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A direct numerical simulation(DNS) has been performed of turbulent channel flow over a
three-dimensional Cartesian grid of 3032039 cubes in, respectively, the streamwise, spanwise,
and wall-normal direction. The grid of cubes mimics a permeable wall with a porosity of 0.875. The
flow field is resolved with 60034003400 mesh points. To enforce the no-slip and no-penetration
conditions on the cubes, an immersed boundary method is used. The results of the DNS are
compared with a second DNS in which a continuum approach is used to model the flow through the
grid of cubes. The continuum approach is based on the volume-averaged Navier–Stokes(VANS)
equations[S. Whitaker, “The Forchheimer equation: a theoretical development,” Transp. Porous
Media 25, 27 (1996)] for the volume-averaged flow field. This method has the advantage that it
requires less computational power than the direct simulation of the flow through the grid of cubes.
More in general, for complex porous media one is usually forced to use the VANS equations,
because a direct simulation would not be possible with present-day computer facilities. A
disadvantage of the continuum approach is that in order to solve the VANS equations, closures are
needed for the drag force and the subfilter-scale stress. For porous media, the latter can often be
neglected. In the present work, a relation for the drag force is adopted based on the Irmay[“Modèles
théoriques d’écoulement dans les corps poreux,” Bulletin Rilem29, 37 (1965)] and the Burke–
Plummer model[R. B. Bird, W. E. Stewart, and E. N. Lightfoot,Transport Phenomena(Wiley, New
York, 2002)], with the model coefficients determined from simulations reported by W. P. Breugem,
B. J. Boersma, and R. E. Uittenbogaard[“Direct numerical simulation of plane channel flow over
a 3D Cartesian grid of cubes,”Proceedings of the Second International Conference on Applications
of Porous Media, edited by A. H. Reis and A. F. Miguel(Évora Geophysics Center, Évora, 2004),
p. 27]. The results of the DNS with the grid of cubes and the second DNS in which the continuum
approach is used, agree very well. ©2005 American Institute of Physics. [DOI: 10.1063/1.1835771]

I. INTRODUCTION

In this research we consider turbulent channel flow over
a three-dimensional(3D) Cartesian grid of cubes, where the
cubes mimic a permeable wall. A permeable wall is defined
here as a rigid porous wall with interconnected pores through
which fluid may flow, which in our case is coupled to the
flow in the channel. The study of flows over permeable walls
has various applications. Examples are oil wells, heat ex-
changers of open-cell metal foam, and riverbeds of for in-
stance sand or stones. To some extent, also forests and
densely builtup urban areas can be considered as porous me-
dia. In most applications the structure of the porous medium
is very complex and often the geometry is not known in full
detail. Furthermore, the flow inside a porous medium exhib-
its usually a wide range of length scales. The smallest scales
are typically of the order of the pore size or the diameter of
the solid obstacles of which the porous medium is composed,
whereas the largest scales might be of the order of the di-
mensions of the porous medium. The complex structure of
porous media and the wide range of length scales of the flow,
hampers the direct simulation of turbulent flow over and
through porous media. A direct numerical simulation(DNS)
in which the complete flow field is resolved above the per-

meable wall as well as within the pores of the wall, would
require an enormous computational power. The literature,
however, provides two other methods to simulate the turbu-
lent flow over and through a permeable wall, which are more
attractive from a computational point of view.

In the first method, the effect of wall permeability is
incorporated in the boundary conditions specified at the wall
interface. The main advantage of this approach is that the
flow inside the permeable wall need not be calculated. This
approach was adopted by, e.g., Hahnet al.,1 who performed
DNS of turbulent flow in a plane channel with a solid top
wall and a lower permeable wall. The boundary conditions
used, were an extension to the boundary conditions proposed
by Beavers and Joseph2 (later on referred to as BJ) to model
laminar flow parallel to a permeable wall:

=u ·n =
a

ÎK
su − Udd, s1d

u 3 n = 0, s2d

wheren is the normal unit vector at the wall,a is an empiri-
cal coefficient of order unity, andK is the permeability. The
Darcy velocityUd is given by Darcy’s Law:3
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Ud = −
K

m
= p, s3d

wherem is the dynamic viscosity and=p the imposed pres-
sure gradient. Theoretical support for the BJ conditions was
given by Saffman,4 who showed that these conditions can be
derived from the assumption of Stokes flow inside as well as
above the permeable wall. The BJ conditions can therefore
be applied to the case of turbulent channel flow only when
close to the permeable wall a viscous sublayer exists, in
which the flow is governed by the Stokes equations. As
pointed out by Hahnet al.,1 this requirement is satisfied
whenÎK is small compared to the viscous length scalen /ut,
wheren;m /r is the kinematic viscosity,r the mass density,
ut;Îtw/r the friction velocity, andtw the wall shear stress.
The ratio of these two lengthscales yields the permeability
Reynolds number ReK;ÎKut /n, which expresses basically
the ratio of the effective pore diameterÎK to the character-
istic lengthscales of near-wall eddiesn /ut. For small values
of ReK the eddies are blocked by the wall and consequently a
viscous sublayer exists. For large values of ReK the eddies
may penetrate the permeable wall, and consequently the for-
mation of a viscous sublayer is prohibited. Although it can-
not be fully excluded, it is not likely that the penetration of
turbulence in this case can be modeled in a simple manner by
means of boundary conditions, because of the complexity of
the dynamics and structure of the turbulent flow near the
permeable wall. Therefore, for an accurate simulation of the
flow field for large ReK, we have to describe the flow inside
the permeable wall as well.

The second method to simulate flows over porous media,
is to model the flow inside the permeable wall as a con-
tinuum, which is coupled with the flow outside the wall.5

The theoretical basis for this continuum approach is provided
by the volume-averaging method.6 In this method the flow is
averaged over a small spatial volume such that the volume-
averaged flow is defined in the fluid as well as in the solid
phase. The volume-averaged flow is governed by the
volume-averaged Navier–Stokes(VANS) equations. These
equations are similar to the equations used in large-eddy
simulations(LES),7 where the difference is due to the fact
that the VANS equations have to account also for the drag
force that the flow through a porous medium experiences. To
solve the VANS equations, closures must be provided for the
subfilter-scale stress and the drag force in terms of volume-
averaged quantities. In many porous media subfilter-scale
dispersion can be neglected with respect to the drag force
and/or turbulent diffusion by large-scale motions.5 Breugem5

used in his simulations the semiempirical Ergun equation for
packed beds8 to model the drag force.

A polynomial function for the porosity was adopted to
model the variation of the porosity in a thin interface region
in between the channel and the porous medium.

Whether the continuum approach is successful in accu-
rately modeling the flow, depends on the accuracy of the
closures for the subfilter-scale stress and especially the drag
force. This motivated the present research, in which we want
to evaluate these closures. To this purpose we performed a
DNS of turbulent flow in a plane channel over a simple po-

rous medium consisting of a 3D Cartesian grid of cubes, see
Fig. 1(a). In this simulation the complete flow field in be-
tween the cubes as well as in the channel is resolved. The
results of this direct simulation will be compared with a
simulation in which the continuum approach is applied to the
grid of cubes, see Fig. 1(b).

