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Direct observation of magnetic monopole defects

in an artificial spin-ice system
S. Ladak, D. E. Read, G. K. Perkins, L. F. Cohen andW. R. Branford*

Free monopoles have fascinated and eluded researchers
since their prediction by Dirac1 in 1931. In spin ice, the
bulk frustrated magnet, local ordering principles known
as ice rules—two-in/two-out for four spins arranged in a
tetrahedron—minimize magnetic charge. Remarkably, recent
work2–5 shows that mobile excitations, termed ‘monopole
defects’, emergewhen the ice rules break down2. Using a cobalt
honeycomb nanostructure we study the two-dimensional
planar analogue called kagome or artificial spin ice. Here we
show direct images of kagome monopole defects and the flow
of magnetic charge using magnetic force microscopy. We find
the local magnetic charge distribution at each vertex of the
honeycomb pins the magnetic charge carriers, and opposite
charges hop in opposite directions in an applied field. The
parameters that enter the problem of creating and imaging
monopole defects can be mapped onto a simple model that
requires only the ice-rule violation energy and distribution of
switching fields of the individual bars of a cobalt honeycomb
lattice. Aswe demonstrate, it is the exquisite interplay between
these energy scales in the cobalt nanostructure that leads to
our experimental observations.

The dipolar interactions of a given spin with all of its nearest
neighbours cannot be satisfied on a triangular lattice, resulting
in a frustrated magnetic state with strong correlations and a
local ordering principle, but no long-range order. Owing to its
equivalence to the electrical charge distribution in water ice6,
the materials are known as ‘spin ices’ and the local ordering
scheme as the ‘ice rules’. Spin-ice materials such as Dy2Ti2O7

have been subject to an intense research effort7,8 and frustrated
magnetism has evolved into a deeply interdisciplinary field,
providing model systems for complex biological problems and a
mathematical basis for the neural network algorithm from the
Sherrington–Kirkpatrick model9.

A powerful way to understand spin ice is to consider the
magnetic dipole as a positive and negative magnetic charge (±q)
separated by one lattice spacing. The ice rule can then be described
as the local minimization at each lattice site i of the total magnetic
charge (Qi, =6qi). Predictions suggest that themagnetic properties
can be fractionalized, with mobile excitations carrying magnetic
charge, rather than spin, and their interactions being described by a
magnetic Coulomb’s law2 (equation (1))

V (rij)=

{

µ0

4π

QiQj

rij
rij 6= 0

v0QiQj rij = 0
(1)

where V0 is the self-energy and rij is the separation. Although
these topological excitations are confined to the dipole lattice,
and they are compatible with Maxwell’s equations10, their free
magnetic charge character has led to the nomenclature magnetic
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monopole defects. Recent studies3–5,10 in rare-earth pyrochlores
strongly suggest thatmonopole defects exist in bulk spin ice10.

Creating an odd number of intersecting dipoles, as in ‘kagome
spin ice’11, is interesting because there is finite charge Q at each
vertex, and a magnetic charge-ordered ground state of alternating
Q = +q and Q = −q vertices (Fig. 1a and b) is predicted12,13.
Figure 1c illustrates kagome ice-rule-defect (3-in or Q = +3q)
creation. However a majority (diagonal), rather than a minority
(vertical), bar flip would still create a magnetic charge carrier in
the dipole strings, interchanging Q = +q and Q = −q vertices,
but no ice-rule violation. In the bulk spin ices, the monopoles,
magnetic charges and topological defects in the dipole string all
refer to the same emergent excitations of the magnetic structure.
In our artificial kagome ice, the magnetic charge and topological
defects are conserved. The magnetic charge carrier can reside
either at a vertex, in which case there is a complex magnetic
charge distribution with a Q = ±1 ice-rule state or a Q = ±3
monopole ice-rule defect, or within a bar, in which case it is a
transverse domain wall. Magnetization reversal does not require
monopole formation.

Artificial spin-ice systems14,15 consist of regular arrays of
magnetic squares15 or honeycomb lattices16, with dimensions
in the 100–1,000 nm range, small enough to ensure single-
domain behaviour but with sufficient magnetic volume for stable
room-temperature ferromagnetism. These systems show ice-rule
behaviour16 but direct observation of monopole defects is lacking.
Here we have fabricated two-dimensional (2D) cobalt honeycomb
(kagome spin ice) nanostructures and we create and image
monopole defects on the spin-ice lattice, in situ in the magnetic
force microscope (MFM).

