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Direct observation of valley-polarized topological
edge states in designer surface plasmon crystals
Xiaoxiao Wu 1,2, Yan Meng1,2, Jingxuan Tian3, Yingzhou Huang1, Hong Xiang1, Dezhuan Han1 & Weijia Wen1,2

The extensive research of two-dimensional layered materials has revealed that valleys, as

energy extrema in momentum space, could offer a new degree of freedom for carrying

information. Based on this concept, researchers have predicted valley-Hall topological insu-

lators that could support valley-polarized edge states at non-trivial domain walls. Recently,

several kinds of photonic and sonic crystals have been proposed as classical counterparts of

valley-Hall topological insulators. However, direct experimental observation of valley-

polarized edge states in photonic crystals has remained difficult until now. Here, we

demonstrate a designer surface plasmon crystal comprising metallic patterns deposited on a

dielectric substrate, which can become a valley-Hall photonic topological insulator by

exploiting the mirror-symmetry-breaking mechanism. Topological edge states with valley-

dependent transport are directly visualized in the microwave regime. The observed edge

states are confirmed to be fully valley-polarized through spatial Fourier transforms. Topo-

logical protection of the edge states at sharp corners is also experimentally demonstrated.
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T
wo-dimensional (2D) layered materials, such as graphene
and transition metal dichalcogenides, exhibit a pair of
degenerate but inequivalent energy extrema in the

momentum space (or reciprocal space), called valleys1–4. As a
new potential carrier for information, valleys have opened up a
novel research area referred to as valleytronics5–9 aimed at
engineering the degree of freedom. Many works have predicted
that if the degeneracy between the two valleys is lifted, 2D
materials could exhibit the quantum valley-Hall effect, which is
manifested by a pair of counter-propagating edge states with
opposite valley-polarization at non-trivial domain walls in the
absence of inter-valley scattering10–14. These materials are some-
times referred to as valley-Hall topological insulators14,15. Regarding
the classical counterparts of this kind of quantum topological
electronic system, several photonic crystals have been proposed as
possible valley-Hall photonic topological insulators (PTIs) and
numerically investigated16–19. Moreover, a sonic crystal comprising
anisotropic scatters has been proposed and experimentally
demonstrated as a valley-Hall sonic topological insulator (STI)20.

The topological phase transition in the STI is induced by
mirror symmetry breaking in the sonic crystal. However, cur-
rently proposed PTIs and STIs usually require covers to confine
the waves in the vertical direction to prevent radiative leakage
into free space20–25. In experiments, the covers will largely
hamper probing inside the photonic or sonic crystals and the
experimental mapping of the fields inside the structure becomes a
difficult challenge. As a result, there are few direct experimental

observations of valley-polarized edge states. Until now, valley-
dependent transport has been experimentally reported in
STIs20,26, serving as an important but indirect observation for
valley-polarized edge states. In order to achieve direct observa-
tions, the edge states need to be vertically confined in free space to
eliminate covers27, and the elimination of covers is also beneficial
for both manufacturing and applications.

In view of these demands, designer surface plasmons (DSPs),
also dubbed spoof surface plasmons28–39, can become a potential
platform for constructing valley-Hall PTIs. DSPs are non-leaky
electromagnetic (EM) surface modes similar to the famous sur-
face plasmons at optical and infrared regimes but arise at much
lower frequencies in periodic subwavelength metallic structures,
and these structures can be called DSP crystals. Owing to its
vertical confinement in free space, DSPs have been successfully
employed in realizing time-reversal-invariant PTIs aimed at
directly detecting topological phenomena of classical waves in
recent works40–42. Compared with previous PTIs that utilize
magneto-optical effect21,43, PTIs based on DSP crystals are time-
reversal-invariant and do not rely on external magnetic fields.
Further, since the realization of a topological bandgap now does
not involve coupled-resonator optical waveguides or the coupling
between transverse-electric and transverse-magnetic modes,
complex structures such as ring-resonator networks44,45 or three-
dimensional resonators22,23,46 in previous time-reversal-invariant
PTIs are no longer needed, which can offer more compactness for
the PTIs in applications.

