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Supplementary Information

Supplementary Figures

Supplementary Figure 1: (Color online) Signatures of the condensate on resonance in the spatial
profiles. The curvature of the observed column density is encoded in shades of gray with white
(black) corresponding to positive (negative) curvature. The outer radii of the two components and
the condensate radius are shown as an overlay in the lower panel. As a direct consequence of
strong interactions, the minority component causes a pronounced bulge in the majority density
that is reflected in the rapid variation of the profile’s curvature. The condensate is clearly visible in
the minority component (δ > 0), but also leaves a faint trace in the majority component (δ < 0).
The image was composed out of 216 individual azimuthally averaged column density profiles,
smoothed to reduce technical noise. Data close to the cloud’s center suffer from larger noise due
to the lower number of averaged points. The central feature of about 50µm width is an artefact of
smoothing in this region of increased noise.
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Supplementary Figure 2: Outer radii of the two cloud profiles and condensate radius versus
population imbalance. Data obtained from the majority (minority) cloud are shown as diamonds
(circles). The outer radii of the clouds (black) are determined from Thomas-Fermi fits to the pro-
files’ wings, where the results of a zero-temperature and a finite temperature fit were averaged. For
the minority cloud, the representative error bars indicate the difference between these two results.
The position of the ”bulge” in the majority profile (white diamonds) naturally follows the outer
minority radius. The condensate radius is defined as the position of the ”kink” in the minority
profiles. It was obtained by a) fitting an increasing portion of the minority wings until a significant
increase in χ2 was observed (grey circles), and b) the position of the minimum in the profile’s
derivative (white circles). All sizes are scaled by the Fermi-radius of a non-interacting equal mix-
ture. The minority radii were adjusted for the observed hydrodynamic expansion (expansion factor
11.0). The non-interacting wings of the majority cloud expand ballistically (expansion factor 9.7),
as long as they are found a factor 11/9.7 = 1.13 further out than the minority radius. For small
imbalances (δ < 20%), also the majority wing’s expansion will be affected by collisions. The grey
diamonds give the majority cloud’s outer radius if hydrodynamic expansion is assumed.
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Supplementary Methods

Hydrodynamic vs. ballistic expansion

A non-interacting cloud of atoms simply expands ballistically from a trap. However, strongly
interacting equal Fermi mixtures, above and below the phase transition, are collisionally dense and
therefore expand according to hydrodynamic scaling laws 1–3. These scaling laws only depend on
the equation of state of the gas, ε ∝ nγ , with γ = 1 for the BEC-side, γ = 2/3 for resonance
(a direct consequence of unitarity) and γ = 2/3 for the BCS-side, away from resonance. In
an unequal spin mixture of fermions, the expansion does not follow a simple scaling law. The
minority cloud is always in contact with majority atoms and thus strongly interacting throughout
the expansion, which is therefore hydrodynamic. The excess atoms in the wings of the larger
cloud are non-interacting and will expand ballistically, as we have checked experimentally. The
absorption images after expansion are taken along the axial direction of the trap (the direction of
the optical trapping beam). In order to compare the expanded cloud sizes to the in-trap Fermi radii
of non-interacting clouds (see Fig. 2 and Fig. S2 below) we scale the majority cloud with the
ballistic factor for the radial direction
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where t is the expansion time and νz/
√

2 gives the radial anti-trapping curvature of the magnetic
saddle-point potential. The scaling factor for the hydrodynamic expansion of an equal mixture is
given by the solution to a differential equation 2, 3. A priori, the minority cloud in unequal mixtures
could expand with a different scaling, since the equation of state now depends on two densities.
However, by imaging the cloud in trap and at different times during expansion, we found that
the minority cloud’s expansion is very well described by the scaling law for an equal mixture.
In particular, the aspect ratio of the minority cloud did not change as a function of population
imbalance (within our experimental error of 5%), and was equal to that of a balanced mixture.

For the data on resonance in Figs. 3, S1 and S2, which were obtained after 11 ms expansion
out of a trap with radial (axial) frequency of νr = 113(10) Hz (νz = 22.8(0.2) Hz), the ballistic
(hydrodynamic) expansion factor for the radial direction is 9.7 (11.0).

