
Jamadi et al. Light: Science & Applications           (2020) 9:144 Official journal of the CIOMP 2047-7538

https://doi.org/10.1038/s41377-020-00377-6 www.nature.com/lsa

ART ICLE Open Ac ce s s

Direct observation of photonic Landau levels and
helical edge states in strained honeycomb lattices
Omar Jamadi 1, Elena Rozas2, Grazia Salerno 3, Marijana Milićević4, Tomoki Ozawa 5, Isabelle Sagnes 4,
Aristide Lemaître 4, Luc Le Gratiet4, Abdelmounaim Harouri4, Iacopo Carusotto6, Jacqueline Bloch4 and
Alberto Amo 1

Abstract

We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled
semiconductor micropillars. A strong synthetic field is induced in both the s and p orbital bands by engineering a
uniaxial hopping gradient in the lattice, giving rise to the formation of Landau levels at the Dirac points. We provide
direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction, a distinctive
feature of synthetic magnetic fields. Our realization implements helical edge states in the gap between n= 0 and
n= ±1 Landau levels, experimentally demonstrating a novel way of engineering propagating edge states in photonic
lattices. In light of recent advances in the enhancement of polariton–polariton nonlinearities, the Landau levels
reported here are promising for the study of the interplay between pseudomagnetism and interactions in a photonic
system.

Introduction

One of the most remarkable consequences of the

application of an external magnetic field to a two-

dimensional electron gas is the quantum Hall effect. In

this phenomenon, the parabolic band dispersion of the

electron gas rearranges into discretized Landau levels1.

Moreover, when the Fermi energy is located between two

Landau levels, the system is insulating in the bulk and

possesses conducting channels on the edge. These chan-

nels are so robust to disorder that they can be used for

metrology applications2.

The search for such effects in photonic systems has

been a very active field in the past decade3. The imple-

mentation of Landau levels for photons is a solid-state

inspired route to the study of artificial magnetic fields

acting on photons. Thanks to the presence of photon

nonlinearities in certain optical media, photonic lattices

showing Landau levels would be particularly suited for the

investigation of the interplay between pseudomagnetism

and interactions4–6. In addition, the associated unidirec-

tional edge channels are ideal to engineer photonic

transport immune to backscattering in a chip3,7. The main

difficulty in attaining this regime is that photons are lar-

gely insensitive to external magnetic fields.

Beyond the successful observation of chiral edge states

for microwave, telecom and near-infrared wavelengths

using magneto-optical materials8–10, the realization of

topological bands for photons has so far relied on the

engineering of synthetic magnetic fields. In this way, the

Harper–Hofstadter model in coupled micro-resonators11,12

and Landau levels in centimetre-size cavities13 have been

realized for photons without the need for any external

magnetic field. A very straightforward approach to engi-

neer synthetic magnetic fields was proposed by Guinea and

co-workers when considering a layer of graphene14,15: by

carefully engineering the strain applied to the honeycomb

lattice, a gradient of hopping strength between adjacent

sites is obtained, resulting in electrons experiencing a
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synthetic magnetic field. As time-reversal is not broken, the

synthetic magnetic field has opposite signs at each of the

two Dirac cones. Since this configuration requires only the

local modification of the nearest-neighbour hopping

energies across the honeycomb lattice16,17, such strain-

induced pseudomagnetic fields can be directly transferred

to graphene analogues based on classical waves of different

nature18, from the photons/polaritons considered here to

phonons. The resulting Landau-level structure is char-

acterized by a zero-energy level (n= 0) and by a set of

positive and negative quasi-flat levels (n= ±1, ±2, ±3, …)

with a square root energy spacing (ϵn � ±
ffiffiffi

n
p

) inherited

from the Dirac dispersion, similar to a graphene sheet

exposed to a strong perpendicular magnetic field19.

In photonics, this configuration was first implemented

by Rechtsman et al. in a lattice of coupled waveguides

subject to artificial trigonal strain20. The presence of flat

Landau levels was inferred from the localization dynamics

of a point-like excitation at the edge of the lattice. How-

ever, the observation of the Landau-level spectra and the

unique properties of the wavefunctions in the presence of

a synthetic field, such as sublattice polarization18,21 and

helical propagation22, have remained unexplored. More

recently, the implementation of strain-induced Landau

levels has been proposed23,24 and reported25 in macro-

scopic acoustic lattices.