6.5

7.0

7.5

8.0

8.5
LCP

RCP

F
re

q
u

e
n

c
y
 (

G
H

z
)

A B

3

5

7

9

11

Γ

F
re

q
u

e
n

c
y
 (

G
H

z
)

Γ K (K′) M

7.2

7.6

8.0

K(K′)

Unperturbed

0.4 0.8–0.8 –0.4 0.0RCPLCP

MaxMin

t

α

K

K

K

K′

K′

K′

Γ

x
y

z

b

R1

R2

r

x

y

∆R (mm)
|Ez |

0.8ΓK(K′) 0.2K(K′)M

d

c

a

e
f

Fig. 1 Conceptual illustration of the DSP crystal and frequency split of circularly polarized valley states. a Schematic illustration of the triangular-lattice

designer surface plasmon (DSP) crystal consisting of metallic patterns (yellow) on a dielectric F4B substrate (gray). b Top-view Wigner–Seitz unit cell of

the lattice. The metallic pattern consists of an inner circle with radius r= 1 mm and six radial fans with sector angle 30°, three of them marked by red

outlines having radius R1, the other three marked by blue outlines having radius R2. c First Brillouin zone (FBZ) of the triangular lattice. d Calculated band

structure of the DSP crystal along the special directions of the FBZ with R1= R2= 5.55mm. The blue dashed lines represent the dispersion of EM wave in

air (light line) and only the guided part of the band structure is shown. The inset enlarges the area enclosed by the green rectangle around K/K′ valley,

showing the gapless Dirac cone. e Simulated field maps of Ez component on the xy plane 1 mm above the surface, showing the two degenerate states at the

K valley with energy flux represented by blue arrows. The circulating energy flux of the states is either left-hand circularly polarized (LCP) or right-hand

circularly polarized (RCP). The color indicates the amplitude of Ez component. f Calculated eigenfrequencies of the LCP and RCP states at the K valley when

the parameter ΔR= R1 − R2 varies while the mean radius R= (R1 + R2)/2= 5.55mm is kept constant. The inversion of frequency order of the LCP and RCP

states indicates a topological phase transition when ΔR crosses zero. The evolution of the unit cell is indicated in the inset, where pattern A corresponds to

ΔR= −0.5 mm, the unperturbed pattern corresponds to ΔR= 0, and pattern B corresponds to ΔR= 0.5 mm. The difference between R1 and R2 are

exaggerated for a clearer visualization
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In this paper, we experimentally realize a valley-Hall PTI
operating in the microwave regime and demonstrate the mea-
sured near-field maps of the valley-polarized edge states. The
valley-Hall PTI is constructed using a DSP crystal, and the
topological phase transition is realized through perturbations that
break mirror symmetry and generate non-trivial valley Chern
numbers. Valley-polarized edge states and their valley-dependent
transport are directly observed in a beam splitter. The topological
protection of these edge states at sharp corners is also demon-
strated in a Z-shaped waveguide. The valley-Hall PTI should have
potential in applications considering its planar geometry and
ultrathin thickness and may serve as a prototype for future
development of telecommunication devices.

Results
Topological phase transition and valley-Hall PTIs. The starting
point for our consideration is a triangular-lattice DSP crystal
comprising metallic patterns deposited on a dielectric substrate as
illustrated in Fig. 1a. The substrate is a conventional high-
frequency dielectric material, F4B, with a relative permittivity of
2.65 and a loss tangent of 0.001. The lattice constant is a= 12 mm
and the thickness of the substrate is t= 1 mm. A top-view
Wigner–Seitz unit cell of the DSP crystal is shown in Fig. 1b. The
metallic pattern in each unit cell is a thin layer of copper with
thickness tm= 35 μm, comprising an inner circle with a radius r
= 1 mm and six radial fans with a sector angle of 30°. Of the six
fans, the three marked by red outlines have the radius R1 and the
other three marked by blue outlines have the radius R2. The first
Brillouin zone (FBZ) of the triangular lattice is depicted in Fig. 1c.

We first consider a detailed situation when the unit cell
possesses mirror symmetry along ΓK direction (ΓK-mirror

symmetry) and assume that R1= R2= 5.55 mm. The band
structure of the DSP crystal is numerically calculated (see
Methods section) and the guided part27,47 of the first three bands
along special directions of the FBZ is shown in Fig. 1d, while the
dispersion of EM wave in air (light line) is represented by the blue
dashed lines. The first band is highlighted by the red solid line
and other bands are represented by black solid lines. It can be
observed that the first and second bands linearly touch each other
at the Dirac frequency ωD= 2π × 7.61 GHz at the K and K′ valleys
due to the C3v symmetry of the valleys in the reciprocal space48.
Dirac cones are then formed at each valley by the two bands, with
details displayed in the inset that enlarges the area enclosed by the
green rectangle.