From now on, the DNS of the channel flow over the 3D
Cartesian grid of cubes will be referred to as theDNS with
cubes, whereas the DNS in which the continuum approach is
employed, will be referred to as theDNS with continuum.
The results from the two simulations will be compared also
with a DNS of turbulent flow in a channel with two solid
walls, which will be referred to as theDNS with solid walls.

This paper is organized as follows. The choice for the
grid of cubes as a model porous medium is motivated in Sec.
II. In Sec. III the VANS equations are introduced. In Sec. IV

FIG. 1. Flow geometry.(a) Geometry as considered in the DNS of turbulent
channel flow over a 3D Cartesian grid of cubes;(b) geometry as considered
in the DNS in which a continuum approach is employed for the grid of
cubes.
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the DNS with continuum is discussed. Section V concerns
the numerical method used in the DNS with cubes. In Sec.
VI the results of both type of simulations are compared with
each other and with the results from the DNS with solid
walls. Section VII contains a summary and a discussion.

II. CARTESIAN GRID OF CUBES

The choice for a 3D Cartesian grid of cubes as a model
geometry for a porous medium is motivated by four consid-
erations:

(1) The grid of cubes is spherically isotropic,9 which means
that the permeability tensor is isotropic:K =KI , whereI
is the unit tensor. In a volume-averaged sense the grid of
cubes can therefore be considered as a simple porous
medium.

(2) The grid of cubes can be classified as an ordered porous
medium, which is characterized by a unit cell that can be
extended periodically in space. For this type of porous
medium, Quintard and Whitaker10 have proposed a dedi-
cated filter for the volume averaging of the flow field,
which will be used in the present study. The length of
this filter is of the same order as the dimension of the
pores and solid obstacles. Therefore, the spatial structure
of the unfiltered flow field is preserved as much as pos-
sible in the volume-averaged flow field. This is a major
benefit of ordered porous media over disordered porous
media, because for the latter the filter length should be
significantly larger for averaging out local inhomogene-
ities in the flow field.10

(3) Permeable walls are not only permeable, but exhibit also
surface roughness. In principle, the additional effect of
surface roughness could be quantified by comparing the
flow over a permeable and rough wallwith the flow
over arough and impermeable wall with the same sur-
face roughness. The latter wall is impermeable in the
sense that below the geometrical roughness height the
flow is forced to zero. The difference between the two
walls is illustrated in Fig. 2. In the literature it is com-
mon practice to characterize a rough wall by the typical
height of the roughness elements, which in our case is
the cube ribdp. The effect of roughness depends on the
roughness Reynolds numberRed;dput /n.11 Similarly,
the effect of permeability depends on thepermeability
Reynolds numberReK,5 which we have already intro-
duced. Our research interest is on the influence of wall
permeability rather than the effect of wall roughness on
turbulent channel flow. This demands that the roughness
Reynolds number is sufficiently small and that the per-

meability Reynolds number is sufficiently large. The
cubes are therefore aligned in a Cartesian grid and the
cube rib dp is chosen small compared to the channel
height. Furthermore, the cube rib is chosen equal to the
pore dimension(dp=df) to ensure a relatively high per-
meability Reynolds number. Besides, the choice fordp

=df seems intuitively also a good choice from a compu-
tational point of view, because both the flow along and
the flow in between the cubes must be resolved.

(4) The cubes can be aligned along a Cartesian computa-
tional mesh. This simplifies the volume averaging of the
simulation data. An immersed boundary method(IBM )
(Ref. 12 and references therein) is employed in which
forces are added to the flow field to enforce the no-slip
and no-penetration conditions on the cubes. This method
allows for the application of fast and accurate numerical
algorithms.

III. THE VANS EQUATIONS

In this section a brief derivation of the VANS equations
is given, based on local volume averaging of the Navier–
Stokes equations.

The formal definition of the volume-averaged velocity at
positionx is given by

kulx
s ; E

V

gsr dmsydusr ddV, s4d

where the bracketsk. .ls denote thesuperficialvolume aver-
age, the subscriptx means that the volume average is evalu-
ated at positionx, y=r −x is the position vector relative to
the centroidx of the averaging volumeV, g is the phase-
indicator function that equals unity whenr points into the
fluid phase and that equals zero whenr points into the solid
phase, andm is a weighting function. The volume-averaging
operator acts as a filter, which passes only information on the
large-scale structure of the flow field. Furthermore, we note
that the volume-averaged flow field is continuous in the
sense that it is defined both in the fluid and the solid phase,
provided of course that the filter length or the averaging vol-
ume is large enough. This is the basis of the continuum ap-
proach for flow in porous media.

For a meaningful definition of volume-averaged quanti-
ties, the weighting function must satisfy the following nor-
malization condition:

E
V

msyddV= 1. s5d

In principle the weighting function can be chosen freely,
but it is desirable that the volume-averaged flow field con-
tains negligible variations on scales smaller than the averag-
ing volume; and the averaging volume is small in order to
preserve as much information of the unfiltered flow field as
possible in the volume-averaged flow field.

These two conditions demand that the weighting func-
tion matches the topology of the porous medium. With this in
mind, Quintard and Whitaker10 proposed the following
weighting function for an ordered porous medium:

FIG. 2. Illustration of the difference between a permeable and rough wall,
and a rough and impermeable wall with the same surface roughness.
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msxd = p
i=1

3
Gsxi,l id

l i
2 , s6d

in which l i andxi are, respectively, the length of the unit cell
and the spatial coordinate in directioni. The functionG is
defined according to

Gsxi,l id ; Hl i − uxiu, uxiu ø l i ,

0, uxiu . l i .
J s7d

The above averaging volume and the weighting function
are illustrated in Fig. 3 for the Cartesian grid of cubes con-
sidered in the present study. Quintard and Whitaker refer to
this filter as thecellular filter.

According to Eq.(4) the porosity is defined as

esxd ; E
V

gsr dmsyddV. s8d

The velocity at a certain point in the fluid phase of the
porous medium can be decomposed into a contribution of the
volume-averaged velocity at this point and a subfilter-scale
velocity ũ:13

u = kul + ũ, s9d

where kul;kuls/e is known as the intrinsic volume-

averaged velocity. Besides the spatial decomposition given
by (9), in this study also a temporal decomposition will be
used:

u = ū + u8, s10d

where the overbar denotes the Reynolds- or ensemble-
averaged value and the prime denotes the temporal fluctua-
tion. The spatial and temporal decompositions can be com-
bined together, which yields

u = kul + kul8 + ũ + ũ8. s11d

It is easy to show that the Reynolds- and spatial-averaging

operators commute:14 kul=kūl, kul8=ku8l, ũ= ũ̄, andũ8= ũ8.
For deriving the volume-averaged form of the Navier–

Stokes equations it is necessary to relate the volume average
of a spatial derivative to the spatial derivative of a volume
average. This relation is given by the spatial-averaging
theorem.15 For instance, the volume average of the gradient
of the pressure is given by

k=plx
s = = kplx

s +E
A

msydnpsr ddA, s12d

whereA is the contact area between the fluid and the solid
phase inside the averaging volumeV, see Fig. 3(a), andn is
the normal unit vector atA that points from the fluid into the
solid phase. The single assumption in the derivation of(8) is
that the weighting functionm depends only ony and not
on x.