Supplementary Discussion

Signature of the condensate

Fig. S1 demonstrates that on resonance, the condensate is visible not only in the minority compo-
nent, but also in the larger cloud as a small change in the profile’s curvature. In the condensate
region, the majority profile is slightly depleted when compared to the shape of a normal Fermi
cloud. This effect is still significant on the BCS-side (see Fig. 1): Although here, the condensate
is less visible in the smaller component than on resonance, the larger cloud’s central depletion still
produces a clear dip in the difference profile.
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Radii in the unequal Fermi mixture

Fig. S2 shows the outer radii of the majority and minority cloud, together with the condensate
radius (on resonance, for the deepest evaporation compatible with constant total atom number ver-
sus imbalance). As was the case for the phase transition at finite temperature, the outer cloud sizes
change smoothly with imbalance. No drastic change is seen at the critical population imbalance.
The radii are obtained by fitting the profiles’ wings to the Thomas-Fermi expression for the radial
column density n(r):

n(r) = n0

Li2

(
−λ1−r2/R2

)

Li2 (−λ)
,

with the central column density n0, the fugacity λ and the Thomas-Fermi radius R as the free
parameters. Li2(x) is the Dilogarithm. The zero-temperature expression reduces to n(r) = n0(1−
r2/R2)2.

Lower and upper bounds for the critical chemical potential difference at δc

For the clouds at the critical imbalance δc, we now want to extract a lower and upper bound for
the difference in chemical potentials δµc of the majority and minority component. This difference
allows us to conclude that BCS-type superfluidity with imbalanced densities is not possible.

The chemical potential difference δµ ≡ 2h = (µ↑ − µ↓) measures the energy cost, relative
to µ = (µ↑ + µ↓)/2, to add a particle to the cloud of excess fermions. ∆, the pairing gap, is the
energy cost for this additional majority particle to enter the superfluid. Both the critical temperature
TC and the critical chemical potential difference δµc provide a measure of the superfluid gap:
The superfluid can be either destroyed by raising the temperature or by increasing the population
imbalance. If hc ≡ δµc/2 < ∆, excess atoms will always stay outside the superfluid, in the phase
separated normal state. For hc > ∆, excess atoms can enter the superfluid for hc > h > ∆.
Hence, superfluidity with unequal densities, if allowed via hc > ∆, would be favored at large
population imbalance, contrary to the interpretation in 4, where such a state was proposed for small
population imbalance. A recent Monte-Carlo calculation 5 for the Clogston limit on resonance
gives hc = 1.00(5)∆ = 0.50(5)EF and can thus not decide on the question of superfluidity with
imbalanced densities.

We can attempt to extract the chemical potential from the cloud sizes R↑,↓ - taking into
account hydrodynamic expansion for the minority cloud and ballistic expansion for the excess
fermions. For the majority cloud, we find µc,↑ = 1/2 mω2

rR
2
↑ = 1.21(6)EF . For the minority

cloud, we find 1/2 mω2
rR

2
↓ = 0.39(10)EF . Throughout the smaller cloud, minority atoms are

always strongly attracted by majority atoms. This strong attractive interaction likely reduces their
chemical potential from the above upper limit. The difference of the chemical potentials δµc ≡ 2hc

is thus given by hc = (µc,↑ − µc,↓)/2 ≥ 0.41(6)EF = 0.51µ, our lower bound. Another condition
on hc concerns whether the normal state can be mixed, hc < µ, (minority and majority atoms in
the same spatial region) or whether the normal state is always completely polarized hc > µ. Our
observation of the mixed region in Fig. 1 immediately results in hc < µ, the upper bound.
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On resonance, ∆ = 1.16µ in BCS-theory, while a recent Monte-Carlo study 5 obtains
∆ = 1.2µ. If ∆ > µ holds true, our finding of the upper bound on hc would imply hc < ∆
and hence would exclude a superfluid with unequal spin densities (at least on the basis of BCS-
theory, see 6 for a recent suggestion which goes beyond BCS).
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