]. Since then their relevance has been recognized in

numerous problems of geophysical and astrophysical hydro-

dynamics, where an extensive literature describes attractors

in rotating spherical liquid shells [16], [33], [38]. In ideal

fluid, wave attractors represent singular structures, with infinite

concentration of wave energy at their infinitely thin branches.

The regularization of the problem requires the presence of

a dissipative mechanism, which can be linear (purely vis-

cous) [17], [18], [33]–[35], or more general [2], [32], where

viscosity acts in combination with wave-wave interactions [8]–

[10], [12], [36] and wall friction [4].

Numerical simulations of wave attractors are quite compli-

cated. In numerical simulations of linear regimes one needs to

resolve the boundary layers at rigid boundaries, and the struc-

ture of the attractor beams, which appear in form of oblique

viscous shear layers. In simulations of strongly nonlinear

regimes, one needs to resolve the small-scale patterns resulting

from a cascade of wave-wave interactions. In a density-

stratified fluid the numerical simulations are complicated by

necessity to resolve diffusion of the stratifying agent.

It is important to note that the vast majority of studies

Figure 4. Vertical component of velocity in the slice z = −15 cm, amplitude
a = 0.1 cm, ω0 = 2.4 rad/s, Ω = 2 rad/s for negative nutation.

Figure 5. Vertical component of velocity in the slice y = 0, amplitude
a = 0.1 cm, ω0 = 2.4 rad/s, Ω = 2 rad/s for negative nutation.

on wave attractors is concerned with two-dimensional (plane

or axisymmetric) problems. Existing studies of 3D problems

consider geometrical configurations of wave attractors which

are compatible with a specific shape of the fluid volume [14],

[19], [27]. In the present paper we take another look at

the three-dimensional effects. We consider an axisymmetric

fluid volume, a rotating annulus with a trapezoidal cross-

section as a generatrix. Previous studies of inertial waves in

a rotating annulus, with perturbations introduced by angular

oscillations of the inner cylinder, were focussed at linear and

weakly nonlinear effects [21]. We apply a strong forcing

to the upper boundary of the rotating annulus (physically

this can be done with a version of the apparatus described

in [29]) and explore via direct numerical simulations how

the inertial-wave patterns possessing rotational or purely axial

symmetry in linear regime evolve toward highly complex non-

axisymmetric small-scale wave patterns in nonlinear regime.

The direct numerical simulations are performed with Nek5000

open solver implementing the spectral element method.

The paper is organized as follows. In section 2 we introduce

the mathematical formulation of the problem and describe

the geometric setup and the numerical procedure. In Section
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Figure 6. Vertical component of velocity in plane z = −15 cm, at amplitude
a = 0.15 cm

Figure 7. Vertical component of velocity in plane y = 0, at amplitude a =

0.15 cm

3 we describe numerical results for two types of forcing in

weakly and strongly nonlinear regimes, with special emphasis

on purely three-dimensional features emerging in the wave

pattern as result of triadic resonance. Brief conclusions are

presented in Section 4.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

Let us consider a rotating annulus filled with an incompress-

ible fluid of density ρ. The annulus has a trapezoidal cross-

section as a generatrix. Thus, the fluid volume is delimited by

vertical walls represented by two coaxial vertical cylinders,

and a bottom in form of a truncated cone. Such a geometry

due to its periodic nature is able to avoid some complexities

encountered in a nontrivial singly-connected fluid domain,

as the rectangular trapezoids considered in [26]–[28]. The

forcing at the upper boundary is applied by a lid executing a

prescribed motion as discussed below in more detail. Without

perturbations, the fluid in the annulus undergoes a uniform

rigid-body rotation around the vertical axis of symmetry with

constant angular velocity Ω. The scheme of the setup is shown

in Fig. 1. Such a geometry is of importance for modelling

dynamics of geophysical rotating layers. A reader interested in

this subject is referred to recent papers on this subject [5]–[7],

Figure 8. Two contours of the vertical component of velocity, appearance of
the small scale daughter waves is clearly visible. Amplitude a = 0.15 cm.
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Figure 9. Evolution of the vertical velocity spectrum. The spectrum is
averaged over the area of maximum amplitude near the first ray of the attractor.
The blue line represents the initial stage of instability; next we have the
transitional black line with one minimum below the external frequency ω0,
and finally the red line corresponds to the fully developed regime. Amplitude
of the external forcing is a = 0.15 cm.