The application of the volume-averaging operator(4)
and the spatial-averaging theorem(12) to the Navier–Stokes
equations yields the VANS equations:16

] kuls

] t
+ = F kulskuls

e
G + = Fkuuls −

kulskuls

e
G

= −
1

r
= kpls + n¹2kuls +E

A

mnF− I
p

r
+ n = uGdA, s13d

= · kuls = 0. s14d

The VANS equations as given above are exact for Newtonian
and incompressible flow through a rigid porous medium. The
third term on the left-hand side of Eq.(13) represents
subfilter-scale dispersion, i.e., dispersion of volume-averaged
momentum by subfilter-scale motions, and the last term on
the right-hand side accounts for the drag force that the solid
phase exerts on the fluid phase.

Darcy’s Law (3) follows from the VANS equations for
uniform, stationary flow through a homogeneous porous me-
dium (i.e., with a constant porosity):

0 = − = kpl − mK −1kuls, s15d

where the surface integral has been replaced by
−nK −1ekuls.16 The VANS equations can be considered as a
generalization of the LES equations as well. The latter follow
from the VANS equations for the case that the porosity
equals unity, i.e., the absence of a solid phase, and conse-
quently a zero drag force.

FIG. 3. The averaging volume(a) and the weighting function(b) corre-
sponding to the cellular filter for flow in an ordered porous medium.

025103-4 W. P. Breugem and B. J. Boersma Phys. Fluids 17, 025103 (2005)

Downloaded 27 Aug 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



IV. DNS WITH CONTINUUM

As depicted in Fig. 1(b), in the DNS with continuum the
flow domain is divided into three regions.

(1) The homogeneous fluid region or channel region be-
tween z=0 and z=H in which the porositye equals
unity.

(2) The interface region betweenz=−di andz=0, which is
characterized by a spatially varying porosity.

(3) The homogeneous porous region betweenz=−h and z
=−di, with a constant porosityse=ecd.

Below we discuss how the flow in each region is de-
scribed.

A. Homogeneous porous region

The volume-averaged flow in the homogeneous porous
region is governed by the VANS equations(13) and (14).
These equations can be simplified by assuming that the
volume-averaged flow field does not vary significantly inside
the averaging volume, i.e.,kkull<kul. This is equivalent to
the assumption thatkũl<0. If this assumption holds, then
Eq. (13) can be written as10

] kuls

] t
+ = F kulskuls

e
G + = kũũls

= −
e

r
=

kpls

e
+ n¹2kuls − n = e · =

kuls

e

+E
A

mnF− I
p̃

r
+ n = ũGdA. s16d

In order to solve the above equations, closures are re-
quired for the subfilter-scale stress and the drag force in
terms of the volume-averaged flow field. Whitaker16 gave
support to the following convenient parametrization of the
surface integral in Eq.(16):

E
A

mnF− I
p̃

r
+ n = ũGdA= − nK −1sI + Fdekuls, s17d

whereK , I andF are, respectively, the permeability, the unit,
and the Forchheimer tensor. A 3D Cartesian grid of cubes
falls in the class of spherically isotropic porous media9 for
which the permeability tensor is isotropic:K =KI . Irmay17

derived the following expression for the permeabilityK of
the grid of cubes, valid fore!1:

K = KI , K =
f1 − s1 − ed1/3g3f1 + s1 − ed1/3g

CKs1 − ed
dp

2, s18d

whereCK=12 on condition thate!1 holds. In general, the
Forchheimer tensorF depends on the Reynolds number, on
the geometrical parameters of the porous medium and on the
direction of the volume-averaged flow. In the present work,
F is modeled with the Burke–Plummer equation, which is
equivalent to the nonlinear part of the Ergun equation:8

F = FI ,
dp

2F

K
= CFS1 − e

e3 DS ukulsudp

n
D , s19d

whereCF is a constant and for many packed beds approxi-
mately equal to 1.8.18 In order to determine the values ofCK

andCF more accurately, Breugemet al.19 performed detailed
numerical simulations of flow through afully periodic 3D
Cartesian grid of cubes withe=0.875(which is equivalent to
df =dp). Based on these simulations we found thatCK=11.4
and thatCF<0.4. The results from these simulations, to-
gether with the model prediction based on equations
(17)–(19), are depicted in Fig. 4. The model overestimates
the drag force in the transitional regime where both linear
and nonlinear drag are important, but gives a good fit in the
low and the high Reynolds number range.

A discussion of the closure problem for the subfilter-
scale stresst<kũũls is given by Breugem.5 It is argued that
in porous media subfilter-scale dispersion is usually negli-
gible with respect to the drag force and/or the Reynolds-
shear stress of the volume-averaged flow field. The final
form of the momentum equation as used in the continuum
approach, therefore reads

] kuls

] t
+ = F kulskuls

e
G

= −
e

r
=

kpls

e
+ n¹2kuls − n = e · =

kuls

e

−
n

K
s1 + Fdekuls, s20d

whereK andF are given by, respectively, Eqs.(18) and(19).

B. Channel region

The VANS equations(13) and(14) apply to the channel
region as well. Because the porosity equals unity in this re-
gion, the drag term on the right-hand side of(13) vanishes

FIG. 4. Drag forcefd=s1/edeAmn ·f−I p̂/r+n= ũg ·nxdA per unit mass of
the fluid phase as function of the Reynolds number, wherenx is the unit
vector in the streamwise direction. Each dot corresponds to a separate simu-
lation (Ref. 19). The simulation results are compared with a model based on
Eqs.(17)–(19) with CK=11.4 andCF=0.4. —, Linear interpolation of simu-
lation results; ---, model.
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and hence the VANS equations reduce to the LES equations.
The subfilter-scale dispersion term is negligible only when
the filter length is sufficiently small. This may not be the case
when thesamefilter length is used for the channel region as
for the homogeneous porous region. In the DNS with con-
tinuum, however, we aim to completely resolve the flow field
in the channel region. This can be accomplished by assuming
that in the channel region the filter length is set by the com-
putational mesh spacingD, such that, provided thatD is suf-
ficiently small, dispersion by subfilter-scale turbulent mo-
tions is negligible. Consequently, the VANS equations(13)
and (14) reduce to the standard Navier–Stokes equations
with kuls=u.

