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Quantum systems in confined geometries are host to novel
physical phenomena. Examples include quantum Hall
systems in semiconductors1 and Dirac electrons in graphene2.
Interest in such systems has also been intensified by the
recent discovery of a large enhancement in photoluminescence
quantum efficiency3–7 and a potential route to valleytronics6–8

in atomically thin layers of transition metal dichalcogenides,
MX2 (M5Mo, W; X5 S, Se, Te), which are closely related
to the indirect-to-direct bandgap transition in monolayers9–12.
Here, we report the first direct observation of the transition
from indirect to direct bandgap in monolayer samples by
using angle-resolved photoemission spectroscopy on high-
quality thin films of MoSe2 with variable thickness, grown by
molecular beam epitaxy. The band structure measured exper-
imentally indicates a stronger tendency of monolayer MoSe2
towards a direct bandgap, as well as a larger gap size, than
theoretically predicted. Moreover, our finding of a significant
spin-splitting of ∼180 meV at the valence band maximum of
a monolayer MoSe2 film could expand its possible application
to spintronic devices.

The layered transition metal dichalcogenides (TMDs) MX2 (M¼
Mo, W; X¼ S, Se, Te), a class of graphene-like two-dimensional
materials, have attracted significant interest because they demon-
strate quantum confinement at the single-layer limit13. As with gra-
phene, these layered materials can be easily exfoliated mechanically
to provide monolayers3–7,14–16 and assume a hexagonal honeycomb
structure in which the M and X atoms are located at alternating
corners of the hexagons. However, unlike graphene, which has a
gapless Dirac cone band structure, MX2 has a rather large
bandgap, making these materials more versatile as candidates for
thin, flexible device applications and useful for a variety of other
applications including lubrication16, catalysis17, transistors18 and
lithium-ion batteries19. Most interestingly, an indirect to direct
bandgap transition in the monolayer limit has been predicted theor-
etically and supported experimentally by optical measurements3–5,9,12.
Because of the direct bandgap, monolayer MX2 is favourable for
optoelectronic applications5 and field-effect transistors15,16,18.
Furthermore, both the conduction and valence bands have two
energy degenerate valleys at corners of the first Brillouin zone,
making it viable to optically control the charge carriers in these
valleys and suggesting the possibility of valley-based electronic
and optoelectronic applications3,6–8. Despite these exciting develop-
ments, direct experimental verification of the novel band structure at
the monolayer limit remains lacking. Furthermore, for many

applications, it is vital to manufacture high-quality epitaxial films
with controllable methods such as chemical vapour deposition
(CVD) or molecular beam epitaxy (MBE)20,21.

In this Letter, we report layer-by-layer growth of high-quality
single-crystal MoSe2 thin films by MBE on an epitaxial graphene-
terminated 6H-SiC(0001) substrate22. Our in situ angle-resolved
photoemission spectroscopic (ARPES) study provides the first
direct experimental evidence of the distinct transition in the band-
structure for thin film samples with thicknesses ranging from one
monolayer (ML) to eight monolayers. Moreover, we find rather
large spin-splitting (≏180 meV) at the valence band maximum
(VBM) of the monolayer MoSe2 film, a signature of the combined
effects of spin–orbit coupling and inversion symmetry breaking.