We then plot the cross-sectional field maps of Ez component of
the two degenerate states at the K valley in Fig. 1e, where the blue
arrows represent the time-averaged Poynting vectors (energy
flux). As displayed in the field maps, the energy flux of the two
states are either left circularly polarized (LCP) or right circularly
polarized (RCP), and are invariant under a rotation through 120°.
The fields at the K′ valley could be obtained by the time-reversal
operation, which reverses the direction of the energy flux and
hence the circular polarization of the state16,49. Since the valley
states are in the guide part of the band structure and far away
from the light line, the electric field is tightly confined near the
metallic surface in the z (vertical) direction (See Supplementary
Fig. 1 for electric field distribution in the z direction).

We then introduce a perturbation to break the ΓK-mirror
symmetry of the unit cell, which will lift the degeneracy at the
valleys and hence open a bandgap20,49. This could be accom-
plished by perturbing the radii R1 and R2 such that they become
unequal, and hence a parameter ΔR = R1 − R2 is defined to
characterize the perturbation. After varying this parameter, the
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Fig. 2 Band structure of the DSP crystal with breaking of ΓK-mirror symmetry and topological property of its first band. a Calculated band structure of the

DSP crystal along the special directions of the FBZ when ΔR=±0.5 mm (pattern A or B). Blue dashed lines represent the light line and only the guided part

of the band structure is shown. The light yellow shaded region represents the full bandgap. b Berry curvature of the first band for pattern A along the line

ky ¼ 2π=
ffiffiffi

3
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in the reciprocal space from numerical calculations (open circles) and effective Hamiltonian model near the K (blue solid line) or K′ (red

solid line) valley. c Berry curvature for pattern A around a K′ valley as a function of δk for different polar angles θ (open symbols). The red solid line

represents the isotropic result from the effective Hamiltonian model. The inset shows the definition of δk and θ in the reciprocal space. d Valley Chern

numbers summarized for pattern A and pattern B
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eigenfrequencies of the LCP and RCP states at the K valley are
calculated and plotted as a function of ΔR in Fig. 1f. For
comparison, the mean radius R= (R1 + R2)/2 is kept constant (R
= 5.55 mm) when we vary ΔR. The evolution of the unit cell
when varying ΔR is visualized in the inset in Fig. 1f, pattern A
corresponding to ΔR= −0.5 mm, the unperturbed pattern
corresponding to ΔR= 0 mm, pattern B corresponding to ΔR
= 0.5 mm. As expected, the LCP and RCP states become non-
degenerated when ΔR becomes non-zero and the degeneracy is
lifted. However, the C3 symmetry is intact under the perturbation;
hence the circular polarizations of the valley states are not
mixed16. More interestingly, the frequency order of the LCP and
RCP states at the K valley is inverted when ΔR crosses zero,
which signals a topological phase transition.

For further analysis, we first study the band structure of pattern
A with ΔR= −0.5 mm, that is, R1= 5.3 mm and R2= 5.8 mm.
Because of the time-reversal symmetry as no magnetic materials
are introduced, the band structures of pattern A and pattern B are
exactly the same, and the guided part of their band structure is
shown in Fig. 2a. As can be seen, the full bandgap indicated by
the yellow shaded region confirms that the breaking of ΓK-mirror
symmetry indeed lifts the degeneracy between the first band and
the second band at the valleys. Further, it is noted that though
pattern A and pattern B share the same band structure, the
circular polarizations of their energy flux at the K and K′ valleys
are exactly opposite (Supplementary Fig. 2) as dictated by the
time-reversal symmetry.