In this article, we report direct evidence of photonic

Landau levels and helical edge states emerging from a

synthetic magnetic field engineered in strained honey-

comb lattices for microcavity polaritons26. Unlike other

photonic analogues of graphene, such as coupled wave-

guides20,27, microwave resonators28,29 and photorefractive

crystals30, polaritons allow direct access to the energy

band structure and to the spatial distribution of the

wavefunction. Taking full advantage of these properties,

this system has been a versatile platform to bring to the

photonics realm the single-particle physics of quasi-

crystals31 and graphene10,32–34 and to engineer new

types of Dirac cones35 and other two-dimensional lat-

tices36,37. Here, we follow the theoretical proposal of

Salerno and co-workers38 and use an artificial uniaxial

strain to generate strong synthetic fields for exciton-

polaritons. We observe Landau levels at the Dirac cone

energy in the s and px,y orbital bands arising, respectively,

from the coupling between the fundamental and first

excited modes of each micropillar. For both sets of bands,

we observe the localization of the n= 0 Landau level

wavefunction in one sublattice, illustrating the specificity

of pseudomagnetic fields compared to real ones (see ref. 39

for an implementation in the microwave regime). We also

report propagating helical edge states associated with the

n= 0 Landau level, the synthetic field analogue of the

chiral edge states responsible for transport in the quan-

tum Hall effect. In light of the recent progress on polar-

iton quantum effects40,41, our platform provides an

alternative route to twisted cavities6,13 for the study of the

fractional quantum Hall Laughlin states of strongly

interacting photons anticipated in ref. 42.

Results

To fabricate the strained polariton honeycomb lattices,

we start from a microcavity grown by molecular beam

epitaxy, composed of a λ/2 Ga0.05Al0.95 As cavity

embedded in two Bragg mirrors of 28 (top) and 40 (bot-

tom) pairs of λ/4 alternating layers of Ga0.05Al0.95As/

Ga0.80Al0.20 As. Twelve 7-nm-wide quantum wells are

positioned at the three central maxima of the electro-

magnetic field. At 10 K, the temperature of our experi-

ments, the strong coupling regime between quantum well

excitons and confined photons gives rise to polaritons,

light–matter hybrid quasi-particles, characterized by a

Rabi splitting of 15 meV. Though the experiments

reported here are restricted to the low-power linear

regime, the hybrid light–matter nature of polaritons has

the potential to reach nonlinear regimes at high excitation

densities.

The planar microcavity is processed by electron beam

lithography and inductively coupled plasma etching down

to the GaAs substrate to form honeycomb lattices of

overlapping micropillars. Each micropillar has a diameter

of 2.75 μm. Due to the additional lateral confinement

provided by the refractive index contrast between the

semiconductor and air, the micropillars act as artificial

photonic atoms. The fundamental mode of their energy

spectrum (s mode) is cylindrically symmetric, similar to

the pz orbitals in graphene. The first excited state is made

of two antisymmetric modes, px and py, with lobes

oriented in orthogonal spatial directions, as sketched in

Fig. 1a. During the design of the lithographic mask, an

overlap between micropillars is introduced to enable the

hopping of polaritons between adjacent sites43. If the

hopping from each pillar to its three nearest neighbours is

equal and spatially independent (t1= t2= t3, unstrained

honeycomb lattice), the coupling of s modes gives rise to

two bands similar to the π and π* bands of graphene (Fig.

1b), whereas the coupling of p modes results in a set of

four bands at higher energy (two of them are dispersive

and intersect linearly, giving rise to Dirac cones).

To implement artificial strain in our lattices, we design

the lithographic mask in such a way that the centre-to-

centre distance between the micropillars along the links

parallel to x varies continuously between 1.9 and 2.7 μm,

while the distance between the other links remains the

same over the whole lattice (a= 2.4 μm; t2= t3, see

Fig. 1c). This uniaxial gradient of interpillar distances is

designed to yield a linear evolution of the hopping t1(x) in
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both the s and p bands (see Supplementary material):

t1 xð Þ ¼ t 1þ x

3a
τ

� �

ð1Þ

where t= t2= t3 and τ quantifies the amount of strain.

