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Liquid-like at rest, dense suspensions of hard particles can 

undergo striking transformations in behaviour when 

agitated or sheared1. These phenomena include 

solidification during rapid impact2,3, as well as strong 

shear thickening characterized by discontinuous, orders of 

magnitude increases in suspension viscosity4-8. Much of 

this highly non-Newtonian behaviour has recently been 

interpreted within the framework of a jamming transition. 

However, while jamming indeed induces solid-like 

rigidity9-11, even a strongly shear-thickened state still flows 

and thus cannot be fully jammed12,13. Furthermore, while 

suspensions are incompressible, the onset of rigidity in the 

standard jamming scenario requires an increase in 

particle density9,10,14. Finally, while shear thickening 

occurs in the steady state, impact-induced solidification is 

transient15-17. As a result, it has remained unsettled how 

these dense suspension phenomena are related and how 

they are connected to jamming.  Here we resolve this by 

systematically exploring both the steady-state and 

transient regimes with the same experimental system.  We 

demonstrate that a fully jammed, solid-like state can be 

reached without compression and instead purely by shear, 

as recently proposed for dry granular systems18,19.  In 

contrast to dry granular materials, however, this state is 

created by transient shear-jamming fronts, which we 

track for the first time directly.  We also show that shear 

stress, rather than shear rate, is the key control parameter. 

From these findings we map out a state diagram with 

particle density and shear stress as variables. 

Discontinuous shear thickening is newly identified with a 

marginally jammed regime just below the onset of full, 

solid-like jamming20.  This state diagram provides a new, 

unifying framework, compatible with prior experimental 

and simulation results on dense suspensions, that connects 

steady-state and transient behaviour in terms of a 

dynamic shear-jamming process. 

Jamming transitions transform fluid-like particle systems 

into amorphous solids with finite yield stress when the particle 

packing fraction ϕ increases beyond a critical value, ϕJ. In the 

standard scenario10, the jammed state is reached via isotropic 

compression, and for frictionless particle interactions the 

jammed system will weaken and eventually unjam when shear 

stress is applied. In suspensions, on the other hand, shear can 

play the opposite role by inducing viscosity increases and 

even solidification. Here the idea has been that shear re-

organizes particles into anisotropic configurations that form 

large clusters and potentially a load bearing network.  With 

frictionless, purely hydrodynamic interactions between 

suspended particles, such `hydroclusters'21,22 can, however, 

only give rise  to mild increases in viscosity (continuous shear 

thickening)6,13,23. Frictional contacts are required to produce 

the large jumps in viscosity associated with strong, 

discontinuous shear thickening (DST)6,7,13,24,25. How shear can 

convert isotropic unjammed particle configurations below ϕJ 

into anisotropic jammed configurations was shown explicitly 

for dry granular systems by Bi et al.18 if the particle 

interactions are frictional and by Kumar and Luding for the 

frictionless case19. This introduced to the original jamming 

phase diagram a new regime of shear-jamming, which 

subsequently has been adopted as a candidate mechanism for 

DST6,8,13. However, key conceptual as well as experimental 

questions have remained open. In particular, DST occurs 

under steady-state shearing conditions and thus cannot involve 

an actual solid-like, jammed response. Importantly, the onset 

stress for DST is known to be essentially independent of 

packing fraction5, while the predicted onset stress for shear-

jamming decreases and reaches zero as ϕJ is approached18. 

Furthermore, direct observations of solid-like shear-jamming 

under controlled conditions have so far been in quasi-static 

systems of dry grains18,19. In other situations where 

suspensions appear to jam fully, e.g. during impact-induced 

solidification, the conditions typically are more complex and 

in principle can involve shear as well as compression2,3,17. 

To sort this out requires experiments on dense suspensions 

where solidification fronts can be generated solely by shear 

and where also DST can be observed. We achieve this here by 

using a Couette-type geometry. Our results show, for the first 

time, how solidification fronts produce a solid-like shear-

jammed state. This state is qualitatively different from DST in 

that it exhibits a yield stress, which we demonstrate explicitly 

by showing how it prevents weights from sinking in. Our 

findings suggest that DST does not correspond to a jammed 

but instead to a fragile state, which exhibits intermittent flow 

that can be thought of as a precursor to shear-jamming and 

exhibits behaviour of marginal material that is neither freely 

flowing nor fully jammed20. 