Theoretical modeling and numerical verifications. To model
the topological phase transition from pattern A to pattern B,
which could not be fully investigated from the band structure, we
construct an effective Hamiltonian using k∙p method in the
vicinity of K/K′ valley50,51 (See Supplementary Note 1 for the
first-principal derivation)

HK=K′ δkð Þ¼± vDδkxσx þ vDδkyσy þ vDΔpσz; ð1Þ

in which vD is the group velocity, δk= k − kK/K′ is the displace-
ment of the wave vector k to the K/K′ valley represented by kK/K′

in the reciprocal space, σi (i= x, y, z) are the Pauli matrices acting
on the orbital degree of freedom, and Δp is proportional to the
bandwidth of the bandgap (2vD|Δp|) between the first and second
bands (see Methods section). Using the eigenvector from this
effective Hamiltonian, the local Berry curvature (z component) of
the first band at the K/K′ valley can be analytically calculated (see
Supplementary Note 2)

Ωz;K=K′
δkð Þ ¼ ±

Δp

2 δk2 þ Δp
2

� �3=2
; ð2Þ

in which δk= |δk| is the norm of the displacement in the reci-
procal space, and the result is expectedly localized around the
valleys (δk= 0). In order to consolidate the above analytical
results, we numerically calculate the Berry curvature along the
line ky ¼ 2π=

ffiffiffi

3
p

a
� �

in the reciprocal space that includes a pair of
K and K′ valleys (see Methods section). The numerical result is
shown as open circles in Fig. 2b. We also analytically calculate the
Berry curvature according to Eq. (2) with fitted parameters (vD=

5.42 × 107m s−1 and Δp= −60.68 m−1, see Methods section), and
this result, which is essentially derived from the effective
Hamiltonian model near K/K′ valley, is separately plotted as the
blue and red solid lines in Fig. 2b. Quantitative agreement can be
observed between the numerical calculation and effective
Hamiltonian model. However, the anisotropy of the local Berry
curvature is not embodied in Eq. (2) because Eq. (1) is a lowest-
order effective Hamiltonian that only includes the linear isotropic

terms, and higher order anisotropic terms, such as warping terms,
are neglected.

To evaluate the anisotropy, we numerically calculate the Berry
curvature around a K′ valley along lines in the reciprocal space
with different polar angle θ, and the corresponding results are
plotted as a function of δk in Fig. 2c, represented by differently
colored open symbols. For comparison, we also plot the isotropic
result from the effective Hamiltonian model as the red solid line.
From the results, we could conclude that the anisotropy is indeed
negligible and the Berry curvature calculated from the effective
Hamiltonian is satisfactorily accurate. Therefore, we can safely
calculate the valley Chern numbers of the first band by
integrating the local Berry curvature derived from the effectively
Hamiltonian

CK=K′ ¼ 1

2π

Z

HBZ

ΩK=K′ δkð ÞdS ¼ ±
1

2
sgn Δp

� �

; ð3Þ

in which the integral is carried out in half of a Brillouin zone
(HBZ) surrounding the K/K′ valley. Eq. (3) shows that for each
valley, the valley Chern number is ±1/2 with the sign solely
determined by the sign of Δp. This dependence stems from the
fact that the sign of Δp solely determines the frequency order of
the LCP and RCP states in the band structure, and their
frequency order determines the topological phase of the DSP
crystal. The calculation using Eq. (3) is straightforward since Δp is
negative for pattern A and hence positive for pattern B. The
calculated valley Chern numbers for pattern A and pattern B are
summarized in Fig. 2d. These results indicate that when ΔR is
nonzero, the proposed DSP crystal becomes a valley-Hall PTI
because of the full bandgap and nontrivial valley Chern
numbers16,19.

Bulk-boundary correspondence and valley-polarized topologi-
cal edge states. The above conclusion could be reinforced by the
famous bulk-boundary correspondence, which states that the
valley topological property of a bandgap is determined by the sum
of the valley Chern numbers of the bands below it52. Therefore,
non-trivial edge states should emerge in the first bandgap at a
domain wall between pattern A and pattern B, because the dif-
ference of valley Chern numbers of their first band gives

ΔCK=K′
�

�

�

� ¼ C
K=K′

A � C
K=K′

B

�

�

�

�

�

� ¼ 116,19. We hence combine pattern

A and pattern B to construct a domain wall as shown in Fig. 3a,
which is referred to as AB-type because pattern A is replicated in
the upper domain and pattern B is replicated in the lower
domain. Alternatively, we can also replicate pattern A in the
lower domain and pattern B in the upper domain, which forms a
domain wall referred to as BA-type. It should be emphasized that
an AB-type domain wall cannot be converted to a BA-type
domain wall through SO(3) operations, and vice versa. For con-
venience, we assume that the domain wall is periodic along the x
direction and centered along y= 0.