The strain induces a synthetic vector potential A= (Ax,Ay)

with eAx= 0 and eAy xð Þ ¼ 2ξ�hτx= 9a2ð Þ, where e is the

electron charge and ξ= ±1 is the valley index associated

with each of the two Dirac points38 K and K′. The

resulting artificial magnetic field Bz= ∂xAy is directly

proportional to the hopping gradient τ and has opposite

signs in the two Dirac valleys K and K′. This is consistent

with the fact that the strain-induced pseudomagnetic field

does not break the time-reversal symmetry, which is the

main difference from a magnetic field applied to

graphene. We designed photonic honeycomb lattices with

different hopping gradients resulting in artificial magnetic

fields corresponding to values up to 3200 T for the s bands

and 1000 T for the p bands when considering the electron

charge and the lattice parameter of graphene. All the

considered lattices share the same design: (i) armchair

termination for the bottom and top edges, (ii) zigzag

termination for the left and right edges, and (iii) t1
increases from the left to the right edge (i.e., positive

gradient τ). Figure 1c shows a scanning electron micro-

scope image of the central region of one of the ribbons

employed in the experiments.

Figure 1d shows the energy dispersion of the s bands

numerically calculated within a tight-binding model for a

ribbon with Nx= 41 unit cells and a weak hopping gra-

dient τ= 0.05 along x. Along y, periodic boundary con-

ditions have been assumed. In the simulation, the black

colour indicates modes with a wavefunction localized in

the bulk of the lattice, while other colours are used to

indicate wavefunctions located either on the right or left

edge. Photonic Landau levels n appear in the vicinity of

the Dirac cones K and K’, revealing a square root energy

structure typical of massless Dirac particles19: ϵ
s
n ¼

Es
0 ± t

ffiffiffiffiffiffiffiffi

τjnj
p

with Es
0 the energy of the Dirac points in the s

bands. The n= 0 Landau level appears at Es
0, both at K

and K′. At higher and lower energies, higher-order (|n| >

0) Landau levels appear in the simulation. These levels

present a small tilt caused by the spatial variation of the

Dirac velocity along the horizontal direction44,45. Indeed,

high-order Landau levels whose associated wavefunctions

are centred in different positions of the lattice have

slightly different energies38.

The calculated bands in Fig. 1d also show the presence

of edge states, depicted by the cyan and magenta colours.

Between K and K′, the coloured line linking the two n= 0

Landau levels corresponds to trivial edge states associated

with the zigzag terminations. These states are also present

in honeycomb lattices with homogeneous hopping33.

Away from the K and K′ points, the n= 0 Landau level

evolves into two split bands with energy higher and lower

than Es
0. These bands correspond to propagating states

located at the right edge of the lattice, as indicated by the

magenta colour. Bearded terminations (not shown here)

result in edge states located on the left edge22. Higher-

order (|n| > 0) Landau levels give rise to propagating

states located at the right and left edges. Since the time-

reversal symmetry is preserved, edge states in different

valleys propagate in opposite directions, resulting in

helical transport. The goal of this article is to report on
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Fig. 1 Strained honeycomb lattice. a Sketch of the real-space distribution of the s and pmodes in a single micropillar. b Spectrally resolved far-field
emission of an unstrained lattice showing the s and p bands for kx= 4π/3a. Es0 ¼ 1565:25 meV is the energy of the Dirac points in the s bands.
c Scanning electron microscope image of a strained honeycomb lattice with a gradient along the x direction: τ= 0.96 for the s bands and τ= 0.28 for
the p bands. d Tight-binding calculation of the band structure of a uniaxially strained ribbon containing Nx= 41 unit cells and a gradient τ= 0.05
along x and zigzag terminations. Periodic boundary conditions are assumed along y. Landau levels appear around the Dirac points K and K′ for

ky ¼ ± 2π=3
ffiffiffi

3
p

a. The n= 0 Landau level is degenerate with non-propagating trivial edge states on both zigzag edges, while propagating edge

states appear only on the right zigzag edge. The colours are defined by the mean position of the wavefunction of each state: magenta for states
localized on the right edge, cyan for states localized on the left edge, and black for bulk states
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the experimental implementation of these photonic

Landau levels and their associated helical edge states.

