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We carry out a direct numerical simulation �DNS� study that reveals the effects of polymers on statistically
steady, forced, homogeneous, and isotropic fluid turbulence. We find clear manifestations of dissipation-
reduction phenomena: on the addition of polymers to the turbulent fluid, we obtain a reduction in the energy
dissipation rate; a significant modification of the fluid-energy spectrum, especially in the deep-dissipation
range; and signatures of the suppression of small-scale structures, including a decrease in small-scale vorticity
filaments. We also compare our results with recent experiments and earlier DNS studies of decaying fluid
turbulence with polymer additives.

DOI: 10.1103/PhysRevE.82.066313 PACS number�s�: 47.27.Gs, 47.27.Ak

I. INTRODUCTION

The addition of small amounts of polymers to a turbulent
fluid leads to dramatic changes that include modifications of
the small-scale properties of the flow �1–4� and, in wall-
bounded flows, the phenomenon of drag reduction �5–7�, in
which polymer additives allow the maintenance of a given
flow rate at a lower pressure gradient than is required without
these additives. Several experimental, numerical, and ana-
lytical studies have investigated drag reduction �6–14� in
wall-bounded flows. These studies have shown that the ad-
dition of polymers modifies the turbulence significantly in
the region near the wall, and this leads to an increase in the
mean velocity in the bulk. By contrast, there have been only
some investigations of the effects of polymer additives on
homogeneous isotropic turbulence. Examples include recent
experiments �15–17�, which have been designed to obtain a
high degree of isotropy in the turbulent flow, and shell-model
studies and direct numerical simulations �DNSs�
�2–4,13,18,19�. These studies have shown that the addition
of polymers to a turbulent flow leads to a considerable re-
duction in small-scale structures; and they have also discov-
ered the phenomenon of dissipation reduction, namely, a re-
duction in the energy dissipation rate �, in decaying
turbulence �2–4�. In this paper we first elucidate the phenom-
enon of dissipation reduction for the case of statistically
steady, homogeneous, and isotropic turbulence with polymer
additives; we then study the small-scale properties of such
flows.

We do this by conducting a series of high-resolution DNS
studies of the three-dimensional Navier-Stokes �NS� equa-
tion coupled to an equation for the polymer conformation
tensor, which describes the polymer additives at the level of

the finitely extensible nonlinear elastic-Peterlin �FENE-P�
�2,3� model. Before we give the details of our study, it is
useful to summarize our principal results; these are in two
parts.

The first part contains results from our DNS of forced
statistically steady fluid turbulence, with polymer additives,
at moderate Reynolds numbers �Re��80�. The forcing is
chosen such that the energy injected into the fluid remains
fixed �20�, both with and without polymers; this mimics the
forcing scheme used in the experiments of Refs. �16,17�. We
find that, on the addition of polymers, the energy in the sta-
tistically steady state and the energy-dissipation rate are re-
duced. This dissipation reduction increases with an increase
in the polymer concentration c at fixed Weissenberg number
We, the ratio �see Table I� of the polymer time scale �P to a
shearing time scale in the turbulent fluid. The dissipation
reduction also increases with We if we hold c fixed. The
dissipation reduction seen in our simulations should not be
confused with the phenomenon of drag reduction seen in
wall-bounded flows. In the fluid-energy spectrum we find
that the energy content increases marginally at small wave
vectors on the addition of polymers, but it decreases for in-
termediate wave vectors. In this part of our study we use
2563 collocation points and attain a moderate Reynolds num-
ber Re��80, but we do not resolve the deep-dissipation
range. �We consider the deep-dissipation range in the follow-
ing paragraph.� We also obtain the structural properties of the
fluid with and without polymers and show that polymers
suppress large-vorticity and large-strain events; our results
here are in qualitative agreement with the experiments of
Refs. �16,17�. Furthermore, we find, as in our study of de-
caying turbulence �3�, that the polymer extension increases
with an increase in the polymer-relaxation time �P. We com-
pare our results, e.g., those for the energy spectrum, with
their counterparts in our earlier study of decaying fluid tur-
bulence with polymer additives �3�. In such comparisons, we
use averages over the statistically steady state of our system
here; and, for the case of decaying turbulence, we use data
obtained at the cascade-completion time, at which a plot of
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the energy dissipation rate versus time displays a maximum.
In the second part of our study we carry out the highest-