The band structures of the two domain walls are then
simulated using a supercell consisting of total 25 unit cells in
the y direction (see Methods section) and the simulated band
structure is shown in Fig. 3b, in which the shaded regions
represent the projections of bulk bands. As expected, gapped edge
states are observed in the first bandgap for each domain wall, and
they do not connect the first and second bands because time-
reversal symmetry is preserved here19. The edge states of the AB-
type and BA-type domain walls are represented by the solid and
dashed lines, respectively, and the edge states of the two domain
walls intersect each other at the K/K′ valley at the frequency
7.50 GHz, in the middle of the first bandgap (Supplementary
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Note 3). We use red and blue colors to denote the part of the edge
states near K and K′ valleys, respectively.

It is seen that the propagating directions of an edge state for K
and K′ valleys are exactly opposite, no matter at an AB-type or
BA-type domain wall. This is a manifestation of valley-chirality of
the valley-Hall effect, in other words, the valley-polarized
edge states are locked to one propagating direction in the
absence of inter-valley scattering14,20. For example, at the K
valley, the edge state of the AB-type domain wall is backward,
while at the K′ wall it is forward. This phenomenon could be
predicted by the valley Chern number, as ΔCK

AB ¼ CK
A � CK

B ¼
�1 and ΔCK′

AB ¼ CK′

A � CK′

B ¼ 1. The simulated field maps of Ez
component of edge states at the K′ valley are plotted in Fig. 3c,
and both map show that the field is concentrated along the
domain wall and decays into the bulk, which is a characteristic of
edge states. Further, the blue arrows represent the energy flux and
their directions verify that at the K′ valley, the edge state of AB-
type is forward, while that of BA-type is backward, consistent
with the band structure in Fig. 3b.

We also use three phase-matched dipoles16 to excite the edge
states at domain walls, and the observed one-way propagation in
simulations and experiments confirms the valley chirality of the
edge states (See Supplementary Note 5 and Supplementary Figs. 5
and 6). Then in order to analyze the decay character of the edge
states in the bulk, |Ez| is averaged along the x direction in a unit
cell and plotted as a function of y in Fig. 3d. It can be observed
that the averaged |Ez|, which represents spatial amplitude profiles
of the edge states, symmetrically decay into the bulk with respect
to y= 0.

The analytic form of the edge states can also be directly
deduced from the effective Hamiltonian model, which proves the
bulk-boundary correspondence in our structure, and the decay of

the edge state is predicted to be Ezj j / e�Δp yj j (Supplementary
Note 3). As can be observed in Fig. 3d, the prediction from the
effective Hamiltonian model plotted as the black dashed line
agrees well with the envelopes of the averaged |Ez| from
simulations. Therefore, the symmetric decay of the edge states
should be attributed to the same Δp, or the same decay length in
the bulk, shared by pattern A and pattern B lying on the two sides
of the domain walls.

Observation of valley-dependent transport in a beam splitter.
In order to selectively excite valley-polarized edge states, a
rhombus-shaped beam splitter is designed and its diagram is
shown in Fig. 4a. The beam splitter consists of four domains. The
upper and lower domains are filled with patterns A, while the left
and right domains are filled with patterns B, with each domain
containing 9 × 9 unit cells. Between the domains, two AB-type
domain walls and two BA-type domain walls are formed and they
are denoted by the dashed lines and solid lines, respectively. At
the outer ends of the domain walls, there exist four terminals
labeled as 1–4. The valley-polarized edge states supported at the
four domain walls are indicated in Fig. 4a, in which red or blue
arrows imply K or K′ valley-polarized edge states.