C. Interface region

As pointed out above, we assume that in the DNS with
continuum the cellular-filter length is different for the homo-
geneous porous region than for the channel region. This im-
plies that the filter length varies across the interface region,
with l f =df +dp (see Fig. 3) in the homogeneous porous re-
gion and l f =D in the channel region. Consequently, in the
interface region the volume-averaging theorem(12) is not
strictly valid, because a spatially varying filter length means
that the weighting functionm depends not only ony, but also
on x. On the other hand, the commutation errors will be
small when the filter length is gradually changed over a suf-
ficiently large distance compared to the characteristic length
scales of the flow field.20 The VANS equations(13) and(14)
may therefore be applied also to the interface region. As for
the homogeneous porous region and the channel region, we
assume that subfilter-scale dispersion can be neglected in the
interface region too. The drag force cannot be neglected,
however. It is modeled by means of Eq.(17), with Eqs.(18)
and (19) for K andF, respectively. Furthermore, we need a
model for the porosity, which must gradually change across
the interface region from unity atz=0 to e=ec at z=−di. In a
previous study5 we adopted a fifth-order polynomial fore
according to

− di ø zø 0 : eszd = − 6sec − 1dS z

di
D5

− 15sec − 1dS z

di
D4

− 10sec − 1dS z

di
D3

+ 1. s21d

This model requires a specification of the thicknessdi. If the
length of the cellular filter would be kept constant atl f =dp

+df, thendi =3dp for the 3D grid of cubes withdf =dp. The
corresponding porosity profile is plotted in Fig. 5 together
with the porosity profile calculated from Eq.(8). The agree-
ment between the model and the exact porosity profile is
good. The local value for the porosity in the interface region
is used in the expressions forK andF. This assures that the
drag force and the VANS equations are continuous across the
interface region. The reader may notice that the permeability
approaches infinity atz=0. However, in order to solve Eq.
(20), we actually compute 1/K, which remains bounded
throughout the flow domain.

Recapitulating, in the DNS with continuum, Eqs.(14)

and(20) are solved simultaneously for both the channel and
the porous medium. The porosity in the interface region is
given by Eq. (21). The permeability and the Forchheimer
parameter are calculated from, respectively, Eqs.(18) and
(19). The governing equations are solved by means of a
second-order pressure-correction method. A pseudospectral
method is used for the spatial derivatives in the wall-parallel
directions, whereas the finite-volume method with the
central-differencing scheme is used for the wall-normal di-
rection. The reader is referred to Breugem5 for more details
on the numerical scheme. The same code has also been used
for the DNS with solid walls. The results from the latter
simulation are in excellent agreement with the DNS results
of Kim et al.21

V. DNS WITH CUBES

In this section the numerical method is discussed that is
used in the DNS with cubes. The flow geometry has been
presented in Fig. 1(a). The computational domain has finite
dimensions. It is bounded by two solid walls atz=H and z
=−h, respectively, at which the no-slip and no-penetration
boundary conditions are imposed. Periodic boundary condi-
tions are imposed for the wall-parallel directions. The
Navier–Stokes equations are discretized on a fully staggered
and uniform Cartesian mesh by means of the finite-volume
method based on the second-order central-differencing
scheme. The equations are advanced in time with the follow-
ing pressure-correction scheme:

ûi − ui
n

Dt
=

5

4
gi

n −
1

4
gi

n−2 −
1

r

dP

dx
di1, s22d

1

r

]2p̂

] xi
2 =

1

Dt

] ûi

] xi
, s23d

ui
n+1 = ûi −

Dt

r

] p̂

] xi
, s24d

FIG. 5. Porosity profile corresponding to the flow over a 3D Cartesian grid
of cubes withdf =dp and di =3dp. The black squares mark the positions of
the cubes. —, Calculated from Eq.(8); ---, calculated from Eq.(21).
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pn+1 = pn + p̂, s25d

whereûi is the prediction velocity,dP/dx the constant pres-
sure gradient that drives the flow, andp̂ is the correction
pressure. The functiongi in Eq. (22) is given by

gi = −
1

r

] p

] xi
−

] uiuj

] xj
+ n

]2ui

] xj
2 + f i . s26d

For the implementation of the cubes an IBM is used,
which has been used successfully by Fadlunet al.,12 and
references therein. In this method forces are added to the
flow field, i.e., f i Þ0 in Eq.(26), to accomplish a zero veloc-
ity on the cubes, as illustrated in Fig. 6. The advantage of an
IBM is that no boundary conditions have to be specified on
the cubes. As a consequence of this, the Poisson equation
(23) can be solved on a continuous domain with very effi-
cient FFT-based solvers.

The IBM that is used here, is similar to the one devel-
oped by Fadlunet al.12 An advantage of applying the IBM in
the present study over the problems discussed by Fadlunet
al., which concern rather complicated geometries, is that the
cubes can be aligned along the computational mesh. As
sketched in Fig. 6, the cubes are aligned along the mesh such
that their surfaces coincide with mesh points for the normal
(with respect to the surface) velocity. This enables anexact
implementation of the no-slip boundary condition on the
cubes:

u 3 n = 0. s27d

As an example we calculate the forcef t at positionsi ,kd in
Fig. 6 that is equivalent to imposing a no-slip velocity at the
location of the cross. The discretized terms in Eq.(26) for
the function g that make use of the velocity components
usi,k−1d, wsi,k−1d andwsi+1,k−1d, are

− U ] uw

] z
U

si,kd
= − Fuwsi,k+1/2d − uwsi,k−1/2d

Dz
G ,

nU ]2u

] z2U
si,kd

= nFusi,k+1d − 2usi,kd + usi,k−1d

Dz2 G ,

where uwsi,k−1/2d corresponds touw at the location of the
cross. According to the desired no-slip condition,uwsi,k−1/2d
=0 andusi,k−1d=−usi,kd must hold. This is equivalent to a force
f t equal to

u f tusi,kd = −
uwsi,k−1/2d

Dz
− nFusi,kd + usi,k−1d

Dz2 G .

The no-penetration condition on the cubes is enforced by
putting the prediction velocityûi to zero. According to Eq.
(24) this yields a penetration velocity equal to

un+1 ·n = − Dt ¹ p̂ ·n < 0. s28d

Because the pressure is updated every time step, see Eq.
(25), =p̂ remains very small. AsDt is also small, the right-
hand side of(28) is therefore almost zero. For the case of a
stationary flow, the correction pressure will approach zero
and the no-penetration condition is then enforced exactly. In
the DNS with cubes it has been verified that the largest pen-
etration velocities, which appeared at the corners of the
cubes nearest toz=0 in Fig. 1(a) have a magnitude smaller
than 10−5 times the bulk velocity in the channel.

In the IBM used in the DNS with cubes, forces are not
only applied at the outside of the cubes, but also at the in-
side. Furthermore, the pressure gradientdP/dx on the right-
hand side in Eq.(22) is set to zero in the interior of the
cubes. The interior of a cube is therefore very similar to a
closed cavity inside which the “fluid” is at rest.