The experimental investigation of the lattices is realized

by combining reciprocal-space and real-space photo-

luminescence experiments using a non-resonant con-

tinuous wave laser at 740 nm. The laser is focused on an

8 μm diameter spot at the centre of the lattice by an

aspherical lens (N.A.= 0.5). The low value of the pump

power (0.2 mW) avoids any nonlinear effects. The real-

space and momentum-space resolved photoluminescence

is measured using an imaging spectrometer coupled to a

CCD camera. A polariser in front of the spectrometer

selects the emission linearly polarized along the y axis.

First, we focus on the photonic Landau levels in the s

bands. Figure 2a displays the angle-resolved photo-

luminescence in the middle of the second Brillouin zone

(kx= 4π/3a) in a lattice without a hopping gradient (τ= 0;

25 × 18 unit cells). This shows a band structure very

similar to the π and π* bands of graphene, with Dirac

cones at their crossing. The dispersion is fitted (white line)

by a tight-binding model considering nearest-neighbour

and next-nearest-neighbour hopping (t= 0.17 meV,

t0 ¼ �0:08t). The latter is an effective hopping that allows

us to reproduce the asymmetry between π and π*

bands32,33. Physically, it originates from long-distance

coupling mediated by the p bands46. Figure 2b shows the

measured dispersion of a lattice with artificial strain (τ=

0.56, Bz= 1400 T) when summing the emission over all

values of the transverse kx accessible with the collection

lens for a given value of ky (parallel to the zigzag edge).

The white lines indicate the theoretical dispersion of the

discrete bands that originate from the splitting of the bulk

bands in our finite lattice (10 × 18 unit cells, 360 micro-

pillars) with a high hopping gradient.

Figure 2b shows, by the white lines, the calculated dis-

persion using a tight-binding Hamiltonian that takes into

account the nominal variation of t1(x) implemented in the

lattice and an onsite energy offset Δ= 1.6t applied to the

leftmost and rightmost columns of micropillars in the

lattice. This onsite energy accounts for the additional

confinement of the s modes in the micropillars located at

the edges, which only have two neighbouring pillars

instead of three for those in the bulk, and therefore, their

eigenfunction is more strongly confined than that in the

bulk pillars. To simplify the model, we neglected any next-

nearest-neighbour coupling. Close to Es
0, at the Dirac

points, the wavefunctions obtained from the model show

spatial localization at the centre of the lattice compatible

with the n= 0 Landau level. In contrast, the bands

extending away from the Dirac points around Es
0
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columns of micropillars has been excluded to suppress the contribution of the zigzag edge states. Each curve is vertically offset by 0.1 for clarity
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correspond to states localized at the zigzag edges. The full

colour weighted version of the tight-binding fit, with

information on the spatial position of the wavefunctions,

is shown in the Supplementary material. Given the sig-

nificant linewidth of the emission (~200 meV) comparable

to the expected gap between the lowest-order Landau

levels, the identification of the n= 0 level from

momentum-space measurements is challenging.

To clearly identify the zeroth Landau level close to Es
0,

we perform real-space tomography of the wavefunctions

at that energy. To do so, the surface of the lattice is

imaged on the entrance slit of the spectrometer, and the

photoluminescence is resolved in energy and real-space

position y for different positions x. The x, y intensity

distribution of the wavefunctions for any energy can then

be reconstructed from the measured tensor (x, y, E).

Figure 2c shows the real-space emission at the energy of

the Dirac points for the unstrained lattice (τ= 0). The

wavefunction presents a honeycomb pattern that extends

over several lattice sites around the excitation spot

(indicated by the white dashed line in the images) due to

polariton propagation at the Dirac velocity. Figure 2d, e

show the emitted intensity at Es
0 for strained lattices with

τ= 0.56 (Bz= 1400 T) and τ= 1.26 (Bz= 3200 T). In

contrast to the unstrained case, in which the emission

intensities from the A and B sublattices are equivalent, the

presence of the pseudomagnetic field changes the inten-

sity ratio between the two sublattices: for τ= 0.56, a clear

asymmetry between the A and B sublattices is visible in

the bulk of the strained lattice, and for τ= 1.26, the

wavefunction is completely localized on the B sublattice.