[11], [20], [23], as well as preceding ones [1], [3], [22], [37],

which, however, do not consider highly nonlinear regimes that

are of central interest in this study.

This work anticipates the experimental laboratory model in

spirit of [29]. Therefore we will stick to dimensional variables

with internal radius R1 equal to 10 cm, the outer radius R2

equal to 30 cm, and the maximum depth of the fluid volume

H is 30 cm. The angle between the sloping generatrix of the

conical bottom and the horizontal is set at 30o. The rate of

background rigid-body rotation is Ω = 2 rad/s.

The mathematical model consist of Navier – Stokes equa-

tions, continuity equation and the boundary conditions im-

posed on the velocity field:

∂�v

∂t
+ vk∇k�v = −∇p̃+ ν∆�v + 2Ω× �v (1)

p̃ =
p

ρ
−

1

2
|Ω× �r |

2
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Figure 10. Scheme of an axisymmetric forcing

div�v = 0

We prescribe the no-slip condition at all rigid boundaries

except the upper lid where we apply a specific harmonic

forcing. Here we consider the following three cases of the

time-dependent form of the upper surface:

(A) Positive nutation

z = a(x cos(ω0t) + y sin(ω0t))/R2 (2)

(B) Negative nutation

z = a(x cos(ω0t)− y sin(ω0t))/R2 (3)

(C) Axially symmetric perturbation, where the vertical ampli-

tude as function of the radial coordinate is prescribed in

form of half-wave of the Bessel function (see Fig. 10 with

simple harmonic time-dependence at each radial location.

The above expressions are written in the Cartesian system

(x, y, z) co-rotating with the setup, where z-axis is pointing

upwards and coincides with the axis of rotation. The origin

of the coordinate system is taken at the center of the upper

lid. The upper lid represents an Euler disk, which undergoes

a small-amplitude nutation with respect to the horizontal

position in such a way that the vector normal to the lid is

inclined at angle arctan(a/R2) to the vertical so that the tip

of this vector describes a horizontal circle around the axis

of rotation. It is important to note that the rigid lid has no

inherent rotation in the rotating system (x, y, z). In the fixed

laboratory system of coordinates we define the anti-clockwise

background rotation Ω as positive. We define nutation as

positive (negative) if the tip of the vector normal to the lid

undergoes anti-clockwise (clockwise) precession around z-axis

in the rotating frame (x, y, z). In numerical simulations the

nutation of the upper lid as well as the Bessel-wave forcing are

implemented by prescribing the appropriate vertical velocity

field at the upper horizontal boundary. Since we consider the

small-amplitude input perturbations, such approach is fully

justified. In simulations of internal wave attractors with similar

implementation of the input forcing, we observed excellent

agreement between numerical and experimental results [10].

Figure 11. Vertical component of velocity in axisymmetric perturbation case
in plane z = −15 cm

Figure 12. Vertical component of velocity in axisymmetric perturbation case
in plane y = 0

To model the development of instabilities and turbulence

in strongly nonlinear regimes we need to take into account

both viscous effects and nonlinear terms. Numerical simulation

of transient and turbulent regimes is a challenge as we have

to follow the development of small-scale structures at long

time intervals. Spectral or Galerkin decomposition allows to

account for nonlinear effects without parasitic effects due to

numerical viscosity, but such a decomposition is possible only

for a very limited number of geometrical settings and bound-

ary conditions. In the present work we have performed the

direct numerical simulations with the help of spectral element

approach and open source code Nek5000 (see [13], [15]),

which combines the advantages of high-order decomposition

and geometric flexibility. The implementation of the method

requires considerable efforts in comparison to conventional

finite-volume approach and OpenFOAM. However, these ef-

forts are fully justified by accuracy of long-term simulations

of strongly nonlinear dynamics.

III. NUMERICAL RESULTS AND INTERPRETATION

A. Forcing via ”positive” nutation

Figures 2, 3 show the snapshots of the field of the vertical

component of velocity in horizontal cross-section z = −15 cm
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Figure 13. Snapshot of the vertical velocity field in horizontal slice z =

−15 cm.