resolution DNS, attempted so far, of forced statistically
steady fluid turbulence with polymer additives; we drive the
fluid by an external stochastic force as in Ref. �21�. This part
of our study has been designed to uncover the effects of
polymers on the deep-dissipation range, so the Reynolds
numbers is small �Re��16�. By comparing fluid-energy
spectra, with and without polymers, we find that the poly-
mers suppress the energy in the dissipation range but in-
crease it in the deep-dissipation range. Finally, we calculate
the second-order velocity structure function S2�r� directly
from the energy spectrum via a Fourier transformation; this
shows that S2�r� with polymers is smaller than S2�r� without
polymers in this range.

The remaining part of this paper is organized as follows.
In Sec. II we present the equations we use for the polymer
solution and describe the method we use for the numerical
integration of these equations. Section III is devoted to a
discussion of our results; as we have mentioned above, these
are divided into two parts: the first part is contained in Secs.
III A–III C and the second one is contained in Sec. III D.
Section IV contains a concluding discussion.

II. EQUATIONS AND NUMERICAL METHODS

We model a polymeric fluid solution by using the three-
dimensional NS equations for the fluid coupled with the
FENE-P equation for the polymer additives �3�. The polymer
contribution to the fluid is modeled by an extra stress term in
the NS equations. The FENE-P equation approximates a
polymer molecule by a nonlinear dumbbell, which has a
single relaxation time and an upper bound on the maximum
extension. The NS and FENE-P �henceforth NSP� equations
are

Dtu = ��2u +
�

�P
� · �f�rP�C� − �p + f , �1�

DtC = C · ��u� + ��u�T · C −
f�rP�C − I

�P
. �2�

Here, u�x , t� is the fluid velocity at point x and time t, in-
compressibility is enforced by � ·u=0, Dt=�t+u ·�, � is the

kinematic viscosity of the fluid, � is the viscosity parameter
for the solute �FENE-P�, �P is the polymer-relaxation time, �
is the solvent density �set to 1�, p is the pressure, f�x , t� is the
external force at point x and time t, ��u�T is the transpose of
��u�, C����R�R�� is the elements of the polymer-
conformation tensor C �angular brackets indicate an average
over polymer configurations�, I is the identity tensor with
elements 	��, f�rP���L2−3� / �L2−rP

2� is the FENE-P poten-
tial that ensures finite extensibility, rP�	Tr�C� and L are the
length and the maximum possible extension, respectively, of
the polymers, and c�� / ��+�� a dimensionless measure of
the polymer concentration �19�; c=0.1 corresponds, roughly,
to 100 ppm for polyethylene oxide �7�. Table I lists the pa-
rameters of our simulations.

Numerical methods

We consider homogeneous isotropic turbulence, so we use
periodic boundary conditions and solve Eq. �1� by using a
pseudospectral method �22,23�. We use N3 collocation points
in a cubic domain �side L=2
�. We eliminate aliasing errors
by the 2/3 rule �22,23� to obtain reliable data at small length
scales, and we use a second-order slaved Adams-Bashforth
scheme for time marching. In earlier numerical studies of
homogeneous isotropic turbulence with polymer additives, it
has been shown that sharp gradients are formed during the
time evolution of the polymer conformation tensor; this can
lead to dispersion errors �19,24�. To avoid these dispersion
errors, shock-capturing schemes have been used to evaluate
the polymer-advection term ��u ·��C� in Ref. �24�. In our
simulations we have modified the Cholesky-decomposition
scheme of Ref. �19�, which preserves the symmetric-
positive-definite �SPD� nature of the tensor C. We incorpo-
rate the large gradients of the polymer conformation tensor
by evaluating the polymer-advection term ��u ·���� via the
Kurganov-Tadmor shock-capturing scheme �25�. For the de-
rivatives on the right-hand side of Eq. �2� we use an explicit
fourth-order central-finite-difference scheme in space, and
the temporal evolution is carried out by using an Adams-
Bashforth scheme. The numerical error in rP must be con-
trolled by choosing a small time step 	t; otherwise, rP can
become larger than L, which leads to a numerical instability.
This time step is much smaller than what is necessary for a