Honeycombs were fabricated by electron-beam lithography and
processing of sputtered 20 nm Co films (see the scanning electron
micrograph in Fig. 2a). The bars are single domain, magnetized
along the long (Ising) axis and their energy barrier to switching is
large compared with both unpatterned Co and the thermal energy,
kBT . The absence of thermalization makes the many degenerate
ground-state configurations inaccessible. Previous experiments
have obtained a low in-plane magnetization state by using a
large out-of-plane conditioning field16 or by ‘shaking-out’ with a
small oscillating in-plane field17,18. Shaking-out promotes dipole
disorder, but does not always yield the ground-state even for the
smallest sections of honeycomb19. Our protocol is, instead, to fully
magnetize the array in one direction, giving amagnetized, magnetic
charge-ordered state (as shown in Fig. 2b), and then sweep the
magnetic field in the opposite direction (partial loop) to catch the
magnetic structure in a mid-transition low-magnetization state,
and bring the field to zero (partial reverse loop). Figure 2c shows
the constructed magnetization field loop for our 2D array and
field history paths (a–f). If we return directly to the same precise
conditioning field, we observe no defect movement; however, if
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Figure 1 | Schematic of magnetic charge order and monopolar defect

formation in artificial kagome spin ice. a, Schematic of a magnetic

charge-ordered state of alternating Q= +q (red) and Q= −q (yellow)

vertices of a 2D artificial spin-ice honeycomb nanoarray. b, We use an

in-plane field (into the page) to split the manifold and select the saturated

Ising state with parallel total vertex momentsM= 6m. c, By flipping the

central moment with an applied field out of the page, two ‘monopole’

defects are created.

we cycle the full hysteresis loop and then repeat the conditioning
protocol we do observe differences in the images, consistent with
the lattice being frozen in the absence of a field greater than
the last applied switching field and a degree of randomness in
the switching process.

In Fig. 3a we show theMFM image, and in Fig. 3b a cross-section
when a monopole has been created. Here the (positive) phase shift
is a factor of three greater than at one of the ice-rule vertices,
interpreted as aQ=+3q (ice-rule forbidden) vertex. In continuous
honeycombs that obey the ice rules it is impossible to uniquely
assign the dipole moments from MFM (ref. 17) as the image
is not sensitive to flips of infinite chains and closed loops of
head–tail dipoles. However, a Q= ±3q state is unique and allows
exact solution locally.
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Figure 2 | Characterization of a honeycomb array. a, Scanning electron

micrograph of cobalt honeycomb on Si. Bar dimensions a= 1,000 nm,

width= 100 nm, thickness= 20 nm. Shape anisotropy causes the bar to be

single domain, with moment,m, along the long (Ising) axis. Each Ising spin

acts as a bar magnet with magnetic charge ±qm =m/a at each end.

b, MFM image in zero field after saturation in-plane (at H=0 on the black

curve in c). Inset: Enlarged image showing the Q= −1 plaquette and all

unscreened neighbours (Q= ±1). c, Field in-plane normalizedM–H loop of

the honeycomb array. The sweep direction is negative (black) and positive

(red). TheM–H loop of the array has been calculated from anisotropic

magnetoresistance data (Supplementary Fig. S1). Points a–f indicate the

field conditioning profiles undertaken before collecting the MFM images in

Fig. 4a–f. The black line is the simulated hysteresis loop taking a normal

distribution of bars with mean HC =60mT, σ = 10mT.

Incremental (0.6mT in Fig. 4a–f) steps in the conditioning field
profile drive the defects from trap to trap, as shown in our sequential
images and schematic pathways (each colour indicates a separate
magnetic charge pathway). The kagome geometry prevents the
pathways crossing in a single switching transition. The conserved
magnetic charge carriers have 1Q = ±2q and transverse domain
walls are expected in our cobalt nanowires20. The two possible
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Figure 3 | The creation of monopole defects. a,b, MFM image (a) and

linescan (b) in zero field. The change in phase of the tip, proportional to

d2Bz/dz
2, is approximately three times greater at the ‘bright’ yellow vertex,

corresponding to a magnetic charge Q= +3q.