A real sample of the beam splitter is fabricated by etching a 35-
μm thick copper layer on a 1-mm thick F4B substrate using
standard printed circuit board etching techniques. The experi-
ment setup is shown in Fig. 4b, in which the source and detector
are connected to port 1 and port 2 of a vector network analyzer
and the scattering parameter S21 proportional to the Ez
component is measured (see Methods section). The inset of
Fig. 4b shows a top-view photograph of the fabricated sample and
indicates the domain walls and terminals of the sample. The
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measured S21 data are regarded as Ez and the amplitude ratios of
S21 between the outgoing terminals and the incident terminal are
plotted in Fig. 4c, d, in which the source is attached at terminal 1
and terminal 2, respectively. The measured Ez amplitude ratios
are labeled as tij by the outgoing terminal i and incident
terminal j. The unshaded region corresponds to the measured
bandgap of the fabricated DSP crystal samples (See Supplemen-
tary Fig. 3 for measurement of the bandgap). Compared with the
simulated bandgap (7.05–8.12 GHz), the measured bandgap
(7.28–8.42 GHz) is shifted about 3.7% toward higher frequency,
and this small deviation could be attributed to fabrication errors,
such as the errors in thickness and relative permittivity of the
commercial F4B substrates. Nevertheless, these fabrication errors
do not introduce any essential difference in the physics of valley-
dependent transport in our investigated DSP crystal, and only
slightly shifts the frequency of bandgap edges (See Supplementary
Fig. 4 for detailed results).

From the measured amplitude ratios, it can be observed that
the transports of edge states involving opposite valleys (t31 in
Fig. 4c and t42 in Fig. 4d) are heavily suppressed compared with
those involving the same valley in the bandgap. In the bandgap,
the sum of the measured Ez amplitude ratio involving the same
valley is at least 14 dB larger than those involving opposite valleys,
whenever the source is attached at terminal 1 or terminal 2. The
measurements hence indicate that the excited edge states of the
DSP crystal adhere to a valley-dependent topological transport, a
feature of valley-polarized edge states20. The total thickness
(1.035 mm) of the fabricated DSP crystal is smaller than 1/38 of
the wavelength (40 mm) at 7.50 GHz, and this deep-
subwavelength thickness could be further decreased if we use a
dielectric substrate with higher permittivity.

Direct mapping and analysis of topological edge states. Next,
we scan the Ez component on the xy plane above the sample with
the same experiment setup for the purpose of directly visualizing
the edge states and analyzing their valley polarizations. For
reference, simulated field maps of Ez component at 7.50 GHz are
plotted in Fig. 5a, b, in which the blue star denotes the source and
the gray arrows denote the directions of the propagating edge
states. The source is placed at terminal 1 and terminal 2,
respectively, in Fig. 5a, b. We then experimentally scanned the Ez
component in the regions denoted by green dashed rectangles in
Fig. 5a, b. The two regions are both of the area 205 × 220 mm2.
The scanned field maps at 7.50 GHz are plotted in Fig. 5c, d,
respectively (see Supplementary Fig. 7 for scanned field maps at
other frequencies).

The field maps from simulations and experiments show similar
distributions of the electric fields and clearly demonstrate the
suppression of the inter-valley edge states, which has been
indicated in Fig. 4c, d. Spatial Fourier transforms49 are then
performed on the interior regions (denoted by the blue dashed
rectangles in Fig. 5c, d) of the scanned complex Ez component at
7.50 GHz, which excludes the interfaces between DSP crystals and
air. The amplitudes of the spatial Fourier transforms, or so-called
spatial Fourier spectra, are then plotted in Fig. 5e, f, respectively,
where the green solid hexagons denote the FBZs and the yellow
dashed circles denote the 7.50-GHz isofrequency contours of the
light cone.

From the spatial Fourier spectra, it is observed that wherever
the source is attached at terminal 1 or terminal 2, only three
equivalent corners of the FBZ, corresponding to one valley, are
bright in each situation. In contrast, the three dark corners of the
FBZ clearly imply that the opposite valley corresponding to each
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situation is heavily suppressed. The small faint regions on the
light cone (yellow dashed circles) further imply that the non-zero
t31 or t42 in Fig. 4c, d are largely owing to the existence of the
uncoupled EM wave propagating in air, rather than inter-valley
scatterings of the edge states.