Figure 1a presents the crystal structure of the layered MoSe2.
Each single layer (Se-Mo-Se) of MoSe2 consists of two layers of Se
atoms on opposite faces, with one layer of Mo atoms inserted in
the middle. Figure 1b shows the reflection high-energy electron dif-
fraction (RHEED) pattern of our substrate of epitaxial bilayer gra-
phene-terminated 6H-SiC(0001)22. The similar layered structure
and chemically inert surface of graphene make it a perfect substrate
for van der Waals epitaxial growth of two-dimensional layered
materials21,23,24. We have successfully grown high-quality single-
crystal MoSe2 films of large size (≏5 mm× 2 mm), frommonolayer
up to 8 ML, with layer-by-layer control of thickness, by delicate
control of the growth conditions. Here, we use the term ‘monolayer’
to refer to the one-unit-cell triple layer (Se-Mo-Se) of MoSe2 (cor-
respondingly, the terms ‘bilayer’ and ‘trilayer’ refer to two and
three layers of the Se-Mo-Se structure). Figure 1c presents the
RHEED pattern for our MBE-grown monolayer MoSe2 thin film.
The disappearance of the graphene pattern (Fig. 1b) and the appear-
ance of a distinct MoSe2 (1× 1) pattern (Fig. 1c), which is insensi-
tive to both sample (≏5 mm× 2 mm) and beam positions, indicate
the growth of a homogeneously well-structured film. Figure 1e
makes a direct comparison of our calculated band structures
(Fig. 1d) and the corresponding ARPES spectra (Fig. 1f ) of the
monolayer MoSe2 film along the G–K direction in the hexagonal
Brillouin zone. The contribution from bilayer graphene is not
visible in this momentum window, because it centres further in
ky, the momentum along the G–K direction for both MoSe2 films
and graphene, at the K point of the bilayer graphene substrate
(Supplementary Figs 1, 2). Despite the energy scale difference, the
calculation and ARPES spectra show good qualitative agreement.
Renormalizing the energy scale of calculation by ≏17%, we found
that the calculated bands (dotted lines in Fig. 1e) are in good
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Figure 1 | Crystal structure, RHEED patterns and overall ARPES spectra of MoSe2 thin film. a, Crystal structure of MoSe2. b,c, RHEED patterns of epitaxial

bilayer graphene over a 6H-SiC(0001) substrate (b) and a monolayer MoSe2 thin film grown on the substrate (c). d, Theoretical band structures calculated

using GGA along the G–K direction of the monolayer MoSe2 film. Zero energy represents the VBM. e, f, Direct comparison of theoretical and experimental

band structures of the monolayer MoSe2 film (e). The experimental band structure is shown in e as a second derivative of the data in f to enhance visibility

(black and white intensity plot), and the overlaid green dotted lines are the calculated band structures with renormalized energy scale. ky refers to the

momentum along the G–K direction, corresponding to the y axis shown in a.
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Figure 2 | Band evolution with increasing thickness of MoSe2 thin films. a–d, ARPES spectra of monolayer, bilayer, trilayer and 8 ML MoSe2 thin films along

the G–K direction. White and green dotted lines indicate the energy positions of the apices of valence bands at the G and K points, respectively, with energy

values written in the same colours. e–h, Second-derivative spectra of a–d, respectively, to enhance the visibility of some bands. Yellow dashed lines indicate

the Fermi level. i–l, Calculated band structures of monolayer, bilayer, trilayer and 8 ML MoSe2. Insets to k and l: zoom-in splitting of the valence band at the

K point. Blue and red circles in k indicate opposite spin directions.
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agreement with the second-derivative spectra (Fig. 1e). More inter-
estingly, the difference in the relative position of the valence bands
at the G point and K point in the monolayer film is significantly
larger than that obtained from the theory, indicating that MoSe2
shows a stronger tendency towards a direct bandgap material than
predicted theoretically.

Figure 2a–d presents the ARPES spectra of monolayer, bilayer,
trilayer and 8 ML MoSe2 films, respectively. The second-derivative
spectra in Fig. 2e–h are provided to enhance the visibility.
Comparisons with our calculations based on the generalized gradi-
ent approximation (GGA25; Fig. 2i–l) clearly show that the thick-
ness-dependent band structure evolution is highly consistent with
theoretical calculations. In particular, in the spectra from the mono-
layer MoSe2 film (Fig. 2a,e), the VBM at the K point (–1.53 eV) is
significantly higher than the G point valence band (–1.91 eV).
However, in bilayer and thicker films, the VBM switches to the G
point (Fig. 2a–h). The quantum confinement effect, which can
reveal the number of layers, can be seen around the top valence
band at the G point. In monolayer MoSe2 film there is only one
band above the binding energy of 22 eV at the G point
(Fig. 2a,e), but in the bilayer film this band evolves into two branches,
and then to three branches in the trilayer film (Fig. 2a–h). In the
8 ML film, the calculation (Fig. 2l) shows the presence of eight
branches, although in Fig. 2d and h we can only see two main,
broad branches due to the limited resolution (these branches are
quite close to each other). This significant step-by-step evolution
of the valence band provides a straightforward method to identify
the thickness of ultrathin MoSe2 films, and also provides verification
of the layer-by-layer growth mode of our thin film.