The use of the IBM has consequences for the stability of
the numerical scheme. The forces that are added to the mo-
mentum equation are related to the drag that the flow en-
counters by the presence of the cubes. From Eq.(17) for the
drag force in the VANS equations, it can be deduced that this
may cause large negative eigenvalues of the functiongi. It is
however difficult to quantify this in a simple manner, as Eq.
(17) concerns the drag force experienced by the volume-
averaged flow, whereasf i in the equation forgi is a point
force acting on the unfiltered flow field. The expected diffi-
culties with large negative eigenvalues, motivated our choice
to use another time integration scheme(22) than the popular
second-order Adams–Bashforth scheme.22 The stability poly-
nomial for our scheme is found by puttingui

n+1=eifui
n with

fP f0,2pd and solving the eigenvaluel from

ui
n+1 − ui

n = lDtf 5
4ui

n − 1
4ui

n−2g . s29d

The solution reads

lDt = 4e2ifS eif − 1

5e2if − 1
D . s30d

The above stability polynomial is shown in Fig. 7. Also de-
picted in this figure is the stability polynomial of the second-
order Adams–Bashforth scheme. From the figure it is clear
that with respect to the Adams–Bashforth scheme, the time
integration scheme used in the present study is much more
stable for eigenvalues with a large negative real part. The
dotted line in Fig. 7 is the stability polynomial of the

FIG. 6. Illustration of the IBM in which forces(indicated byf t and fn) are
applied at mesh points close to and at the surface of the cube to enforce the
no-slip and no-penetration conditions. The horizontal and vertical vectors
mark the mesh points of the streamwise and wall-normal velocity compo-
nents, respectively.
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Adams–Bashforth scheme multiplied by a factor of 3/4,
which falls inside the curve of the stability polynomial given
by (30). Ignoring the forces added to the momentum equa-
tion in the IBM, the computational time step criteria corre-
sponding to the latter stability polynomial are the criteria
derived by Wesseling22 (p. 188) for the second-order Adams–
Bashforth scheme multiplied by 3/4:

nDt

Dx2 ,
1

16
, s31d

DtÎo
i

ui
2

Dx
,

1

4
, s32d

o
i
SDtuuiu

Dx
DS uuiuDx

n
D1/3

, S27

32
D1/3

. s33d

These time step criteria are used in the present simulations.
As indicated in Fig. 7, a relatively large safety margin exists
to account for the destabilizing effect of the IBM forces.

VI. NUMERICAL RESULTS

In the following sections the results from the DNS with
cubes and the DNS with continuum are compared with each
other and with the results from the DNS with solid walls.
First some characteristics of the DNS with cubes and the
DNS with continuum are given.

The dimensions of the computational domain in the DNS
with cubes are 33232 in terms of the channel heightH for,
respectively, the streamwise, the spanwise, and the wall-
normal direction. The porous medium has a heighth=H and
consists of 3032039=5400 cubes in, respectively, the
streamwise, spanwise, and wall-normal direction. The num-
ber of cube layers in the wall-normal direction is chosen
deliberately large to prevent that the flow in the channel ex-
periences any influence of the solid wall below the grid of
cubes. The cube rib equalsdp=H /20. The dimensiondf of
the pores is equal todp, and consequently the porosityec in
the homogeneous porous region equals 0.875. The Darcy
number is given by Dac;Kc/H2=3.4310−4, whereKc is the
permeability of the grid of cubes(which was determined in
Sec. IV A). The number of mesh points is 60034003400
=963106. The bulk Reynolds number Reb;UbH /n=5500,
where Ub is the bulk velocity in the channel region. The
friction Reynolds number for the top wall Ret

t ;ut
t H /n

=394, whereut
t ;f−n] kūl /]zgz=H

1/2 is the friction velocity at
the top wall. The friction Reynolds number for the permeable
wall Ret

p;ut
pH /n=669, whereut

p;f−ku8w8l+n] kūl /]zgz=0
1/2

is the friction velocity at the permeable wall. The permeabil-
ity Reynolds number ReK;ut

pÎKc/n is equal to 12.4. Based
on the classification of Breugem5 of permeable walls, the
grid of cubes can therefore be considered as a highly perme-
able wall near which viscous effects are of minor impor-
tance. The roughness Reynolds number Red;ut

pdp/n=33.4,
which according to Hinze11 is in the transitional roughness
regime. The computational time step in the simulation equals
Dt=6.7310−4H /Ub. The number of instantaneous data fields
used for the statistics equals 45, spanning a total time inter-
val of 60.5H /Ub.

The values ofec, dp, di, and Reb for the DNS with con-
tinuum are chosen equal to the corresponding values in the
DNS with cubes. Some characteristics of these two simula-
tions are listed in Table I. The Reynolds numbers Ret

p, Ret
t ,

ReK, and Red are about equal, and, because they were deter-
mined from the simulation data, this indicates already that
also the turbulence statistics of the two simulations are simi-

FIG. 7. Stability polynomials for several time integration schemes. The
enclosed areas are the stable regions of the respective schemes. —, Eq.(30);
---, stability polynomial of second-order Adams–Bashforth scheme;…, sta-
bility polynomial of second-order Adams–Bashforth scheme multiplied by
0.75.

TABLE I. Characteristics of the DNS with cubes(DNS CUB), DNS with continuum(DNS CON), and the DNS with solid walls(DNS SOL). ec is the porosity
in the homogeneous porous region,dp/H is the rib of the cubes, Dac;Kc/H2 is the Darcy number in the homogeneous porous region whereK=Kc, di is the
thickness of the interface region,h is the thickness of the permeable wall, Reb;UbH /n is the bulk Reynolds number whereUb is the bulk velocity in the
channel, Ret

t ;ut
t H /n is the friction Reynolds number based on the friction velocityut

t at thetop wall, Ret
p;ut

pH /n is the friction Reynolds number based on
the friction velocityut

p at thepermeablewall, ReK;ut
pÎKc/n is the permeability Reynolds number based on the friction velocityut

p at the permeable wall, and
Red;ut

pdp/n is the roughness Reynolds number for the permeable wall.

DNS ec dp/H Dacs10−4d di /H h/H Reb Ret
p Ret

t ReK Red

CUB 0.875 0.05 3.4 0.15 1 5500 669 394 12.4 33.4

CON 0.875 0.05 3.4 0.15 1 5500 726 409 13.5 36.3

SOL 0 0 0 0 0 5500 352 350 0 0
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lar. The dimensions of the computational domain in the DNS
with continuum are 53332 in terms of the channel height
H for, respectively, the streamwise, the spanwise, and the
wall-normal direction. The number of mesh points is 256
31923300=15.73106. The mesh is stretched in the wall-
normal direction with mesh points clustered around the per-
meable wall interface and the top wall. The computational
time step in the DNS with continuum equalsDt=3.1
310−4H /Ub. The number of instantaneous data fields for the
statistics equals 96, spanning a total time interval of
58.7H /Ub.