Figure 14. Snapshot of the vertical velocity field at vertical plane y = 0.

and vertical cross-section y = 0 cm. The snapshot is taken in

the steady-state regime at ω0t = 2πn, where n is a large

integer number. The pattern is anti-symmetric with respect

to plane (yz) in agreement with the phase of the forcing

imposed at the upper boundary. Some traces of inertial waves

are detectable, but the overall pattern shows no signature of

wave attractor. Note that the scale bar in these pictures is

different from the scale bar used for the case of ”negative”

nutation depicted in figures 4 and 5, in spite of the fact that

in both cases the amplitude and frequency of nutation are the

same. Thus, the case of forcing via ”positive” nutation is not

compatible with generation of inertial wave attractors.

B. Forcing via ”negative” nutation

1) Linear regime (forcing amplitude a = 0.1 cm): In con-

trast to ‘positive nutation’ considered in previous section, for

‘negative nutation’ we observe a completely different pattern

of inertial wave motion. The snapshots of the vertical velocity

fields presented in figures 4, 5 show well-developed wave

attractors. Notice that the maximum amplitude of vertical

velocity in this case is 8 times higher than in the case of

‘positive nutation’! The wave attractor is in linear regime

here. Obviously the wave attractor is not two-dimensional

(axi-symmetric) since the left and right parts in Fig. 5 are

Figure 15. Snapshot of the vertical velocity field in horizontal slice z =

−15 cm.

Figure 16. Snapshot of the vertical velocity field at vertical plane y = 0.

in anti phase. In each horizontal cross-section (see e.g. Fig. 4)

the wave motion appears as an ‘Yin-Yang’ pattern rotating in

clockwise direction. In azimuthal direction the wavelength of

the rotating pattern is equal to 2π, i.e. there is exactly one wave

length per circumference in full agreement with the imposed

forcing.

2) Nonlinear regime (forcing amplitude a = 0.15 cm): As

the forcing increases, we observe the appearance of small-

scale secondary waves as shown in Fig. 6. It is worth noting

an important difference in development of instability in the

case of inertial waves in rotating annulus as compared to the

2D case of internal waves in a trapezoidal domain described

in [36]. Indeed, in the 2D plane case the wave amplitude is the

largest after the focusing reflection at the sloping boundary. It

gradually decreases with distance from the focussing reflection

due to viscosity. The instability develops in the most energetic

branch of the wave attractor, creating favorable conditions

for decomposition of the wave pattern into components with

the help of Hilbert transform technique [30], [31], [36]. In

inertial wave attractor the amplitude does not reach max-

imum after the focussing reflection at the sloping bottom.

Instead, second focussing mechanism comes into play: the

inertial wave converges toward the inner cylinder where it
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reaches the maximum amplitude. Viscosity acts in opposition

to such amplification via convergence but the viscous decay

is low under the conditions chosen for numerical experiments.

Therefore, the instability occurs close to the surface of the

inner cylinder, creating unfavorable conditions for the Hilbert

decomposition in the vertical plane. Instead, we apply the

Fourier and Hilbert analysis to the wave fields measured in

horizontal cross-sections of the inertial wave fields.