We have scanned the background field when there are no
metallic patterns on the F4B substrate and the corresponding
spatial Fourier spectra also show similar faint regions on the light
cone (See Supplementary Note 6 and Supplementary Fig. 8 for
detailed experiment setup and results). The small faint regions
inside the light cone could be attributed to the evanescent states
created by the scatterings of the edge states at the center of the
beam splitter53. The spatial Fourier spectra hence directly confirm
that the excited propagating edge states are fully valley-polarized
and their valley-polarizations totally agree with the diagram in
Fig. 4a. In other words, the spatial Fourier spectra experimentally
confirm that the observed edge states could propagate with
negligible inter-valley scattering along zigzag domain walls, which
has been theoretically predicted and numerically confirmed for
EM waves in previous works16. This feature indicates that we can
exploit the valley-Hall PTIs to design planar topological
waveguides since the suppression of inter-valley scattering will
suppress scattering losses at sharp corners in conventional
waveguides owing to the valley-chirality of the edge states.
Compared with previous counterparts21–23, the topological
waveguide does not require external magnetic fields or three-
dimensional structures for realizing this topological protection,
thus benefiting both manufacturing and applications. Moreover,
the planar geometry and ultrathin thickness of the topological
waveguide will also facilitate its integration with existing
electronic systems.

Topological protection in a Z-shaped waveguide. For proof of
principle, we designed and fabricated a Z-shaped waveguide
featuring two sharp corners using patterns A and patterns B. The
schematic diagram of the waveguide is shown in Fig. 6a, in which
the corner angle α= 60°. The waveguide is essentially a curved
BA-type domain wall and the two ends of the interface are
denoted as terminal 1 and terminal 2. In experiments, the source
is attached at terminal 1 and the Ez amplitude is measured around
terminal 1 and terminal 2. We also measured the Ez amplitude
near two reference terminals 1′ and 2′, which are in fact in the
bulk of patterns A or patterns B. The measured amplitude ratios
show a good contrast between t21 and t1'1 or t2'1 in the bandgap
(Supplementary Fig. 11a), which implies a good confinement of
the edge state.

We then scanned the Ez component above the waveguide with
the same experiment setup used for scanning the beam splitter.
For comparison, the simulated field map of Ez component at
7.50 GHz is shown in Fig. 6b, in which the green dashed rectangle
denotes the region of the area 208 × 220 mm2 scanned in
experiments. The scanned field map at 7.50 GHz is shown in
Fig. 6c, which agrees well with the simulated field map and shows
that there are no observable scattering losses at the bends (See
Supplementary Fig. 9 for scanned field maps at other
frequencies).

We have also measured the transport of the edge state in a
straight topological waveguide also comprised of a BA-type
domain wall and it is observed that the transport behaviors of the
two waveguides are generally similar in the bandgap, but show
remarkable differences in the bulk bands (Supplementary
Fig. 11b). We have also numerically investigated other geometric
configurations in which the corner angle α of the topological
waveguides varies, and no notable scattering losses are observed
in all cases (See Supplementary Fig. 10 for simulated field maps.),
even when the corner becomes incompatible with the triangular
lattice (α= 30°, 90°, 150°)20. The overall results hence confirm
that the corners in the topological waveguides only have weak
influences on transport of the edge states, compared with
conventional non-topological waveguides23.

According to previous theoretical studies, a random arrange-
ment of the unit cells of valley-Hall PTIs only results in a higher-
order perturbation O(Δp

2) between the two circularly polarized
states in K/K′ valley, which is usually much smaller than the first-
order perturbation vDΔp caused by breaking ΓK-mirror symme-
try16. This feature of valley-Hall PTIs leads to the suppression of
scattering losses in our topological waveguides, where the unit
cells (patterns A and patterns B) are arranged to generate a
curved domain wall. Since the underlying mechanism is
independent of specific waves, this suppression of scattering
losses are also observed for acoustic waves in the topological
waveguides made from a valley-Hall STI where the topological
bandgap is similarly introduced by breaking the ΓK-mirror
symmetry of the unit cell20.