Figure 3a,b presents the second-derivative spectra of undoped
and potassium-doped monolayer MoSe2 films, respectively. With
surface doping with potassium, we can raise the chemical potential
of the MoSe2 film (the green dashed lines in Fig. 3a,b indicate the
≏130 meV movement of the valence band). This enabled us to
observe how the conduction band minimum (CBM) dropped
below the Fermi level in potassium-doped monolayer MoSe2 film
(Fig. 3b). Figure 3c,d shows the constant energy maps at the CBM

(Fig. 3b) and VBM (Fig. 3a). We can see that both the CBM and
VBM are located at all the K points in the Brillouin zone (no photo-
emission intensity was observed at the G point), which implies the
presence of a direct bandgap at the six K points in monolayer
MoSe2. In Fig. 3b we measured this direct bandgap to be
≏1.58 eV, which is very close to the value of 1.55 eV reported by
a photoluminescence experiment in mechanically exfoliated mono-
layer MoSe2 (ref. 4).

Figure 3e,f shows the second-derivative spectra of undoped and
potassium-doped 8 ML MoSe2 films, respectively. With the same
doping method, we found that the valence band moved by
≏0.46 eV. We can also observe the CBM in the spectra of potass-
ium-doped 8 MLMoSe2 film (Fig. 3f). Figure 3g,h presents the con-
stant energy maps at the CBM (Fig. 3f) and VBM (Fig. 3e). In
contrast to the monolayer MoSe2 film, in the 8 ML MoSe2 film
the CBM is still at the six K points (Fig. 3g), but the VBM is at
the G point (Fig. 3h). Thus, the 8 ML MoSe2 displays an indirect
bandgap of ≏1.41 eV (Fig. 3f ). We note that the calculated GGA
bandgap values (Fig. 2i–l) are underestimated, which is a well-
known problem in that GGA density functional theory generally
underestimates the bandgaps in semiconductors and insulators9.

From monolayer to 8 ML, we found that the CBM does not
change its position at the K point. Our calculations also show that
the CBM stays at the K point. However, from monolayer to
bilayer and thicker films, both our ARPES spectra and the calcu-
lations show that the VBM switches from the K point to the G
point. Because the interaction between the graphene substrate and
the van der Waals epitaxial MoSe2 film is found to be minimal in
both experiment (Supplementary Fig. 3) and calculation
(Supplementary Fig. 4), this VBM evolution clearly indicates the
direct to indirect bandgap transition in going from monolayer to
bilayer MoSe2.