1Q = +2q defects (Q = +q, |M | = 2m and Q = +3q,M = 0)
are topologically equivalent and similarly the two 1Q = −2q
defects, whereas at any given site we image a total magnetic charge
Q = (±q ± 2q). On reversal of the magnetization in the array
structure, the magnetic charge carrier is conserved and its motion
down the dipole string is field directed and trackable, butmonopole
defects appear only when the magnetic charge carrier is trapped at a
vertex site with like charge despite strong magnetic Coulomb’s law

repulsion. This is a rare random event and therefore one described
by Poisson statistics.

To investigate this in detail, we create a randomly disordered
model system. We treat each bar i as an Ising spin and assign
a pseudorandom coercive field HCi, within a normal distribution
with expectation value, 〈HC〉 = 60mT, and a standard deviation,
σ = 10mT, taken from the experimental hysteresis loop in
Fig. 2c. Averaging over 1,000 such pseudorandom configurations,
we find that purely random disorder does not capture the
fine details of the hysteresis curve (Fig. 2c) and bears no
resemblance to the MFM images (Supplementary Movie). By
making the defects both unfavourable to form and unstable
with a tunable ice-rule modification to the coercive field (HI)
with Hflip,i = (HCi + CHI − DHI), where C and D are the
number of monopoles created and destroyed respectively on
switching the bar, one can tune the monopole concentration
by selecting values of HI and σ . In fact, we observe that the
ratio HI/σ is the sole controlling parameter in this respect.
The simulated hysteresis loops are compared with the data in
Fig. 5a and a significantly better fit is obtained with HI/σ ∼ 1.
The predicted mean number of monopoles (N(obs)) at each
field is plotted in Fig. 5b. For HI = 0 the mean is simply the
configurational probability (P = 1/8) multiplied by the number
of vertices (507). A statistical analysis of the individual frames
of the data in the Supplementary Movie indicates that the mean
N(obs) for 500 vertices is somewhere between two and four;
therefore, P ∼ 0.01. Figure 5d shows the experimental N(obs)
in each movie frame with the simulated mean N(obs) curves
with HI = 0.75σ , 0.9σ and σ . With these values the model
also reproduces the observed hopping characteristics of the
magnetic charge carriers.

a d

e

f

b

c

H
x
 = ¬50 mT

H
x
 = ¬51.2 mT

H
x
 = ¬48.8 mT H

x
 = ¬52.4 mT

H
x
 = ¬54.7 mT

H
x
 = ¬62.2 mT

Figure 4 | The movement of magnetic charge.MFM images in zero field after the labelled conditioning fields. a, Two 3-in monopole defects with Q= +3q

form (bright yellow spots, yellow dots), with strings of head–tail spins (blue and green) to opposite magnetic charges 1Q= −2q (red dots). Further bar

flips are required to make the schematic (right) match the observed data; the grey arrows indicate a (non-unique) trial solution. b, The 1Q=+2qmagnetic

charges hop to the right, changing from Q= +3q to Q= +q. c–f, Another 1Q= −2qmagnetic charge appears, tracing its own (orange) string to the left,

until it is blocked by the blue string of the 1Q= +2q carrier.
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Figure 5 | Simulation of data with a model of the normal distribution of bar coercive fields (HC: mean HC =60mT,σ = 10mT) plus a tunable ice-rule

modification to the coercive field (HI). If switching a given bar would create a Q= ±3q state then Hflip = (HC+CHI−DHI). Field-driven switching was

simulated for 1,000 pseudorandom coercive field distributions on a lattice of 507 vertices (to match the frame size in the Supplementary Movie) with

different values of HI. a, Section of hysteresis loop data (symbols) and mean simulated hysteresis loops for selected HI (solid lines) and for D=0,HI = 2σ

(dashed line). b, Mean number of simulated Q=+3 defects (N(obs)) versus field; there is no asymmetry in the populations of Q=+3 and Q=−3 defects.

For HI =0 the mean is P= 1/8 multiplied by the number of vertices (507). c, Histogram of the number of times a given N(obs) was found for both Q= +3

and Q= −3 defects; all frames in the Supplementary Movie were counted. Inset: (black, left axis) Magnetic Coulomb potential of a domain wall moving

through a single vertex with QDW = 2q,Qv,max = 1.3q at each neck22 (0.05 µm from vertex centre) and a domain-wall width of 0.1 µm. (Blue, right axis)

Schematic of the ice-rule energy EI profile in the simulations. (Olive green dashed line, right axis) Schematic of the ice-rule energy EI profile in D=0

simulations. d, Measured N(obs) versus field (±5% inhomogeneity) for each frame from the Supplementary Movie (columns) and simulated mean N(obs)

curves with HI =0.75σ ,0.9σ and σ from b replotted.