The experiments were performed using a large gap 

between the inner and outer wall of the cylindrical cell filled 

with the suspension, which allowed us to directly observe 

both the transient and steady-state velocity profiles by 

imaging from above with a high-speed camera (Fig. 1). The 

suspensions consisted of density-matched solutions of water, 

glycerol, and CsCl, mixed with cornstarch, at packing 

fractions ϕ from 0.43 by volume up to values close to the 

isotropic ϕJ for this material. A key feature of our experiment 

was that by rotating the inner cylinder in this Couette-type 

geometry we were applying only shear, eliminating any 

compression which could result in a significant increase in 

packing fraction. 
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Figure 1 | Transition from viscous response to rapid front propagation. a, Evolution of the radial velocity profile, obtained from particle 
image velocimetry, for two different driving speeds: Top row 0.84 mm/s, and bottom row 84 mm/s (100 times faster). Time is increasing from 
left to right. Data for both driving speeds are shown for the same amount of shear strain, given by the rotation angle θ. All velocities are 
normalized by the driving speed ui at the outer edge of the inner cylinder. Where slow driving results in a velocity profile that gradually 
changes until it reaches a fluid-like steady state, fast driving shows the formation of a traveling jamming front and eventually a solid-like shear-
jammed state (bottom row, far right). b, Velocity versus radial distance corresponding to the same two driving speeds as in a. The radial 
distance r is normalized by the radius ri of the inner cylinder. Different curves represent different instances in time, with time increasing from 
blue to red. The steady-state diffusive profile (top) and the traveling front (bottom) are clearly apparent. 
 

Starting with the suspension at rest, sudden rotation of the 

inner cylinder initiates jamming fronts that propagate radially 

outward, converting fluid-like into solid-like material, similar 

to what is observed for impact normal to a free suspension 

surface2,17. To illustrate the effect of rate dependence on this 

transient response we show in Fig. 1 the evolution of the 

velocity field for two different rotation speeds. We find 

strikingly different behaviour between slow and fast driving 

of the inner cylinder. For a slow driving speed (top), we 

observe a velocity profile that behaves in a diffusive manner, 

reminiscent of that of a viscous liquid, where the spreading 

slows down as time progresses and monotonically approaches 

an equilibrium profile (which is similar to those measured by 

Fall et al.8). At high driving speeds a sharp front develops 

(bottom), which rapidly travels radially outward. Behind the 

front the velocity of the suspension is fairly uniform, while 

ahead of the front the suspension is still at rest. After the front 

reaches the outer wall (bottom right in Fig. 1a), the system 

fully jams while the inner cylinder continues rotating, creating 

a plug of solid-like material between inner and outer cylinder. 

When fronts develop, their speed is proportional to the 

driving speed, as shown in Fig. 2a. Rescaling the x-axis by the 

driving speed collapses the data (Fig. 2b), indicating that the 

ratio between driving speed and front propagation speed is 

independent of the driving speed. The absence of any time 

scale indicates that the front propagation is resulting only 

from a critical shear strain, which locally shear-jams the 

system, not unlike neighbouring gears that engage. Once this 

critical strain has been reached between any two adjacent 

radial layers of the suspension, the now shear-jammed portion 

will be able to strain the still unjammed suspension ahead of it. 

This process will continue for as long as the system is actively 

driven and no boundary is reached. The closer the packing 

density is to the jamming point, the smaller will be the critical 

strain required to reach a shear-jammed state18. This implies 

that the propagation speed will increase with packing fraction, 

as shown explicitly in Fig. 2b. 

We can take the connection between front propagation in 

suspensions and shear jamming of dry granular systems one 

important step further by accounting for a key feature of the 

shear-jamming phase diagram introduced by Bi et al.18, 

namely that both critical stress and strain approach zero as ϕ 
approaches ϕJ. Such vanishing critical strain would, according 

to our reasoning above, result in a diverging front speed, as an 

infinitesimal perturbation could immediately propagate 

through the whole system. The functional form of how the 

critical strain approaches zero, and consequently how the 

speed diverges as ϕJ is approached is not known. Our data, 

however, can be approximated by the same functional 

dependence uf/ui = (ϕ0/(ϕJ – ϕ0))α derived for speeds of 

compression-induced fronts in dry granular materials close to 

the jamming point26. Here uf is the front speed and ui the 

driving, or impact, speed. In the original expression for 

compression fronts, the exponent α=1.  Treating α and ϕJ as 

fitting parameters, we find α=1.0 ± 0.1 also for shear-jamming 

fronts, and we obtain an estimated ϕJ ≈0.56. 