TABLE I. The cube root N of the number of collocation points, the time step 	t, the maximum possible
polymer extension L, the kinematic viscosity �, the polymer-relaxation time �P, and the polymer concentra-
tion parameter c for our four runs NSP-256A, NSP-256B, and NSP-512. We also carry out DNS studies of
the NS equation with the same numerical resolutions as in our NSP runs. The Taylor-microscale Reynolds
number Re��	20Ef /	3���

f and the Weissenberg number We��P
	��

f /� are as follows: NSP-256A and
NSP-256B: Re��80 and NSP-512: Re��16; the Kolmogorov dissipation length scale is ����3 /��

f �1/4. For
our runs NSP-256A-B, ��1.07	x; and for run NSP-512, ��19	x, where 	x�L /N is the grid resolution of
our simulations. The integral length scale lint��3
 /4�
k−1E�k� / �
E�k�� and Teddy�urms / lint are as follows:
NSP-256A and NSP-256B: lint�1.3 and Teddy�1.2; and, for NSP-512, lint�2.05 and Teddy�4.0.

N 	t L � �P c We

NSP-256A 256 5.0�10−4 100 5�10−3 0.5 0.1 3.5

NSP-256B 256 5.0�10−4 100 5�10−3 1.0 0.1 7.1

NSP-512 512 10−3 100 5�10−2 1.0 0.1 0.9
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pseudospectral DNS of the NS equation alone. Table I lists
the parameters we use. We preserve the SPD nature of C at
all times by using �19� the following Cholesky-
decomposition scheme: if we define

J � f�rP�C , �3�

Eq. �2� becomes

DtJ = J · ��u� + ��u�T · J − s�J − I� + qJ , �4�

where

s =
L2 − 3 + j2

�PL2 ,

q =
d/�L2 − 3� − �L2 − 3 + j2��j2 − 3�

��PL2�L2 − 3��
,

j2 � Tr�J� ,

d = Tr�J · ��u� + ��u�T · J� .

Here, C and hence J are SPD matrices; we can, therefore,
write J=LLT, where L is a lower-triangular matrix with
elements �ij, such that �ij =0 for j i, and

J � � �11
2 �11�21 �11�31

�11�21 �21
2 + �22

2 �21�31 + �22�32

�11�31 �21�31 + �22�32 �31
2 + �32

2 + �33
2 � . �5�

Equation �4� now yields �1� i�3 and �ij =�iuj� the follow-
ing set of equations:

Dt�i1 = 

k

�ki�k1 +
1

2
�q − s��i1 + �− 1��i mod 1�s�i1

�11
2 �

+ �	i3 + 	i2�
�i2

�11



m1
�m1�m2 + 	i3�i1

�33
2

�11
, for i � 1,

Dt�i2 = 

m�2

�mi�m2 −
�i1

�11



m�2
�m1�m2 +

1

2
�q − s��i2

+ �− 1��i+2�s
�i2

�22
2 �1 +

�21
2

�11
2 �� + 	i3�33

2

�22
��32 − �31

�21

�11
�

+ s
�21�31

�11
2 �22

�, for i � 2,

Dt�33 = �33�33 − �33 

m�3

�3m�3m

�mm
� +

�31�32�21�33

�11�22

− s
�21�31�32

�11
2 �22�33

+
1

2�q − s��33 +
s

�33
�1 + 


m�3

�3m
2

�mm
2 �

+
s�21

2 �32
2

�11
2 �22

2 �33
� . �6�

The SPD nature of C is preserved by Eqs. �6� if �ii0, which
we enforce explicitly �19� by considering the evolution of
ln��ii� instead of �ii.