Another interesting observation is that we found a very clear
band-splitting of the VBM at the K point of monolayer MoSe2
film (Figs 2a,e and 3a). A similar band-splitting can also be seen
in bilayer, trilayer and 8 ML MoSe2 films (Fig. 2f–h). Our calcu-
lations show that this splitting is mainly controlled by the strength
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of the spin–orbit coupling. For an odd number of layers, there is no
inversion symmetry, and each state at the K point is spin-nonde-
generate (Fig. 2i and inset of Fig. 2k, where red and blue round
spots indicate different spin polarization). For an even number of
layers, inversion symmetry is restored, and every state becomes
spin-degenerate (Fig. 2j and inset of Fig. 2l). The combined
effects of the spin–orbit coupling and inversion symmetry-breaking
can be best seen by a comparison between monolayer and bilayer
MoSe2 films. In the monolayer MoSe2 film, each state at the K
point is spin-nondegenerate while states at the G point are spin-
degenerate (because K is not a time-reversal-invariant point, but
G is). The top two branches that start at the K point, merging into
one branch at the G point, are observed both in the experiment
(Fig. 2a,e) and theory (Fig. 2i). Each spin split state is predicted to
be nearly 100% spin-polarized (Fig. 2i). Such a high degree of
spin polarization has also recently been predicted in silicene thin
films in proposals for a high-efficiency spin filter26. In bilayer
MoSe2 film, the band is doubly degenerate without spin-splitting
(Fig. 2j). Both experiment and theory exhibit two branches on top
of the valence bands at both the G and K points (Fig. 2f,j). In the
trilayer MoSe2 film, the magnitude of the spin-splitting within the
two main branches is only a few meV, making them nearly degen-
erate (inset of Fig. 2k), so we can only observe two branches in
ARPES in Fig. 2g. In the 8 ML thin film, the calculated eight
spin-degenerate states at the K point (inset in Fig. 2l) merge into
two blurred branches in the ARPES spectra (Fig. 2h). Our finding
of the spin-splitting of≏180 meV in monolayer MoSe2 is consistent
with a previous theoretical prediction (183 meV)10 and larger
than that in monolayer MoS2 (as measured recently by triply
resonant Raman scattering: ≏100 meV)27. This spin signature
with larger spin-splitting gives the layered MoSe2 greater
application potential than MoS2 in spintronic devices, as well as a
new basis on which to investigate spin–orbit physics beyond
topological insulators28.

To summarize, we have successfully achieved layer-by-layer
growth of high-quality MoSe2 thin films using MBE. The ARPES
study shows a distinct transition from an indirect bandgap of
≏1.41 eV to a direct bandgap ≏1.58 eV when the layer thickness
changes from 8 ML to monolayer. Together with the corresponding
first-principles computations, this not only provides direct exper-
imental proof of the novel electronic structure evolution, but also
reveals clear spin-split bands only in the monolayer limit.

Methods
Thin film growth and ARPES. This experiment was performed at the HERS
endstation of beamline 10.0.1, Advanced Light Sources, Lawrence Berkeley National
Laboratory. Thin-film samples of MoSe2 were grown in the MBE chamber at the
beamline, with a base pressure of≏2× 10210 torr, and then transferred directly into
the analysis chamber (base pressure of ≏3× 10211 torr) immediately before ARPES
measurements. Bilayer graphene substrates were prepared by flash annealing of the
6H-SiC(0001) to 1,300 8C (ref. 22). High-purity Mo and Se were evaporated from an
electron-beam evaporator and a standard Knudsen cell, respectively. The flux ratio of
Mo to Se was controlled to be≏1:8. The growth process was monitored by an in situ
RHEED system and the growth rate was ≏8.5 min per monolayer. During the
growth process the substrate temperature was kept at 250 8C, and after growth the
sample was annealed to 600 8C for 30 min. The potassium for surface doping was
evaporated from a SAES Getters alkali metal dispenser. The ARPES data were taken
with a Scienta R4000 electron analyser. Samples were cooled to 40 K with liquid
helium during measurements. The photon energy was set at 70 eV, with energy and
angular resolution of 25 meV and 0.18, respectively. The photon polarization
direction was set to be 728 out of the plane of incidence to obtain an evenly
distributed even and odd state signal. The size of the beam spot on the sample was
≏150 mm× 200 mm. We did not find any change in the observed ARPES spectra
when changing the beam position around the sample (≏5 mm× 2 mm), suggesting
the homogeneity of our sample.

Electronic structure calculations. The electronic structures were calculated using
the full-potential projected augmented-wave method29 as implemented in the VASP
package30 within the GGA scheme25. Spin–orbit coupling was included self-
consistently, and a 15× 15 Monkhorst–Pack k-point mesh was used. The thin films
were modelled as slabs separated by vacuum with a thickness of ≏15 Å.
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