Figure 2d shows that there is a critical driving speed 

beyond which the torque response jumps by several orders of 

magnitude, much like in a discontinuous shear thickening 

(DST) transition. Right at the transition (red curve), the torque 

wanders off, which shows that the transition itself cannot be 

resolved in a rate-controlled manner. We therefore turn to 

stress-controlled measurements to address the central 

remaining question, namely how this shear-jammed state 

relates to the well-established steady-state properties of dense 

suspensions27. In previous work, the transient and steady state 

behaviour typically were investigated in different systems and 

by very different methods, since fast transient responses 

involving front velocities of a few m/s (Fig. 2a) are difficult to 

track with standard rheological experiments. In our wide-gap 

Couette cell, however, we can readily investigate both 

regimes. 

Figures 3a-b show the steady-state suspension viscosity η* 

versus applied shear stress τ for two of the packing fractions 

investigated. Note that η* is the apparent viscosity, defined as 

ratio of shear stress to shear rate (see Methods). From the 

slope of the curves in plots like these we identify the 

following behaviours: Newtonian, shear thinning, weak shear 

thickening, and Discontinuous Shear Thickening (DST). 

Specifically, the DST regime is identified in the most strict 
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Figure 2 | Influence of driving speed and packing fraction. a, Radial position of the shear front (defined as the position where u=ui/2 as a 
function of time for different driving speeds (blue circles: ui=59 mm/s, green squares: ui=92 mm/s, red diamonds: ui=126 mm/s), for packing 
fraction ϕ =0.52. Here ri is the radius of the inner cylinder. b, Front positions normalized by driving speed (different driving speeds indicated by 
different colours) for different packing fractions (circles: ϕ =0.51, squares: ϕ=0.52, diamonds: ϕ =0.53. The collapse of data shows that the 
jamming front propagates due to a critical shear strain. c, Front speed uf=drf/dt over driving speed ratio vs packing fraction. The black dashed 
line has a slope α=1.0, showing that the speed ratio is approximately proportional to ϕ/ϕJ-ϕ). Error bars indicate the standard deviation of 
repeated experiments. d, Measured torque T for different, fixed driving speeds. The blue circles 84 μm/s) and green squares (0.84 mm/s) 
correspond to the behaviour shown in the upper half of Fig. 1. Cyan triangles (84 mm/s) correspond to the front formation shown in the bottom 
row of Fig. 1. The 3-4 orders of magnitude larger torque signals that the front has reached the container wall and a fully jammed, solid-like 
state has been established (the torque asymptotes because of slip at the wall of the inner, driven cylinder). Red diamonds (8.4 mm/s) show 
the situation right at the transition to front formation. Here the suspension goes through the DST regime into a fully shear-jammed state as the 
applied torque increases while the driving speed is kept constant. 

 

sense, i.e., by a linear or stronger increase of η* with τ. We 

determine the onset of DST by a linear fit to the DST regime 

on log-log plots like Fig. 3a, and find the stress value at which 

it intersects a fit to the Newtonian regime, where the viscosity 

is constant, independent of applied stress. 

At low ϕ around 0.43, the typical sequence of behaviours 

with increasing τ within our experimental range moves from 

shear-thinning via Newtonian to DST (Fig. 3a).  At large ϕ 
around 0.51 (Fig. 3b), the onset of DST is sharper and DST 

crosses over into a fully shear-jammed (SJ) state that no 

longer flows and behaves like a solid. In this SJ regime the 

inner, rotating cylinder continually slips and the value of η* is 

no longer meaningful. 

We demonstrate the solid behaviour in the SJ regime 

explicitly by dropping small steel spheres (diameter 5.0 mm) 

onto the continuously sheared suspension (Fig. 3c) and 

tracking their vertical position after they touch the surface 

(Fig. 3d). As we apply more shear stress to our system, the 

trajectory of the spheres changes from slowly sinking 

(unjammed or DST) to rebounding and remaining on the 

suspension surface for as long as shear-stress is applied 

(shear-jammed). We define the SJ onset stress by the 

suspension behaving elastically, i.e., by the applied shear 

stress at which the spheres' velocity reverses direction after 

impact (see Methods). 