We now consider the pinning required to form energetically
unfavourable monopoles. Domain-wall spectroscopy in permalloy
nanowires demonstrated that remote magnetic charge provides
effective domain-wall pinning21 only out to 100 nm and revealed
a local pinning potential well within the magnetic Coulomb barrier
at an isolated permalloyQ=+1 T -vertex22. We conclude that local
vertex effects dominate and the inset of Fig. 5c shows the schematic
of the 1D local magnetic Coulomb’s pinning potential8 and the
approximation used in our simulations.

Finally, the creation, movement, local site stabilization and de-
tection of such quasi-particles in 2D systemsmay lead to alternative
approaches in data storage and magnetic logic, potentially even
to Sherrington–Kirkpatrick-type neural-net hardware, particularly
given the electrical connectivity of the honeycomb and the research
effort in devices based on domain-wall motion.

Methods
Fabrication. Samples were fabricated by sputtering 20-nm-thick Co thin films
followed by standard electron-beam lithography and processing. The lateral extent
of the honeycomb is 100 µm×100 µmwith cobalt electrodes processed in the same
write step. The growth rate was calibrated and the thickness confirmed by vibrating
sample magnetometry of the unprocessed film.

Magnetic forcemicroscopy. MFMwas carried out with a Digital Instruments 3100
series model and standard Veeco MESP tips were used at room temperature. The
system has been fitted with a custom-made electromagnet. MFM was carried out
at remanence after the application of successive in-plane magnetic fields. Previous
experiments have obtained a low-magnetization state on the honeycomb lattice by
‘shaking out’ with a small oscillating field17,18. Our protocol is to fully magnetize

the array in one direction and then sweep the magnetic field in the opposite
direction to catch the magnetic structure in a mid-transition low-magnetization
state. During the application of the magnetic field, the tip was withdrawn above the
pole pieces of the electromagnet to ensure the tip magnetization was not perturbed
by the external field. At this height, the stray field from the electromagnet was
<0.005 T, which is an order of magnitude lower than the coercivity of the tip. MFM
images of 25 µm×25 µm in size were taken of a central area of the sample. Images
were taken on the same area many times, to ensure that the stray field from the
tip was not switching the nanostructure being studied. In the MFM technique the
change in phase of the tip, with respect to the cantilever oscillation, is proportional
to d2Bz/dz

2. Repulsive (attractive) interactions lead to a negative (positive) phase
shift; in our images this corresponds to dark (light) and a negative (positive) net
magnetic charge at the site.

Modelling. Simulations were carried out on a kagome lattice of Ising spins of
dimensions 30 bars by 36 bars (similar to the experimental data). Vertices at the
edges were not counted, giving 507 active vertices. The coercive field of each bar
was set using a Gaussian-distributed pseudorandom number Hc. The effective
flipping field of each bar Hflip is thus determined by Hc and two further terms
reflecting the energy cost of creating and destroying a Q= ±3q state. Thus,
Hflip = (Hc +CHcreate −DHdestroy), where C and D are the number ofQ=±3q states
created and destroyed respectively on switching the bar (either 0 or 1). The array is
initially negatively polarized and the values of Hflip are calculated for each bar. The
bar with the lowest value is allowed to flip to positive polarity and then the lowest
remaining value of Hflip is determined as before. In each case the applied magnetic
field is recorded as the value of Hflip unless this is less than the previous value, in
which case the magnetic field remains the same. As such, multiple flips at single
values of applied field (cascades) are possible. This process is repeated until all of
the bars have been flipped and then reversed to generate the downward cycle. The
entire procedure was repeated 1,000 times and the results averaged. We find that
the mean populations and lifetimes of Q= +3 and Q= −3 defects are symmetric
and the observed Q= +3 population can be simulated with just a penalty to create
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an ice-rule defect (finiteHcreate), although these defects are generally too long-lived.
The mean lifetime is shortened by introducing finite Hdestroy and a good agreement
with the observed data is found when Hdestroy =Hcreate =HI; this is the situation
described in the text. Independently, the Hcreate and Hdestroy terms have an almost
identical effect on the mean population, and both allow the occurrence of cascades
(which are completely absent ifHcreate =Hdestroy =0).
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