We remark that the dimensions of the computational do-
main in the DNS with cubes are chosen deliberately smaller
than in the DNS with continuum, in order to avoid that the
number of mesh points in the DNS with cubes would be-
come excessively large. Therefore, a larger computational
domain was not feasible. We note that the dimensions of the
computational domain in the DNS with cubes, although rela-
tively small, are still much larger than the minimal channel
studied by Jiménez and Moin.23 Furthermore, we verified by
means of a simulation of standard channel flow, using the
same numerical method as used in the DNS with cubes, that
a computational domain of 33231 yields low-order statis-
tics that agree well with the DNS results of Kimet al.21

The codes for both the DNS with cubes and the DNS
with continuum have been written inFORTRAN 77 and made
parallel based on the MPI standard. The DNS with cubes was
run on 100 nodes of a SGI Origin 3800 system. The DNS
with continuum was run on 32 nodes of a SGI Altix 3700
system.

A. Volume averaging and mean velocity profiles

Before the results of the DNS with cubes and the DNS
with continuum can be compared with each other, the veloc-
ity field of the DNS with cubes need to be filtered first ac-
cording to Eq.(4) with the cellular weighting function(6).
We remark that the calculation of the volume-averaged ve-
locity at a single mesh point involves the evaluation of the
discretized form of Eq.(4) over 403 neighboring mesh
points. Hence, the computation of the volume-averaged ve-
locity at all mesh points is fairly time consuming. Figure 8
shows a cross section of the fluctuating flow field before and
after filtering. The white spots in Fig. 8(a) mark the location
of the cubes. The rectangle indicates the dimension of the
averaging volume of the cellular filter. Figure 8(b) shows
clearly that due to filtering the subfilter-scale motions are
averaged out and that the volume-averaged flow field is con-
tinuous throughout the flow domain. Figure 9 shows the ef-
fect of filtering applied to the Reynolds-averaged flow field.
Furthermore, it illustrates nicely the decomposition(9) of the
Reynolds-averaged flow field into the volume- and
Reynolds-averaged flow field and the subfilter-scale

Reynolds-averaged flow field:ūi =kūil+ ũ̄i. Notice that the
volume- and Reynolds-averaged flow fieldskūl ,kw̄ld is one-
dimensional and horizontally homogeneous, whereas the un-
filtered Reynolds-averaged flow fieldsū,w̄d is three-
dimensional and horizontally heterogeneous. The horizontal
heterogeneity in the unfiltered Reynolds-averaged flow field

rapidly vanishes when moving out the grid of cubes into the
channel region, withuw̄umax/Ub,10−2 for z/H.−0.07 and
uw̄umax/Ub,10−3 for z/H.0.

It is important to note that in the DNS with cubes the
filter length is kept constant atl f =df +dp in the volume av-
eraging of the flow field, except close to the solid walls at
z=H and z=−h where the vertical extent of the averaging
volume is gradually decreased to zero, depending on the dis-
tance to the wall. We remark that the constant filter length in
the DNS with cubes isdifferent from the assumption of a
variable filter length in the DNS with continuum. Recall that
the variable filter length in the latter simulation has the ad-
vantage that no subfilter-scale stress need to be modeled in
the channel region. The disadvantage of a variable filter
length is that it causes a commutation error in the volume-
averaging theorem(8). Although this error is small, in the
DNS with cubes we want to avoid this, and therefore the
filter length in theprocessingof this simulation is kept con-
stant. It is important to realize that the difference in the filter
length for the channel region between the DNS with cubes
and the DNS with continuum, has consequences for compar-

FIG. 8. Cross section along the streamwise direction of the fluctuating flow
field in the DNS with cubes. For clarity, only part of the cross section is
shown and the number of vectors is reduced by a factor of 2 in both thex
andz direction. The rectangle shows the dimension of the averaging volume
of the cellular filter.(a) Unfiltered flow field su8 ,w8d; (b) corresponding
volume-averaged flow fieldsku8ls,kw8lsd.
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ing the results of the two simulations with each other. We
come back to this point in the next section.

Figure 10 presents the profiles of the Reynolds- and
volume-averaged velocity of the DNS with cubes, the DNS
with continuum and the DNS with solid walls. We recall that
in the channel region of the DNS with continuum and the
DNS with solid walls, the Reynolds- and volume-averaged
velocity kūls is equal to the Reynolds-averaged velocityū,

because the mesh spacing is sufficiently small. In the channel
region of the DNS with cubes, the profile ofkūls is also very
similar, although not exactly equal, toū. Although our main
interest is in the behavior of the flow field in the channel
region, we still prefer here to plotkūls, because this velocity
is continuous and horizontally homogeneous in the channel
region as well as inside the permeable wall. This is not true
for ū.

The profiles of the DNS with cubes and the DNS with
continuum overlap each other. Both profiles are strongly
skewed with the positionz=dw of the maximum velocity
well above the centerline of the channel. The position of the
maximum velocity corresponds to zero total shear stress.
From this condition the following expression can be found
for dw:

dw

H
=

sut
pd2

sut
pd2 + sut

t d2 . s34d

Thus the skewed mean velocity profile is a direct conse-
quence of the larger skin friction at the permeable wall than
at the top wall.

The small wiggle nearz/H=−1 in the profile of the DNS
with cubes is caused by the change in the vertical extent of
the averaging volume close to the solid wall.

B. Rms profiles of velocity components and pressure

The volume-averaged root-mean-square(rms) velocity
ui,rms is defined here according to

s35d

The decomposition ofui,rms into the above two terms origi-
nates from the consideration that, whenkkui8ll

s<k1lskui8l
=kui8l

s holds, term II is approximately equal to

FIG. 9. Cross section along the streamwise direction of the Reynolds-
averaged flow field in the DNS with cubes. For clarity, only part of the cross
section is shown. The different graphs illustrate the decompositionūi =kūil
+ ũ̄i. (a) Reynolds-averaged flow fieldsū,w̄d; (b) volume- and Reynolds-
averaged flow fieldskūl ,kw̄ld; (c) subfilter-scale Reynolds-averaged flow

field sũ̄, w̃̄d.

FIG. 10. Profiles of the Reynolds- and volume-averaged velocity, normal-
ized by the bulk velocityUb, as function ofz/H. The black squares mark the
location of the cubes in the DNS with cubes. —, DNS with cubes; --- DNS
with continuum;…, DNS with solid walls.
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kui8ui8l
s −

kui8l
skui8l

s

e

= kfkui8l + ũi8gfkui8l + ũi8gl
s −

kui8l
skui8l

s

e

< kui8lkui8lk1ls + 2kui8lkũi8l
s + kũi8ũi8l

s −
kui8l

skui8l
s

e

< kũi8ũi8l
s.

Thus, terms I and II represent basically the contributions of,
respectively, the volume-averaged velocitykui8l and the
subfilter-scale velocityũi8.

In the DNS with cubes, the contributions of both term I
and term II in Eq.(35) can be calculated exactly. Figure 11
shows the result forurms and prms. The contribution of the
subfilter-scale flow field tourms is significant in the channel
region and the top region of the grid of cubes, but appears to
be small forz/H&−0.5. The rms pressure is dominated by
the contribution of large-scale pressure fluctuations with a
small contribution of the subfilter-scale pressure fluctuations
throughout the flow domain.