By performing these experiments across a range of 

packing fractions below ϕJ we construct the state diagram 

shown in Fig. 3e. Its main feature is the delineation between a 

strongly shear-thickening (DST) regime and a solid-like, 

shear-jammed (SJ) regime. As we move towards lower 

packing fractions, DST is partially replaced by weaker shear 

thickening. This agrees with prior work that shows DST 

eventually disappearing at even lower ϕ28. 

We point out an important difference with previous studies 

that suggested to identify DST directly with the shear 

jamming transition6,8,13. These studies found that the minimum 

shear rate for observing DST approaches zero as ϕ approaches 

ϕJ. However, the shear jamming phase diagram, just as the 

original jamming phase diagram, is controlled by packing 

density and shear stress, not rate, as shown in Fig. 2c of Bi et 

al.18. In fact, other experiments have shown that the onset 

stress τmin for DST is independent of packing fraction, and, if 

anything, even increases on the approach to the isotropic 

jamming point (due to an emerging yield stress at high 

packing fractions)12. The behaviour of the onset stress for 

DST therefore would seem to be in direct contradiction to the 

shear-jamming phase diagram. As seen in Fig. 3e, this issue is 

easily resolved by recognizing the DST regime as a precursor 

to shear jamming transition, with a lower boundary that is 

essential independent of ϕ (see Methods for the slightly 

different definition of τmin here and in prior work). 

In different experimental geometries, such as parallel plate 

setups, an upper limit to DST was observed28, due to the 

maximum confinement available from surface tension and 

given by τmax ~ 0.1 σ/a.  Here σ is the interfacial tension at the 

free suspension boundary and a the particle diameter. We find 

that this limit does not apply with our setup since we see no 

significant difference when σ→0 (see Methods). It implies 

that both the flowing DST state and the fully jammed SJ state 

are highly anisotropic, and any force network must lie 

predominantly within the horizontal shear plane. Since in the 

absence of friction such networks would immediately break 

up since particles would slide out of plane, we interpret this 

anisotropy as a signature of the highly frictional particle 

contacts that enable shear-jamming. 

This new identification of DST is, to the best of our 

knowledge, consistent with all previous studies and it 

reframes DST within the context of shear-jamming. In 

particular, the pronounced downward curvature of the upper 

boundary of DST as ϕ approaches the isotropic jamming point 

at ϕJ =0.56 follows exactly the qualitative behaviour pointed 

out by Bi et al.18 and thus gives the first clear indication of a 

state diagram that unifies DST with shear jamming. 
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Our findings suggest the following picture. At low shear 

stress, particles are not in contact and lubrication forces result 

in a Newtonian behaviour (or shear thinning in case of a yield 

stress). Beyond a critical stress, lubrication breaks down, and 

frictional forces generate a fabric of force chains, resulting in 

discontinuous shear thickening6,13. However, rather than fully 

jammed, this is a fragile state that intermittently flows and 

gets stuck. This required critical stress is independent of 

packing fraction because it only depends on the microscopic 

breakdown of lubrication6,13,24. With increasing stress, the 

force network becomes denser until a fully shear jammed state 

is reached. This last transition depends strongly on the 

packing fraction, as the critical shear stress will vanish on the 

approach to the isotropic jamming point18. We point out that 

these shear jammed states emerge without any change in 

packing fraction. This is in contrast with the initial picture 

developed for solidification under impact2, which was based 

on a change in ϕ and needs to be reconsidered within a shear-

jamming framework. Finally, our observation of 

discontinuous shear-thickening states without a transition to 

shear-jamming suggests that, at low packing fractions, fragile 

states are possible, but will fail at higher stresses before a 

shear jammed state is reached. These transitions may possibly 

be explored in dry granular systems using photoelastic 

particles. 
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METHODS 
Experimental setup. We used an Anton Paar MCR301 

rheometer with a Couette-type cell consisting of two 

concentric cylinders where the outer cylinder (cup) was a 

glass container with inner diameter of 98 mm and height of 42 

mm. The cup was filled just below the rim with the 

suspension. The inner cylinder (bob) of diameter of 26.7 mm 

was controlled by the rheometer and was partially submerged 

in the suspension. We verified that the measurements were not 

influenced by the bottom of the cup by performing 

experiments at different insertion depths of the bob. In 

addition we performed tests where we effectively removed the 

solid bottom boundary by using a layer of fluorinert (FC-3283) 

on which the suspension floated. At high stresses, we 

observed slip between the surface of the bob and the 

suspension. We also performed experiments with a roughened 

cylinder surface (using sandpaper), but this still resulted in 

slip at the bob surface, and had no significant influence on our 

measurements. 