We resolve the sharp gradients in the polymer conforma-
tion tensor by discretizing the polymer-advection term by
using the Kurganov-Tadmor scheme �25�. Below we show
the discretization of the advection term u�x�, where u
��u ,v ,w� and � is one of the components of ���; the dis-
cretization of the other advection terms in Eq. �6� is similar:

u�x� =
Hi+1/2,j,k − Hi−1/2,j,k

	x
,

Hi+1/2,j,k =
ui+1/2,j,k��i+1/2,j,k

+ + �i+1/2,j,k
− �

2

−
ai+1/2,j,k��i+1/2,j,k

+ − �i+1/2,j,k
− �

2
,

�i+1/2,j,k
� = �i+1,j,k �

	x

2
��x��i+1/2�1/2,j,k,

ai+1/2,j,k � �ui+1/2,j,k� , �7�

where i , j ,k=0, . . . , �N−1� denote the grid points and 	x
=	y=	z is the grid spacing along the three directions.

We use the following initial conditions �superscript 0�:
Cmn

0 �x�=	mn for all x and um
0 �k�= Pmn�k�vn

0�k�exp���n�k��,
with m ,n=x ,y ,z, Pmn= �	mn−kmkn /k2� as the transverse pro-
jection operator, k as the wave vector with components km
= �−N /2,−N /2+1, . . . ,N /2� and magnitude k= �k�, �n�k� as
random numbers distributed uniformly between zero and 2
,
and vn

0�k� chosen such that the initial kinetic-energy spec-
trum is E0�k�=k4 exp�−2.0k2�. This initial condition corre-
sponds to a state in which the fluid energy is concentrated, to
begin with, at small k �large length scales�, and the polymers
are in a coiled state. Our simulations are run for 45Teddy and
a statistically steady state is reached in roughly 10Teddy,
where the integral-scale eddy-turnover time Teddy�urms / lint,
with urms as the root-mean-square velocity and lint
�
kk

−1E�k� /
kE�k� as the integral length scale. Along with
our runs NSP-256A and NSP-256B we also carry out pure-
fluid NS simulations until a statistically steady state is
reached; this takes about 10Teddy–15Teddy. Once this pure-
fluid simulation reaches a statistically steady state, we add
polymers to the fluid at 27Teddy; i.e., beyond this time we
solve the coupled NSP equations �1� and �2� by using the
methods given above. We then allow 5Teddy–6Teddy to
elapse, so that transients die down, and then we collect data
for fluid and polymer statistics for another 25Teddy for our
runs NSP-256A and NSP-256B.

III. RESULTS

We now present the results that we have obtained from
our DNS. In addition to u�x , t�, its Fourier transform uk�t�,
and C�x , t�, we monitor the vorticity ����u, the kinetic-
energy spectrum E�k , t��
k−1/2�k��k+1/2�uk�

2 �t��, the total ki-
netic energy E�t��
kE�k , t�, the energy-dissipation rate
���t���
kk

2E�k , t�, the probability distribution of scaled
polymer extensions P�rP

2 /L2�, the probability distribution
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function �PDF� of the strain and the modulus of the vorticity,
and the eigenvalues of the strain tensor. For notational con-
venience, we do not display the dependence on c explicitly.
In Sec. III A we present the time evolution of E and �� and
provide evidence for dissipation reduction by polymer addi-
tives. This is followed by Secs. III B and III C that deal,
respectively, with the effects of polymers on fluid-energy
spectra and small-scale structures in turbulent flows. In Sec.
III D we examine the modification, by polymer additives, of
fluid-energy spectra in the deep-dissipation range.