The measured and theoretical dispersions for τ= 1.26 are

shown in the Supplementary material.

Sublattice polarization is the main signature of the n= 0

Landau level under a pseudomagnetic field18,38. In the

case of a real magnetic field applied perpendicularly to a

graphene sheet, the field has the same sign at both Dirac

points K and K′. The wavefunction of the n= 0 Landau

level at the K point presents a non-zero amplitude in only

one of the two sublattices, while at the K′ point, the non-

zero amplitude appears in the other sublattice. Overall,

the n= 0 Landau level under a real magnetic field is a

combination of both Dirac points and is distributed over

both sublattices. In the case of a strain-induced pseudo-

magnetic field, the sign of the effective field at the K point

is opposite to that at the K′ point. Therefore, the wave-

function of the n= 0 Landau level is localized in the same

sublattice for both Dirac points, and the specific sublattice

A or B is determined by the gradient of the strain. For

higher-order Landau levels (n ≠ 0), the wavefunctions

present a non-zero probability amplitude in both sub-

lattices in both real and strain-induced fields. In the

experiments, since an increase in the pseudomagnetic

field leads to a larger gap between the n= 0 and higher-n

Landau levels, the strongest sublattice polarization is

observed for the lattice with the highest hopping gradients

τ (Fig. 2d, e). This sublattice polarization provides

unambiguous identification of the zeroth Landau level.

The appearance of the zeroth Landau level is also visible

in the measured density of states shown in Fig. 2f for

different hopping gradients. The density of states is

obtained from the integration in space of the emitted light

at a given energy. The n= 0 Landau level manifests as a

peak of high density of states at Es
0, as a consequence of

the associated degenerate flat band, when the gradient τ

increases. To avoid any possible contribution of the trivial

zigzag edge states also present at Es
0, in Fig. 2f, we have

excluded from the integration the emission of the two

leftmost and two rightmost columns of micropillars in

lattices with τ= 0.56, τ= 0.96 and τ= 1.26.

One should also expect the presence of propagating

edge states emerging from the pseudomagnetic field at

energies between the different Landau levels (see Fig. 1d).

However, given the emission linewidth, propagating edge

states mix with bulk states and cannot be evidenced in the

s bands. For this reason, we turn our attention to the

p bands, which are also present in the fabricated lattices.

As the nearest-neighbour coupling tL for the p orbitals

oriented along the link between adjacent micropillars is

four to five times larger than that for the s bands32, we

expect a larger Landau-level spacing and the possibility of

identifying helical edge states emerging from the artificial

magnetic field.

Figure 3a displays the angle-resolved photo-

luminescence of the p bands when exciting an unstrained

lattice (τ= 0, Bz= 0 T) at its centre. The dispersion is

recorded as a function of ky for a value of kx= 4π/3a,

passing through the centre of the second Brillouin zone.

One can observe a flat band at low energy and two

intermediate dispersive bands with Dirac crossings at the

K and K′ points. By implementing the hopping gradient of

Eq. (1) in the longitudinal hopping tL,1(x) for px orbitals

parallel to the horizontal links, we expect to engineer an

artificial magnetic field around the Dirac points similar to

that of the s bands: photonic Landau levels should appear

with an energy spectrum ϵ
p
n ¼ E

p
0 ± ðtL=2Þ

ffiffiffiffiffiffiffiffi

τjnj
p

(see

Supplementary material), where E
p
0 is the energy of the

Dirac points in the p bands. Figure 3b shows the photo-

luminescence for the strained lattice shown in Fig. 2b, d)

obtained when summing the emission over all accessible

values of the transverse kx for each value of ky. For the

p bands, the designed centre-to-centre separation results

in a hopping gradient of τ= 0.2 (Bz= 500 T). The flat

bands around zero energy that are visible for ky 2
�2;�4½ �ky0 ∪ 2; 4½ �ky0 delimited by the Dirac points at ky
= ±2ky0 and ±4ky0 (with ky0 ¼ 2π=3