First, we consider the frequency spectra. Figure 9 presents

three spectra averaged over a ring-shaped zone at z = −15 cm

in the region corresponding to the maximum velocity am-

plitude, where the blue line corresponds to the onset of

triadic resonance, the black line corresponds to transition to

turbulence, and the red line corresponds to a developed regime

of wave turbulence. The frequencies are normalized by the

forcing frequency ω0. It can be seen that two secondary

peaks are present in the subharmonical range of the first

(blue) line at the spectrum corresponding to the onset of

instability at ω1/ω0 = 0.33 and ω2/ω0 = 0.67. These peaks

satisfy the classic temporal condition of triadic resonance

ω1 + ω2 = ω0. With the Hilbert filtering performed in the

horizontal plane we can determine the number of secondary

waves per circumference travelling in clockwise and anti-

clockwise direction in the rotating reference frame. The filtered

images of phase of the Hilbert transform show that the

frequency peak at ω1 (resp. ω2) corresponds to secondary

wave with azimuthal ”wavelength” of 2π/M (resp. 2π/N ),

where M = 38 and N = 37. Since for the primary wave we

have the azimuthal ”wavelength” of 2π, the spatial condition

of triadic resonance translates into M − N = 1. Thus, we

observe an extremely efficient energy transfer from large to

small scales. Note that the spectrum presented in figure 9 has a

considerable discrete component at frequencies corresponding

to multiples of the forcing frequency. In particular, the wave

pattern filtered at frequency 2ω0 corresponds to the wave,

which is twice shorter than the primary wave, with azimuthal

”wavelength” equal to π. The three-dimensional structure of

the unstable attractor at the onset of instability is presented in

Fig. 8, where the secondary waves are clearly visible. As the

instability develops, the frequency spectrum evolves in such

a way that the relative importance of the discrete components

decreases, while the continuous part of the spectrum increases

(see figure 9). Finally, the 0-frequency peak implies driving

of a mean flow, its spatial structure and comparison to [26] is

the subject of current research.

C. Axisymmetric forcing

Let us now consider the axisymmetric forcing sketched in

Fig. 10. Technically, such a forcing can be realized experimen-

tally with a version of wave generator described in [29]. If we

take the forcing amplitude a = 0.1 cm, the fully symmetric

attractor is first developed, but soon the instability sets in.

Similar to the case described in the previous section, it is

convenient to perform the Fourier and Hilbert analysis to the

wave patterns observed in horizontal cross-sections. Similar

to figure 9, figure 17 presents two spectra averaged over a
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Figure 17. Spectrum of the vertical component of velocity in the point of
maximum amplitude on the first ray of the attractor. Two peaks before the
non dimensional external forcing frequency 1 are 0.23 and 0.77. Red line
corresponds to the initial stage of instability t = 10 − 60 s. Blue line
corresponds to the turbulent motion t = 210− 300 s.

ring-shaped zone at z = −15 cm. The spectra correspond,

respectively, to the onset of triadic resonance and a more

developed stage of instability. The frequencies are normalized

by the forcing frequency ω0. Two secondary peaks are present

in the subharmonical range at the spectrum (see red line)

corresponding to the onset of instability at ω1/ω0 = 0.23 and

ω2/ω0 = 0.77. Obviously, these peaks satisfy the temporal

condition of triadic resonance. Applying the Hilbert filtering

to the wave pattern measured in the horizontal plane, we

observe that the frequency peak at ω1 (resp. ω2) corresponds to

secondary wave with azimuthal ”wavelength” of 2π/M (resp.

2π/N ), where M = N = 22. Since for the primary wave

we have infinite azimuthal ”wavelength”, the spatial condition

of triadic resonance translates into M − N = 0. It is inter-

esting that in the case of axisymmetric forcing the frequency

spectrum is nearly continuous, especially in the case of well-

developed instability. The development of instability in the

horizontal cross-section creates first fascinating ”Mandala”-

like patterns with the fine-scale elements possessing rotational

symmetry of increasing complexity. As the instability develops

toward wave turbulence, the fine-scale rotational symmetry is

lost and the motion becomes chaotic. However, the presence

of the wave attractor remains visible due to concentration of

most energetic wave motions in the vicinity of its branches.

CONCLUSION

This paper presents a direct numerical simulation of inertial

wave attractors in a rotating annulus with trapezoidal cross-

section. Forcing is applied to the system by nutation of the lid

which serves as the upper boundary of the annulus. We also

consider a lid which undergoes a small purely axisymmetric

deformation. This novel setup demonstrates a variety of linear

and nonlinear regimes. We find that nutation-type forcing may

or may not generate attractors depending on the sign of nuta-

tion with respect to the background rotation of the system. The

attractor created by nutation has a three-dimensional structure,

which appear in horizontal cross-sections as a rotating ‘Yin-
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Yang’ pattern. In nonlinear regime we observe the triadic res-

onance instability which effectively transfer energy from large

to small scales. The pattern of secondary waves is fully three-

dimensional. In the case of axisymmetric forcing we observe

an interesting scenario of instability which breaks the initially

axisymmetric primary-wave pattern into small-scale fragments

created by the interplay of secondary waves. These fragments

possess a rotational symmetry of increasing complexity. At

a later stage, the fine-scale rotational symmetry is lost, and

we observe a transition to irregular three-dimensional wave

pattern similar to wave turbulence.
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