A. Energy and its dissipation rate

We first consider the effects of polymer additives on the
time evolution of the fluid energy E for our runs NSP-256A
and NSP-256B; this is shown in Fig. 1. The polymers are
added to the fluid at t=27Teddy. The addition of polymers
leads to a new statistically steady state; specifically, we find
for We=3.5 and We=7.1 that the average energy of the fluid
with polymers is reduced in comparison to the average en-
ergy of the fluid without polymers. By using Eq. �1�, we
obtain the following energy-balance equation for the fluid
with polymer additives:

dE

dt
= �� + �poly + �inj, �8�

�� = − �
1

V
� u · �2u ,

�poly = � �

�P
�� 1

V
� u · ��f�rP�C�� ,

�inj =
1

V
� f · u . �9�

In the statistically steady state dE
dt =0, and the energy injected

is balanced by the fluid dissipation rate �� and the polymer
dissipation �poly. Our simulations are designed to keep the

energy injection fixed. Therefore, we can determine how the
dissipation gets distributed between the fluid and polymer
subsystems in forced statistically steady turbulence.

Before we present our results for the kinetic-energy dissi-
pation rate, we first calculate the second-order structure func-
tion S2�r� via the following exact relation �26�:

S2�r� = �
0

� 1 −
sin�kr�

kr
�E�k�dk . �10�

In Fig. 2 we give a log-log plot of S2�r�, compensated by
�r /L�−2, as a function of r /L. We find that, for small r,
S2�r��r2, which implies that our DNS resolves the analyti-
cal range, which follows from a Taylor expansion of S2�r�
�27�; this guarantees that energy-dissipation rate has been
calculated accurately. In Fig. 3 we present plots of ���t� ver-
sus t /Teddy for We=3.5 and We=7.1 with the polymer con-
centration c=0.1. We find that the average value of �� de-
creases as we increase We. This suggests the following
natural definition of the percentage dissipation reduction for
forced, homogeneous, and isotropic turbulence:

2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0

t / T e d d y

2 . 2

2 . 4

2 . 6

2 . 8

3 . 0

3 . 2

3 . 4

E

FIG. 1. �Color online� A plot of the fluid energy E versus the
dimensionless time t /Teddy �runs NSP-256A and NSP-256B� for
Weissenberg numbers We=3.5 �blue circles� and We=7.1 �black
dashed line�. The corresponding plot for the pure-fluid case is also
shown for comparison �red solid line�. The polymers are added to
the fluid at t=27Teddy.

− 2 . 0 − 1 . 5 − 1 . 0 − 0 . 5

l o g 1 0 ( r /  )

1 . 0

1 . 5

2 . 0

2 . 5

lo
g
1
0
[(
r/

)−

2
S
2
(r
)]

FIG. 2. �Color online� Log-log �base 10� plots of the second-
order structure function S2�r�, compensated by �r /L�−2, versus r /L,
for our run NSP-256B �blue square� and for the pure-fluid case �red
circle�. The regions in which the horizontal black lines overlap with
the points indicate the r2 scaling ranges.

2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0

t / T e d d y

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

ε ν

FIG. 3. �Color online� Plots of the energy dissipation rate ��

versus t /Teddy �runs NSP-256A and NSP-256B� for Weissenberg
numbers We=3.5 �blue circles� and We=7.1 �black dashed line�.
The corresponding plot for the pure-fluid case is also shown for
comparison �red solid line�. The polymers are added to the fluid at
t=27Teddy.
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DR � ����
f � − ���

P�
���

f �
� � 100%. �11�

Here �and henceforth�, the superscripts f and p stand, respec-
tively, for the fluid without and with polymers and the angu-
lar brackets denote an average over the statistically steady
state. The percentage dissipation reduction DR rises with
We; this indicates that ��

P decreases with We �28�. Thus, in
contrast to the trend we observed in our decaying-turbulence
DNS �3�, DR increases with We: for We=3.5, DR�30%
and, for We=7.1, DR�50%. Our interpretation is that this
increase in DR with We arises because the polymer exten-
sions and, therefore, the polymer stresses are much stronger
in our forced-turbulence DNS than in our decaying-
turbulence DNS �at least for the Reynolds numbers that we
achieved in Ref. �3��. In Fig. 4 we show the cumulative PDF
of the scaled polymer extension; this shows clearly that the
extension of the polymers increases with We. In general, the
calculation of PDFs from numerical data is plagued by errors
originating from the binning of the data to make histograms.
Here, instead, we have used the rank-order method to calcu-
late the corresponding cumulative PDF, which is free of bin-
ning errors �29�.

B. Energy spectra

In this section we study fluid-energy spectra Ep�k�, in the
presence of polymer additives, for two different values of the
Weissenberg number We and fixed polymer concentration c
=0.1 �Fig. 5�. We find that the energy content at intermediate
wave vectors decreases with an increase in We. At small
wave-vector magnitudes k, we observe a small increase in
the spectrum on the addition of the polymers, but this in-
crease is within our numerical two-standard-deviation error
bars. Because of the moderate resolution of our simulations
we are not able to resolve the dissipation range fully in these
simulations. We address this issue by conducting high-
resolution low-Reynolds-number simulations in Sec. III D.

C. Small-scale structures

We now investigate how polymers affect small-scale
structures in homogeneous isotropic fluid turbulence, and we
make specific comparisons with experiments �16,17�. We be-
gin by plotting the PDFs of the modulus of the vorticity ���
and the local energy dissipation rate �loc=
i,j��iuj +� jui�2 /2
in Fig. 6. We find that the addition of polymers reduces re-
gions of high vorticity and high dissipation �Fig. 6�. Further-
more, we find that, on normalizing ��� or �loc by their respec-
tive standard deviations, the PDFs of these normalized
quantities for the fluid with and without polymers collapse

1 0
- 3

1 0
- 2

1 0
- 1

r 2
P / L 2

1 0
- 5

1 0
- 4

1 0
- 3

1 0
- 2

1 0
- 1

1 0
0

P
C
(r

2 P
/
L
2
)

FIG. 4. �Color online� Log-log �base 10� plots of the cumulative
PDF PC�rP

2 /L2� versus the scaled polymer extension rP
2 /L2 for We

=3.5 �blue dashed line for run NSP-256A� and We=7.1 �full black
line for run NSP-256B�. Note that as We increases, so does the
extension of the polymers. These plots are obtained from polymer
configurations at t=60Teddy.
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FIG. 5. �Color online� Log-log plots �base 10� of the energy
spectra Ep�k� versus k �runs NSP-256A and NSP-256B� for c=0.1
and We=3.5 �blue squares� or We=7.1 �black stars�; we give two-
standard-deviation error bars. The corresponding pure-fluid spec-
trum Ef�k� �red circles� is shown for comparison.
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FIG. 6. �Color online� Semilogarithmic plots �base 10� of the
PDFs P����� versus ��� �top panel� and P��loc� versus �loc �bottom
panel�, for our run NSP-256B, with �c=0.1, We=7.1 �blue dashed
line�� and without �c=0 �full red line�� polymer additives.
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onto each other �within our numerical error bars� as shown in
Fig. 7. Our results for these PDFs are in qualitative agree-
ment with the results of Refs. �16,17� �see Fig. 2 of Ref. �16�
and Fig. 3 of Ref. �17��. Earlier high-resolution large-Re�

DNS studies of homogeneous isotropic fluid turbulence with-
out polymer additives �see, e.g., Refs. �30,31� and references
therein� have established that iso-��� surfaces are filamentary
for large values of ���. In Fig. 8 we show how such iso-���
surfaces change on the addition of polymers �c=0.1, We
=3.5 or 7.1�. In particular, the addition of polymers sup-
presses a significant fraction of these filaments �compare the
top and middle panels of Fig. 8�, and this suppression be-
comes stronger as We increases �middle and bottom panels
of Fig. 8�. In addition to suppressing events which contribute
to large fluctuations in the vorticity, the addition of polymers
also affects the statistics of the eigenvalues of the rate-of-
strain matrix �Sij = ��iuj +� jui� /	2�, namely, �n, with n
=1,2 ,3. They provide a measure of the local stretching and
compression of the fluid. In our study, these eigenvalues are
arranged in decreasing order, i.e., �1�2�3. Incompress-
ibility implies that 
i�i=0; therefore, for an incompressible
fluid, one of the eigenvalues ��1� must be positive and one
��3� must be negative. The intermediate eigenvalue �2 can
either be positive or negative. In Figs. 9 and 10 we plot the
PDFs of these eigenvalues. The tails of these PDFs shrink on
the addition of polymers. This indicates that the addition of
the polymers leads to a substantial decrease in the regions
where there is large strain, a result that is in qualitative

agreement with the experiments of Ref. �16� �see Fig. 3�b� of
Ref. �16��. Evidence for the suppression of small-scale struc-
tures on the addition of polymers can also be obtained by
examining the attendant change in the topological properties
of a three-dimensional turbulent flow. For incompressible
ideal fluids in three dimensions there are two topological
invariants: Q�−Tr�A2� /2 and R�−Tr�A3� /3, where A is the
velocity-gradient tensor �u �32�. Topological properties of
such a flow can be classified �33,34� by a Q-R plot, which is
a contour plot of the joint PDF of Q and R. In Fig. 11 we
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FIG. 7. �Color online� Semilogarithmic plots �base 10� of the
scaled PDFs P���� /�� versus ��� /�� �top panel� and P��loc /���
versus �loc /�� �bottom panel�, where �� and �� are the standard
deviations for ��� and �loc, respectively, for our run NSP-256B, with
�c=0.1, We=7.1 �dashed line�� and without �c=0 �solid line�� poly-
mer additives. These plots are normalized such that the area under
each curve is unity.

FIG. 8. �Color online� Constant-��� isosurfaces for ���= ���
+2�� at t�60Teddy without �top panel� and with �middle panel
We=3.5 �run NSP-256A� and bottom panel We=7.1 �run NSP-
256B�� polymers; ��� is the mean and �� is the standard deviation
of ���.
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give Q-R plots from our DNS studies with and without poly-
mers; although the qualitative shape of these joint PDFs re-
mains the same, the regions of large R and Q are dramati-
cally reduced on the additions of polymers; this is yet
another indicator of the suppression of small-scale structures.

D. Effects of polymer additives on deep-dissipation-range
spectra

In the previous sections we have studied the effects of
polymer additives on the structural properties of a turbulent
fluid at moderate Reynolds numbers. We now investigate the
effects of polymer additives on the deep-dissipation range.
To uncover such deep-dissipation-range effects, we conduct
a very-high-resolution, but low-Re� �=16�, DNS study �NSP-
512�. The parameters used in our run NSP-512 are given in
Table I. The fluid is driven by using the stochastic-forcing
scheme of Ref. �21�. In Fig. 12 we plot fluid-energy spectra
with and without polymer additives. The general behavior of
these energy spectra is similar to that in our decaying-
turbulence study �3�. We find that, on the addition of poly-
mers, the energy content at intermediate wave vectors de-
creases, whereas the energy content at large wave vectors

increases significantly. We have checked explicitly that this
increase in the energy spectrum in the deep-dissipation range
is not an artifact of aliasing errors: note first that this increase
starts at wave vectors whose magnitude is considerably
lower than the dealiasing cutoff kmax in our DNS; further-
more, the enstrophy spectrum k2Ep�k�, which we plot versus
k in Fig. 13, decays at large k; this indicates that the dissipa-
tion range has been resolved adequately in our DNS.