ffiffiffi

3
p

) correspond to the

trivial zigzag edge states34, similar to those shown for the s

bands in Fig. 1d. At the position of the Dirac points, two
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energies ϵ
p
0� ¼ E

p
0 � 0:07meV and ϵ

p
0þ ¼ E

p
0 þ 0:07meV

can be defined for the n= 0 Landau level (see the zoomed

area in Fig. 3c). This apparent splitting of the Landau level

originates from the finite size of the lattice; it is inherent

to any experimental realization and should decrease for

larger lattices. Interestingly, the n=−1 Landau level is

also visible in Fig. 3c. The nearest-neighbour tight-bind-

ing simulations shown in Fig. 3b, c as solid lines qualita-

tively reproduce the observed dispersion for tL=

−0.85 meV and assuming that the hopping tT between the

p orbitals oriented perpendicular to the link is zero32. Due

to the naturally stronger confinement of the p modes in

the pillars, in this case, we do not assume any onsite

energy offset at the edge micropillars.

To confirm the identification of the n= 0 Landau level,

we compare the wavefunction at the Dirac energy of an

unstrained lattice (Bz= 0 T, Fig. 3e) with the wavefunc-

tions recorded at E ¼ ϵ
p
0� for τ= 0.2 (Bz= 500 T, Fig. 3f).

For zero pseudomagnetic field, the wavefunction is delo-

calized over several lattice sites and presents a honeycomb

pattern made of px,y orbitals. Analogous to that of the s

bands, the intensity distribution in the bulk of the strained

lattice presents a B sublattice polarization, a clear sig-

nature of the n= 0 Landau level emerging from a pseu-

domagnetic field. One can notice a stronger contribution

of px over py orbitals on the left side of the n= 0 Landau

level wavefunctions. This feature arises from the larger

onsite energy of px orbitals inherited from the stronger

confinement of the p orbitals along the direction of the

hopping gradient when tL,1(x) < tL. If the hopping gradient

is further increased, the sublattice polarization becomes

more evident, as displayed in Fig. 3g for τ= 0.4.

The measured density of states shown in Fig. 3d is

consistent with the emergence of the degenerate n= 0

Landau level when the strain is increased. The wave-

function of the n=−1 Landau level visible in Fig. 3c is

shown in Fig. 3h. As expected, the intensity on sublattices

A and B is similar in this case since the sublattice polar-

ization is exclusive to the zeroth Landau level.

The larger hopping strength between the p orbitals than

that between the s bands opens up the possibility of

observing propagating edge states in the gap between the
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Fig. 3 Photonic Landau levels in p bands. a Spectrally resolved far-field emission of the p bands from an unstrained lattice for kx= 4π/3a.
b Spectrally resolved far-field emission summed over all values of kx accessible in our setup for a strained lattice with a gradient τ= 0.2. The

corresponding pseudomagnetic field is Bz= 500 T. The Dirac energies are located at Ep0 ¼ 1568:5 meV for a and E
p
0 ¼ 1570:7 meV for b. The positions

of the Dirac cones K and K′ are indicated by vertical dashed lines. c Top panel: zoom on the Landau levels n= 0 and n=−1. The contrast is increased
to improve the visibility. The white lines in b, c are theoretical fits using the tight-binding Hamiltonian with tL=−0.85 meV and tT= 0 meV. Bottom
panel: coloured version of the theoretical fit used in the top panel. The colour of each state is defined by the mean position of its wavefunction.
d Measured density of states for different hopping gradients. For the strained lattices with τ= 0.2, and τ= 0.4, the emission of the two leftmost and
rightmost columns of micropillars has been excluded to suppress the contribution of the zigzag edge states. Each curve is vertically offset by 0.08 for
clarity. e–g Measured real-space photoluminescence intensity for hopping gradients τ= 0 e, τ= 0.2 f, and τ= 0.4 h at the energy of the Dirac cone.
These lattices are, respectively, those shown in Fig. 2c–e. The positions of the excitation spot are identical to those in Fig. 2. The n= 0 Landau level
wavefunctions in f and g are characterized by a B sublattice polarization in the bulk. For clarity, circles show the positions of some of the pillars in the
lattice. h Measured real-space photoluminescence intensity of the n=−1 Landau level shown in c. The colour scale of each panel has been
independently normalized to its maximum value
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n= 0 and n= ±1 Landau levels, as shown in the tight-