In the DNS with continuum, just the volume-averaged
flow field is resolved, and consequently only the contribution
of term I can be calculated exactly. At this point we recall the
discussion of the variable filter length in the DNS with con-
tinuum (see Secs. IV B and IV C). In the channel region it is
assumed that the cellular-filter length is set by the mesh spac-
ing, which is sufficiently small, and consequently term II is
equal to zero in this region. In the homogeneous porous re-
gion, however, the cellular-filter length is equal tol f =df

+dp and consequently in this region term II is not zero. As
our main interest is in the behavior of the volume-averaged
rms velocity in the channel region, we will not attempt here
to model term II in the homogeneous porous region. Instead,
in the DNS with continuum term II is simply put to zero.

The profiles of the volume-averaged rms velocities and
pressure of the DNS with cubes, the DNS with continuum
and the DNS with solid walls are depicted in Figs.
12(a)–12(d). The profiles of the DNS with cubes and the
DNS with continuum compare very well. The differences
between the profiles of these two simulations are small com-
pared to the differences with the corresponding profiles of
the DNS with solid walls. Notice that not only a good agree-
ment exists between the DNS with cubes and the DNS with
continuum in the channel region, but also inside the perme-
able wall, despite neglecting the contribution of term II in the
DNS with continuum.

The rms profiles of the DNS with cubes and the DNS
with continuum show an increase in all rms velocities and in
the rms pressure near the permeable wall as compared to the
profiles of the DNS with solid walls, at least when normal-
ized by the friction velocityut

t at the top wall. However, a
more appropriate scaling of the rms profiles near the perme-
able wall is by means of the friction velocityut

p at the per-
meable wall. Figure 13 shows the result for the rms profiles
of the streamwise and the wall-normal velocity, respectively.
The profiles are plotted as function ofz/dw, wheredw, given
by Eq. (34), is considered as a characteristic lengthscale for
eddies in the outer region of the boundary layer above the
permeable wall. The peak in the streamwise rms velocity is
smaller for the DNS with cubes and the DNS with con-
tinuum as compared to the DNS with solid walls. The large
peak for the DNS with solid walls is associated with the
presence of low- and high-speed streaks near a solid wall,
which originate from the intense mean shears]kūl /]zd layer
near the wall and the wall-blocking effect. The strong reduc-
tion in mean shear and the weakening of the wall-blocking
effect prevent the formation of the streaks above a highly
permeable wall, and this explains the decrease in the peak
value of the streamwise rms velocity. The nonexistence of
streaky structures near the permeable wall in the DNS with
cubes and the DNS with continuum can be observed also in
Fig. 8. The flow near the solid top wall is characterized by
elongated streaky structures, whereas the flow near the per-
meable wall is dominated by relatively large-scale vortical
structures. Similar vortical structures have been detected in
experiments of flow over plant canopies, which originate
from a Kelvin–Helmholtz type of instability of the inflex-
ional mean velocity profile.24 The existence of these vortical
structures is consistent with the dominant contribution from

FIG. 11. Decomposition of the volume-averaged rms velocity and pressure
according to Eq.(35) for the DNS with cubes. The black squares mark the
position of the cubes. —, Total; --- contribution term I;…, contribution term
II. (a) Volume-averaged streamwise rms velocity;(b) volume-averaged rms
pressure.
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the volume-averaged flow field to the streamwise rms veloc-
ity aroundz=0 in Fig. 11(a) which is opposite to the behav-
ior close to the solid top wall. Furthermore, as will be dis-
cussed in the following section, these vortical structures are
also responsible for a strong increase in the Reynolds-shear
stress at the permeable wall as compared to a solid wall. A
more elaborate analysis of these vortical structures is beyond
the scope of the present paper.

Opposite to the effect of wall permeability on the
streamwise rms velocity, an increase is observed in the peak
of the wall-normal rms velocity. This can be explained by the
weakening of the wall-blocking effect, which no longer pro-
hibits wall-normal transport of fluid across the wall interface.
Notice that the profiles of the streamwise rms velocity over-
lap for z/dw*0.5, thus exhibiting similarity, whereas in the
same region the profiles of the wall-normal rms velocity of
the DNS with cubes and DNS with continuum do not coin-
cide with the profile of the DNS with solid walls.

C. Shear-stress profiles

The volume-averaged total shear stressktxzls is defined
here as

FIG. 12. Volume-averaged rms profiles of the velocity and pressure fluctua-
tions in the DNS with cubes(—), the DNS with continuum(---), and the
DNS with solid walls(…). The rms profiles are normalized byut

t andrsut
t d2,

respectively, and plotted as function ofz/H. The black squares mark the
position of the cubes in the DNS with cubes.(a) Streamwise rms velocity;
(b) spanwise rms velocity;(c) wall-normal rms velocity;(d) rms pressure.

FIG. 13. Volume-averaged rms profiles of the streamwise and wall-normal
velocity fluctuations in the DNS with cubes(—), the DNS with continuum
(---), and the DNS with solid walls(…). The rms profiles are normalized by
the friction velocityut

p at the permeable wall and plotted as function ofz/dw.
The black squares mark the position of the cubes in the DNS with cubes.(a)
Streamwise rms velocity;(b) wall-normal rms velocity.
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s36d

The terms on the right-hand side represent, respectively, the
volume-averaged viscous shear stress(I), the contribution of
large-scale motions(II ) to the volume-averaged Reynolds-
shear stressku8w8ls, the contribution of subfilter-scale mo-
tions (III ) to the volume-averaged Reynolds-shear stress, and
the volume-averaged mean shear stress(IV ).

The terms in Eq.(36) have been calculated separately for
the DNS with cubes. The result is shown in Fig. 14. The
volume-averaged viscous shear stress(term I) peaks at the
top wall due to the no-slip boundary condition, but it is neg-
ligible near the permeable wall. This substantiates the clas-
sification of the grid of cubes as a highly permeable wall.
The kink in the profile of the volume-averaged viscous shear
stress atz/H=0.9 is caused by the change in the vertical
extent of the averaging volume close to the top wall, which
leads to a small commutation error:kn] ū/]zlsÞn] kūls/]z.
The volume-averaged mean shear stress(term IV) is negli-
gible throughout the flow domain. In most of the channel
region the contribution of the large-scale motions(term II) is
dominant over the contribution of the subfilter-scale motions
(term III), but in the top region of the porous medium both
contributions are equal. As mentioned before, at the end of
Sec. VI B, the dominant contribution from the large-scale
motions aroundz=0 is consistent with the presence of the
relatively large-scale vortical structures observed in Fig. 8.
These structures are responsible for an exchange of stream-
wise momentum between the channel region and the top
layer of the permeable wall.