Discussion
In summary, we have designed an ultrathin valley-Hall PTI based
on mirror-symmetry-breaking mechanism using a DSP crystal.
Selective excitation and direct observation of valley-polarized
edge states is experimentally demonstrated and confirmed. Our
research suggests that DSP crystals that support non-leaky DSPs
could become an ideal platform for exploring various phenomena
involving topological properties, which are originally proposed in
electronic systems. The intrinsic non-leaky feature of DSPs in an
open environment facilitates the scanning of near fields, which is
difficult for many classical systems, and hence paves the way for
more direct experimental studies on topological phenomena of
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classical waves. Moreover, the proposed valley-Hall PTI could
also be useful in telecommunications because of its ease in large-
scale fabrication using standard techniques, its planar geometry,
and ultrathin thickness without any covers, and its topological
edge states which can travel through sharp corners with negligible
scattering, a critical concern in conventional waveguides. The
one-way propagation of valley-polarized edge states may also be
exploited to design an on-demand flow switch of EM wave.
Finally, we note that though proposed in the microwave regime,
the design principle of the valley-Hall PTI should be valid in
other frequency regimes, such as the terahertz and near-infrared
regimes, and even the optical regime because the basic mirror-
symmetry-breaking mechanism does not rely on particular
material properties.

Methods
Effective Hamiltonian model. In the effective Hamiltonian,
HK=K′ δkð Þ¼± vDδkxσx þ vDδkyσy þ vDΔpσz , the first two terms describe the gap-
less Dirac cones at the K/K′ valley shown in Fig. 1b, while the third term comes
from the geometric perturbation that breaks the ΓK-mirror symmetry. The third
term is also called the mass term20, which lifts the degeneracy at valleys and opens
a full band gap with bandwidth 2vD|Δp| shown in Fig. 2a. Here vD is the group
velocity, δk= k − kK/K′ is the displacement of the wave vector k to the K/K′ valley
(kK/K′), and σi (i = x, y, z) are Pauli matrices acting on the orbital degree of freedom
comprising the first and second bands at the K/K′ valley. Since the circular
polarizations of the first and second bands at the K/K′ valley are exactly opposite as
aforementioned, the two circularly polarized states are represented as AR= [1; 0],
AL= [0; 1] at the K valley and AR= [0; 1], AL= [1; 0] at the K′ valley16, respec-
tively. By fitting the dispersions around the valleys calculated from the effective
Hamiltonian to the numerical band structures shown in Figs. 1b, 2a, it is found that
for pattern A, the parameters vD= 5.42 × 107m s−1 and Δp= −60.68 m−1, both
quantitatively agreeing with the values obtained from the first-principal derivation
and the deviation is smaller than 1% (Supplementary Note 1). Likewise, for pattern
B, vD= 5.42 × 107m s−1 and Δp= 60.68 m−1.

Simulations. Throughout this paper, all full-wave simulations (or numerical cal-
culations) are performed using commercial finite element method software
COMSOL Multiphysics, in which the module EM waves, frequency domain (emw)
is used. When calculating the bulk (edge) band structure, Floquet periodic
boundary conditions are imposed on periodic surfaces of the unit cell (supercell).
Second order scattering boundary conditions for plane waves are used to terminate
the simulation domain. In all simulations, the maximum scale of the mesh is
smaller than 1/20 of the wavelength (40 mm) of 7.50-GHz EM wave in air. All xy-
plane field maps are recorded at the plane 1 mm above the metallic surface.

Numerical calculations of berry curvature. When numerically calculating Berry
curvature of a point in the reciprocal space, we first integrate Berry connection
along an infinitesimal square contour around the point. Then, according to Stokes’
theorem, the line integral is equal to the surface integral of Berry curvature over the
infinitesimal square that includes the point54. Hence, the line integral divided by
the area of the infinitesimal square is exactly the Berry curvature of the point. In
real numerical calculations, the side length of the square contour is chosen to be δk
= 1.0 m−1, and the path integrals are discretized into summations. Further details
are given in Supplementary Note 4 and Supplementary Fig. 12.

Experiment setup. In experiments, two monopole antennas are used to act as the
source and the detector, and the sample is supported by a piece of foam that is

mounted on a stepper motor-driven stage. A vector network analyzer (VNA,
Agilent N5232A) is employed throughout the measurements and the source con-
nected to port 1 of the VNA is closely attached to the surface of the sample to excite
DSPs, while the detector connected to port 2 of the VNA are placed ~1 mm above
the metallic surface of the sample to measure the Ez component of the electric field.
In measurements, the scattering parameter S21 is recorded, which is proportional to
the Ez component of the electric field. When scanning the Ez component above the
sample, the resolution in the xy plane is 1 × 1 mm2.

Data availability. The data which support the figures and other findings within
this paper are available from the corresponding authors upon request.
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