binding simulations in Fig. 1d for the s bands. Figure 3c

highlights the presence of two such propagating edge

states close to the K point in the gaps between p Landau

level n= 0 and Landau levels n= ±1. The tight-binding

simulations depicted in the lower panel of Fig. 3c and in

the Supplementary material show the continuous evolu-

tion of the n= 0 Landau-level bands spatially located in

the bulk of the lattice (black colour) into the propagating

edge states spatially located on the edge (magenta, right

edge), as expected from a two-dimensional system subject

to an artificial magnetic field. Similar edge states with

opposite group velocities are also visible at the other

Dirac cone.

The propagation of these edge states is experimentally

studied by placing the excitation spot on the zigzag edges

of a strained lattice with a hopping gradient τ= 0.28

(Bz= 700 T). The measured dispersions, centred and

zoomed on the zeroth Landau level, are shown in Fig. 4a,

b for the excitation on the left and right edges, respec-

tively. The dispersions exhibit very different features

depending on the excited edge. Figure 4a displays the

dispersion corresponding to the excitation of the left

zigzag edge, and it is dominated by a flat band at E
p
0

associated with non-propagating zigzag edge states34.

These modes and the n=−1 Landau levels at lower

energy are separated by a gap (a similar gap is also visible

just above E
p
0 ). In contrast, Fig. 4b, which corresponds to

the excitation of the right zigzag edge, is dominated by

dispersive modes near the Dirac points ky= ±2ky0 with

opposite group velocities, lying exactly in the gap between

the zeroth and n=−1 Landau levels.

These dispersive modes correspond to the propagating

edge states linked to the zeroth Landau level depicted in

Fig. 1d for the s bands. Since they have opposite group

velocities in each valley, they propagate in opposite

directions. This helical propagation is revealed in Fig. 4d

when measuring the emitted intensity for an energy lying

between ϵ
p
0� and ϵ

p
�1 (horizontal red line in Fig. 4a, b). At

the right edge, polaritons flow from the excitation spot

towards the top and bottom corners of the lattice. When

the left edge is excited, as shown in Fig. 4c, the measured

intensity shows a fast exponential decay outside the

excitation spot, evidencing the absence of propagating

edge states. This left/right propagation asymmetry is well

reproduced by driven dissipative calculations (see Sup-

plementary material). The intensity profiles measured

along the left and right zigzag edges (yellow rectangles in

Fig. 4c, d) are reported in Fig. 4e. The extracted propa-

gation lengths are Ll= 5 μm and Lr= 17 μm for the left

and right edges, respectively. Based on the propagation

length Lr of the right edge state and the group velocity

vg= 2.4 μm s−1 measured in Fig. 4b, we find a lifetime of

τ ≈ 7 ps for polaritons in the propagating state, in

agreement with previous experiments on polariton hon-

eycomb lattices etched from the same wafer35.

To understand why only the right zigzag edge supports

the propagation of the zeroth Landau level, one has to

consider the chiral symmetry of our system and the

peculiar form of the zeroth Landau level wavefunction

emerging from the pseudomagnetic field22. As the zeroth

Landau level wavefunction is entirely localized on the B

sublattice, its energy is pinned to E
p
0 (the onsite energy of

the isolated p orbitals) by the chiral symmetry. Conse-

quently, the only way for the zeroth Landau level to evolve

into a dispersive state with E ≠E
p
0 is to combine with other

zero-energy edge states localized on the A sublattice. In

our case, the role of these zero-energy states is played by

trivial edge states associated with the zigzag termination

of the honeycomb lattice. These trivial edge states are

localized on the A sublattice at the right edge and on the B

sublattice at the left edge. For this reason, propagating

edge states associated with the n= 0 Landau level appear

only at the right edge for the sign of the hopping gradient

that we consider. Note that by choosing other termina-

tions, it is possible to engineer propagating edge states

only at the left edge, propagating edge states at both edges

simultaneously, or no propagating edge states at all22,47.