Figure 15 presents the profiles of the volume-averaged
Reynolds-shear stressku8w8ls, viscous shear stress and total
shear stress for the DNS with cubes, the DNS with con-

tinuum and the DNS with solid walls. In the DNS with con-
tinuum, the contribution of the subfilter-scale motions(term
III ) to ku8w8ls and the volume-averaged mean shear stress
(term IV) are neglected, based on a similar reasoning as
given in the preceding section for the contribution of
subfilter-scale motions to the volume-averaged rms velocity.
The Reynolds-shear stress in the DNS with continuum is
slightly overpredicted as compared to the DNS with cubes,
although this discrepancy is small compared to the difference
with the profile of the DNS with solid walls. With respect to
the DNS with solid walls, we find a large increase in the
Reynolds-shear stress for the DNS with cubes and the DNS
with continuum, especially close to the permeable wall. This
can be explained by a weakening of the wall-blocking effect,
which no longer prohibits an exchange of streamwise mo-
mentum between the channel and the top layer of the porous
medium by means of the previously observed vortical struc-
tures. Figure 15(b) shows that also a good agreement exists

FIG. 14. Contribution of terms I–IV on the right-hand side of Eq.(36) to the
volume-averaged total shear stressktxzls for the DNS with cubes. The
stresses are normalized bysut

t d2. The black squares mark the position of the
cubes.

FIG. 15. Profiles of the volume-averaged Reynolds-shear, viscous shear, and
total shear stress in the DNS with cubes(—), the DNS with continuum(---),
and the DNS with solid walls(…). The stresses are normalized bysut

t d2. The
black squares mark the position of the cubes in the DNS with cubes.(a)
Reynolds-shear stress;(b) viscous shear stress(lines without symbols) and
total shear stress(lines with symbols).
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between the DNS with cubes and the DNS with continuum
for the profiles of the volume-averaged viscous and total
shear stress. As mentioned before, near the permeable wall
the volume-averaged viscous shear stress is negligible. The
large peak in the profile for the volume-averaged total stress
is thus solely due to the strong increase in the volume-
averaged Reynolds-shear stress near the permeable wall.

VII. CONCLUSIONS AND DISCUSSION

The main conclusion of the present study is that the con-
tinuum approach based the VANS equations is capable of an
accurate simulation of the turbulent flow over and through a
permeable wall, even quantitatively. In order to solve the
VANS equations for the volume-averaged flow inside the
permeable wall, closures are required for the subfilter-scale
stress and the drag force. We have assumed a variable filter
length for the DNS with continuum, withl f =df +dp in the
homogeneous porous region andl f =D in the channel region.
As argued by Breugem,5 subfilter-scale dispersion can usu-
ally be neglected in the homogeneous porous region. Be-
cause the mesh spacingD is sufficiently small, in the DNS
with continuum subfilter-scale dispersion can be neglected in
the channel region as well. In the literature many semiempir-
ical relations exists for the drag force. In the present study a
drag relation was adopted based on the Irmay17 and the
Burke–Plummer model,8 where the model coefficients were
determined from simulations reported by Breugemet al.19 A
variable-porosity model was used for the interface region to
ensure that the VANS equations are continuous throughout
the flow domain.

We have introduced the concept of a variable filter
length for the DNS with continuum. In theprocessingof the
DNS with cubes however, the filter length was kept constant
to avoid commutation errors. Figure 14 has shown that in
this case the volume-averaged mean shear stresskū w̄ls can
still be neglected, but that the contribution of the subfilter-
scale motions to the Reynolds-shear stressku8w8ls may be
important in the channel as well as in the interface region. In
a previous study,5 we proposed a closure for the subfilter-
scale stress of the form −kuiujl+kuilkujl=sKp+Ktds]kuil /]xj

+]kujl /]xid with Kp andKt the mechanical and turbulent vis-
cosity, respectively. Although not evaluated in the present
paper, this model seems to be promising.

The success of the continuum approach depends prima-
rily on the accuracy of the closure for the drag force. In the
present work we adopted the Irmay model for the range of
low Reynolds numbers. This model is restricted to flow
through a Cartesian grid of cubes and might not be suitable
for other porous media. For example, for packed beds the
Blake–Kozeny model8 is widely used. The coefficient in the
Irmay model was determined from separate simulations
through a fully periodic grid of cubes with a porosity of
0.875. The value thus determined was close to the value of
12 proposed by Irmay for small porosities. This indicates that
the Irmay model is valid for a large range of porosities, vary-
ing from almost zero to values close to unity. To model the
drag force in the range of high Reynolds numbers, we
adopted the Burke–Plummer model. This model performs

well for many porous media, although the coefficient in this
model might vary substantially dependent of the structure of
the porous medium. MacDonaldet al.8 found that a value of
1.8 is appropriate for many packed beds, while we found a
value of about 0.4 for the Cartesian grid of cubes. The dif-
ference in these values is due to the fact that packed beds are
disordered, whereas the Cartesian grid of cubes is ordered
and aligned.

Other requirements for using the continuum approach
are that the lengthscales of the volume-averaged and the
subfilter-scale flow field are well separated, and that the per-
meability Reynolds number is relatively large. The former
condition demands that the dimension of the pores and solid
obstacles of the porous medium should be small compared to
the channel height, because otherwise the flow in the channel
region is more similar to flow around obstacles rather than
flow over a permeable wall. Furthermore, the permeability
Reynolds number should be relatively large to ensure that the
effect of wall permeability on the turbulent flow in the chan-
nel dominates over the effect of surface roughness. The dif-
ference between wall permeability and wall roughness has
been illustrated in Fig. 2. If the effect of surface roughness
would be much more important, then it is not likely that the
closure for the drag forcein the interface regionwill give
accurate results. This closure is namely based on the drag
relation for uniform volume-averaged flow through afully
periodic porous medium, which will be quite different from
the drag experienced by flow over the rough and imperme-
able wall in Fig. 2. Therefore, when surface roughness is
important, one has to look for a more appropriate closure
model for the drag force in the interface region. Instead of
using the continuum approach, a better option in this case is
probably a direct simulation, which captures the geometry of
the surface roughness. A measure for the effect of surface
roughness is the roughness Reynolds number. In the DNS
with continuum this number was equal to 36.3, see Table I,
and according to Hinze11 this value falls the transitional
roughness regime. The permeability Reynolds number was
13.5 and this value corresponds to the highly permeable
regime.5 This suggests that, in addition to the fact that the
results of the DNS with cubes and the DNS with continuum
agree well, in the present simulations the influence of wall
permeability was strongly dominant over the effect of sur-
face roughness. This suggestion is also supported by the rela-
tively large rms velocities inside the permeable wall, and the
important contribution of the volume-averaged Reynolds-
shear stress to the total shear stress in the top layer of the
permeable wall. We are aware that these arguments are only
indirect evidence for the dominant effect of wall permeabil-
ity over wall roughness. For a more conclusive claim con-
cerning the importance of wall roughness with respect to
wall permeability, we should actually simulate and compare
the two cases shown in Fig. 2. This is however beyond the
scope of this paper.
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