For homogeneous isotropic turbulence, the relationship
between the second-order structure function and the energy
spectrum is given in Eq. �10� �26�. Using this relationship
and the data for the energy spectrum shown in Fig. 12, we
have obtained the second-order structure function S2�r� for
our run NSP-512. We find that the addition of polymers leads
to a decrease in the magnitude of S2�r�. Our plots for S2�r�
are similar to those found in the experiments of Ref. �15�. In
our simulations we are able to reach much smaller values of
r /� than has been possible in experimental studies on these
systems �15�; however, we have not resolved the inertial
range very well in these runs. Note that the spectra Ep�k�,
with polymers, and Ef�k�, without polymers, cross each other
as shown in Fig. 12. But such a crossing is not observed in
the corresponding plots of second-order structure functions
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FIG. 11. �Color online� Contour plots of the joint PDF P�R ,Q�
from our DNS studies with �left� and without �right� polymer addi-
tives. In this Q-R plot, Q=−Tr�A2� /2 and R=−Tr�A3� /3 are the
invariants of the velocity-gradient tensor �u. Note that P�R ,Q�
shrinks on the addition of polymers; this indicates a depletion of
small-scale structures. The contour levels are logarithmically
spaced and are drawn at the following values: 1.3, 2.02, 2.69, 3.36,
4.04, 4.70, 5.38, and 6.05.
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FIG. 12. �Color online� Log-log �base 10� plots of the fluid-
energy spectrum Ep�k� versus the magnitude of the wave vector k
for our run NSP=512 �full black line with squares� for c=0.1 and
�P=1. The corresponding plot for the pure fluid �full red line with
circles� is also shown for comparison.

FIG. 9. �Color online� Semilogarithmic �base 10� plots of the
PDF P��1� versus the first eigenvalue �1 of the strain-rate tensor S
for the run NSP-256B, with �We=7.1 �blue dashed line�� and with-
out �c=0 �full red line�� polymer additives. These plots are normal-
ized such that the area under each curve is unity.

FIG. 10. �Color online� Semilogarithmic �base 10� plots of the
PDF P��2� versus the second eigenvalue �2 of the strain-rate ten-
sor S for the run NSP-256B, with �We=7.1 �blue dashed line�� and
without �c=0 �full red line�� polymer additives. These plots are
normalized such that the area under each curve is unity.
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�Fig. 14�. This can be understood by noting that S2�r� com-
bines large- and small-k parts �35� of the energy spectrum.

IV. CONCLUSIONS

We have presented an extensive numerical study of the
effects of polymer additives on statistically steady, homoge-
neous, and isotropic fluid turbulence. Our study comple-
ments, and extends considerably, our earlier work �3�. Fur-
thermore, our results compare favorably with several recent
experiments.

Our first set of results show that the average viscous en-
ergy dissipation rate decreases on the addition of polymers.
This allows us to extend the definition of dissipation reduc-
tion, introduced in Ref. �3�, to the case of statistically steady,
homogeneous, and isotropic fluid turbulence with polymers.
We find that this dissipation reduction increases with an in-
crease in the Weissenberg number We at fixed polymer con-
centration c. We obtain PDFs of the modulus of the vorticity,
of the eigenvalues �n, of the rate-of-strain tensor S, and Q-R
plots; we find that these are in qualitative agreement with the
experiments of Refs. �16,17�.

Our second set of results deal with a high-resolution DNS
that we have carried out to elucidate the deep-dissipation-
range forms of �a� energy spectra and �b� the related second-
order velocity structure functions. We find that this deep-
dissipation-range behavior is akin to that in our earlier DNS
of decaying, homogeneous, and isotropic fluid turbulence
with polymers �3�. Furthermore, the results we obtain for the
scaled second-order velocity structure S2�r� yield trends that
are in qualitative agreement with the experiments of Ref.
�15�. We hope that the comprehensive study that we have
presented here will stimulate further detailed experimental
studies of the statistical properties of homogeneous isotropic
fluid turbulence with polymer additives.
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