This behaviour is a consequence of the sublattice sym-

metry breaking of the n= 0 Landau level emerging from

the presence of the pseudomagnetic field and is very

different from the unidirectional chiral edge states that

appear in graphene under an external magnetic field, with

a propagation direction independent of the type of edge

and robust to local disorder.

Discussion

In this work, we have reported a direct measurement of

the n= 0 Landau level wavefunction distributions in a

photonic honeycomb lattice subject to a synthetic mag-

netic field. We have provided unprecedented evidence of

the dispersion of helical edge states induced by an artifi-

cial magnetic field and their emergence from the funda-

mental Landau level at the edges of the sample. In

combination with recent advances in the enhancement of

polariton–polariton interactions40,41,48, our realization is

promising for the prospect of studying strongly correlated

photonic phases in systems with a higher degeneracy than

those in recent reports for microwave49 and twisted cav-

ities6. The helical edge states we have unveiled provide a

new playground to design topological photonic channels

in a chip without any external magnetic field. They pre-

sent a high degree of versatility, as their existence is

controlled by the termination of the lattice and, similar to

the interface states emerging from the valley Hall effect50,

they should in principle be free of backscattering in the

presence of any disorder that does not mix the two non-

equivalent Dirac cones.
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Fig. 4 Zeroth Landau level propagating edge states. a, b Spectrally resolved far-field emission centred and zoomed on the zeroth Landau level

(p bands) of a strained lattice with a gradient τ= 0.28 (Bz= 700 T) for a left a and right b edge excitation. Ep0 ¼ 1571:3meV. The positions of the Dirac
cones K and K′ are indicated by vertical dashed lines. c, d Measured real-space photoluminescence intensity pattern for an excitation localized on the
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0� and ϵ

p
�1 (horizontal red line in a and b) is selected. The

position of the excitation spot is marked by white dashed lines. e Maximum intensity measured on each pillar above the excitation spot (yellow
rectangles in c and d) for left and right edge excitation
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Methods

The different hopping gradients τ are designed during

the realization of the lithographic mask by accurately

tuning the distance d between the centres of the pillars

forming a horizontal link. The distance between the cen-

tres of the pillars forming angled links with respect to the

horizontal direction remains constant (d= 2.4 μm). To

determine the dependence of the hopping on the centre-

to-centre distance d, we solve the time-independent

Schrödinger equation in two dimensions, accounting for

the in-plane shape of the micropillars for different centre-

to-centre distances51 and assuming infinite potential out of

the micropillars. We take D= 2.75 μm as the diameter of

the two micropillars, the same as that engineered in the

considered strained lattices. From the spectrum of eigen-

modes, we extract the bonding–antibonding splitting for

both the s and p modes as a function of the centre-to-

centre distance. We assume that the splitting for each set

of modes corresponds to twice the hopping amplitudes ts
and tp in the tight-binding model. We perform a linear fit

of ts as a function of d and a parabolic fit for tp, resulting in

the following dependences:

d ¼ �1:3´ ts þ 2:73; for s bands;

d ¼ �0:75 ´ t2p þ 0:34 ´ tp þ 2:74; for p bands:

We use the above equations to design the centre-to-

centre distances along the horizontal direction in the con-

sidered lattices. Each lattice is designed to have a strictly

linear gradient τ either in the s or in the p bands. However,

even if a lattice is designed to have a linear hopping gradient

in one of the two types of bands, the hopping gradient in the

other type of band is also linear to a very good approx-

imation. Supplementary Fig. S1 shows the exact centre-to-

centre distances along the horizontal direction employed in

the samples used in our study (black dots) along with the s

and p bands hopping in the horizontal links expected from

the above equations. Lattices (a), (c) and (d) were designed

with a linear gradient in the p bands, while (b) was designed

with a linear gradient in the s bands. Nevertheless, the

expected hopping gradient for the other type of band is also

linear to a very good approximation (the figure shows the

R2 errors to linear fits). Therefore, our strained lattices

implement homogeneous synthetic magnetic fields for both

the s and p bands at the Dirac points.
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