Transient Behaviour. For these experiments the rheometer 

was set to rotate at constant speed. The time to accelerate 

from rest was always much smaller than the time during 

which we observed the transient response of the system. The 

experiments were recorded using a high-speed camera 

(Phantom V9), imaging at rates up to 4500 frames/sec, 

depending on the driving speed. Tracer particles (ground 

black pepper) sprinkled on the suspension surface of the 

cornstarch suspension allowed us to perform Particle Image 

Velocimetry (PIV) and obtain time-resolved velocity fields 

(e.g., Fig. 1 and Supplementary Information Video 2). In 

addition, we measured the torque applied by the rheometer. 

Steady-State Behaviour. These experiments were performed 

by setting a constant torque and measuring the rotation speed 

as a function of time. We repeated this for a range of torques 

to obtain viscosity-stress curves. We calculated the stress as 

τ=T/(2πRi
2h), with T the torque, Ri the radius of the bob and h 

the submerged height of the bob. The local shear rate 𝛾̇ is a 

priori unknown (an example of the flow profile at low stress is 

given in the top row of Fig. 1b). We define an average shear 

rate via the relation 𝛾̇ = 𝜔(𝑅𝑜2 + 𝑅𝑖2)/(𝑅𝑜2 − 𝑅𝑖2)  in order to 

calculate the apparent viscosity 𝜂∗/𝛾̇ , with ω the angular 

rotation rate and Ro the radius of the outer cylinder. Such 

apparent viscosity corresponds to the true viscosity only for a 

linear, Newtonian suspension. In order to calculate the local 

apparent viscosity everywhere in the system, stress gradients 

would need to be taken into account in order to obtain the 

local stress. However, the current method suffices to identify 

transitions between different states of the suspension with 

changes in applied shear stress. From the resulting curves of 

viscosity versus shear stress we define the onset of DST as the 

intersection of fits to Newtonian and DST regimes as 

described in the main text. Prior work defined the onset of 

general (weak or strong) shear thickening via τmin, the 

minimum in viscosity-stress curves before the start of 

thickening. Taking this as the criterion in Fig. 3c, we see that 

even at lower packing fractions the onset stress for shear 

thickening remains independent of ϕ. To test for the upper 

stress limit τmax~0.1σ/a, identified as the stress scale above 

which DST is no longer observable in parallel-plate 

geometries because confinement breaks down, we performed 

experiments where we flooded the top free surface of our 

suspension with a liquid that is miscible with the suspending 

liquid, a procedure which effectively sets the interfacial 

tension to zero. In this flooded system, fully shear-jammed, 

solid-like behaviour was still observed, and stress levels 

exceeding τmax could easily be achieved. This demonstrates 

that suspensions driven into a frictional jammed state by 

(horizontal) shear do not develop significant out-of-plane 

(vertical) stresses that would need to be balanced by 

confinement via boundaries or interfacial tension. 

Determining the Onset of Shear-Jamming. For the impact 

experiments we released steel spheres with diameter 5 mm 

and mass 0.51 g from a height of 95 mm, see Supplementary 

Information Video 1. An electromagnetic release mechanism 

was used to ensure reproducible impact conditions. The 

impacts were recorded with the high-speed camera described 

above, and analysed using a particle tracking algorithm. Each 

experiment was performed up to 10 times to obtain a 

distribution of responses for every combination of packing 

fraction and shear stress. We note that under our experimental 

conditions the impacting sphere merely probes the state of the 

suspension and does not cause it to undergo a transition into a 

jammed configuration. 

In order to determine if a system is jammed, we ideally need 

to probe if the system has a yield stress. We here use an 

elastic response (rebound) as a proxy to having a yield stress, 

because a rebound can be determined more precisely and 

unambiguously in experiments. We do, however, point out 

that also for longer times the yield stress behaviour is apparent. 

An example of this can be observed in Supplementary 

Information Video 1 and Extended Data Figure 2 where a 

sphere sits on the surface of a suspension for several seconds, 

until the supplied stress is turned off. 
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Suspension Packing Fraction. The suspensions consisted of 

cornstarch dispersed in a density-matched solution of water, 

glycerol, and CsCl. The cornstarch was stored at controlled 

temperature (22.8 ± 0.3ºC) and relative humidity (51 ± 2 %). 

For each solution, we carefully measured the density and 

liquid viscosity. In order to calculate the packing fraction of 

the suspensions, we took into account the porosity of the 

cornstarch particles. In considering jamming, the relevant 

quantity is the amount of free interstitial volume available for 

particle rearrangement.  If some of the interstitial liquid 

penetrates into porous particles the available free volume 

shrinks. Therefore, a meaningful parameter is the effective 

packing fraction, which considers the interior as inaccessible 

to other particles. Assuming that each particle has a volume 

fraction λ=0.3 (see, e.g., Refs.29,30) of pore space, we can write 

ϕ=(1+λ)ϕv, where ϕv is the material packing fraction  without 

accounting for pore space, and ϕ the packing fraction we 

quote in this paper. The value of λ is an estimate; but it only 

adjusts the absolute values of ϕ and has no qualitative 

influence on our results. In order to calculate ϕv, we take into 

account the moisture content (β) which the cornstarch has 

absorbed from the environment. Assuming that this moisture 

content is pure water, we calculate the packing fraction as: 

 𝜙𝑣 = (1−𝛽)𝑚𝑐𝑠/𝜌𝑐𝑠(1−𝛽)𝑚𝑐𝑠/𝜌𝑐𝑠+𝑚𝑙/𝜌𝑙+𝛽𝑚𝑐𝑠/𝜌𝑤, (1) 

 

with ρcs=1.62∙103 kg/m3 the density of the dry cornstarch, ρl 

and ml the density and mass of the water/glycerol/CsCl 

solution, mcs the mass of the cornstarch including the moisture 

content, and ρw the density of pure water. The moisture 

content is estimated to be β=0.1, but small variations will 

result in small variations in the packing fraction, which 

influence the experiments significantly only when very close 

to the isotropic jamming point ϕJ. We found that for 

experiments which were performed within a relatively short 

time frame (~ days), we can assume a constant value for β. 
The value for β can be determined by performing a set of 

experiments at different packing fractions and determining the 

jamming packing fraction, which should be the same for all 

experiments. Sets of experiments that were performed when 

the moisture content had changed, could be matched to the 

existing data sets by adjusting β accordingly. 

Influence of solvent viscosity. The ratio between propagation 

speed of the jamming fronts uf and the driving speed ui depend 

on the packing fraction of the suspension. Because the 

jamming front is a result of frictional interaction between the 

particles, this ratio uf/ui is expected to be independent of the 

solvent viscosity if the shear stress is high enough2,31. To test 

this we performed a number of experiments where we kept the 

packing fraction constant, and only changed the solvent 

viscosity. The results are shown in Extended Data Fig. 1a, 

where we plot the ratio uf/ui as a function of the solvent 

viscosity. We similarly tested the influence of solvent 

viscosity on the onset of bouncing motion for the impact 

experiments. For this, we used two different viscosities, as can 

be seen in Extended Data Fig. 1b. Note from the error bars 

that in this case the data is less noisy for the more viscous 

fluid (green data points), which gives a more accurate 

determination of the onset for bouncing. 

 
29. Sair, L. & Fetzer, W. R. Water Sorption by Starches. Ind. Eng. 

Chem. 36, 205–208 (1944). 
30. Hellman, N. N. & Melvin, E. H. Surface Area of Starch and its Role 

in Water Sorption. J. Am. Chem. Soc. 72, 5186–5188 (1950). 
31. Waitukaitis, S. R. Impact-Activated Solidification of Cornstarch and 

Water Suspensions. (Springer International Publishing, 2014). 
doi:10.1007/978-3-319-09183-9 
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Extended Data Figure 1 | Influence of viscosity on front speed and shear jamming transition. a, Ratio between front speed and driving speed 
as a function of the solvent viscosity. Error bars are standard deviations of repeated experiments at different driving speeds ui. b, Bouncing 
transition curves for two different solvent viscosities. The horizontal axis gives the applied shear stress, the vertical axis the maximum upward 
velocity we observed from the trajectory of the impacting sphere. Error bars are standard deviations of repeated experiments. 
  



8 

 

 
Extended Data Figure 2 | Long-time behaviour of shear jammed and unjammed suspension. Experimental trajectories showing the long-time 
behaviour of spheres impacting on the suspension under three different shear stresses. Zero shear stress (blue curve) and a stress of 90 Pa (DST, 
green curve) both show a slowly sinking sphere. The shear jammed state (4400 Pa, red curve) shows a rebound followed by yield stress behaviour, 
evident by the sphere not sinking in. 


