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Abstract. The separation of multiple PET tracers within an overlapped
scan based on intrinsic difference of pharmacokinetics is challenging due
to the limited SNR of PET measurements and high complexity of fitting
models. This study developed a novel direct parametric reconstruction
method by integrating a multi-tracer model with reduced number of
fitting parameters into image reconstruction. To incorporate the multi-
tracer model, we adopted EM surrogate functions for the optimization
of the penalized log-likelihood. The algorithm was validated on realis-
tic simulation phantoms and real rapid [18F]FDG and [18F]FLT PET
imaging of mice with lymphoma mouse tumor. Both results have been
compared with conventional methods and demonstrated evident improve-
ments for the separation of multiple tracers.

1 Introduction

The complexity of tumor microenvironment reflects multiple physiological fea-
tures, such as glycolysis, angiogenesis, proliferation, and hypoxia. These prop-
erties can be captured by positron-emission tomography (PET) imaging with
different radiolabeled metabolites (tracers). The clinical value of combining mul-
tiple tracers in oncological detection, staging, localization and the consequent
individualization of cancer therapy has been confirmed in several clinical stud-
ies [1]. For example, the combination of [18F]FDG and [18F]FLT has significantly
improved the sensitivity and specificity in the diagnosis of lung nodules [2].

However, radioactive signals of different PET tracers cannot be physically
differentiated [3] and the typical practice of multi-tracer PET imaging needs to
wait for the full decay and clearance of each tracer, leading to scans in consecutive
days. This imposes additional dose due to multiple CT scans on PET/CT as well
as increasing labor and financial costs. The possible physiological and anatomical
discrepancy due to separate scans may even reduce the expected clinical value.
These limitations hamper a wider application of multi-tracer imaging.

Rapid multi-tracer PET imaging aims to differentiate physically identical sig-
nals of different tracers based on the intrinsic difference of their pharmacokinet-
ics. This enables the acquisition of multiple tracers with overlaps. In practice,
tracers are injected with a short interval of 10-15 mins and activities of different
tracers are separated by fitting the superposed pharmacokinetic models of the
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corresponding tracers [4,5]. However, this method suffers from the low signal-
to-noise ratio (SNR) of the measured time-activity curves (TACs) and the high
complexity of multi-tracer model. The poor quality of model fitting makes the
separation of tracers unstable and failure prone. Previous efforts have been made
to improve image reconstruction for better kinetic estimation [6], or to reduce
the number of fitting parameters for improving stability [1,7].

One way to improve the pharmacokinetic estimation is to integrate the model
fitting into reconstruction [8,9]. Direct parametric image reconstruction (DPIR)
methods utilize the complete spatial and temporal information and highly im-
proves SNR for reconstruction as well as kinetic model fitting. However, conven-
tional DPIR is limited to simple models due to the increased complexity of the
objective function for nonlinear model with high parameter dimension.

In this study, we propose a novel DPIR algorithm to reliably separate multi-
tracer signals within a rapid overlapped scan. This is achieved by integrating
a multi-tracer model with reduced number of parameters into reconstruction.
EM surrogate functions are employed for the optimization of the penalized log-
likelihood [10,11]. By incorporating the spatiotemporal consistency in model
fitting, this method results in reconstructed parametric images with higher SNR
and less statistical errors.We evaluated our algorithm both in realistic simulation
phantoms and micro-PET scans of mice with lymphoma tumor using [18F]FDG
and [18F]FLT. The results have been compared with conventional indirect meth-
ods and demonstrated improved quality for the separation of multiple tracers.

2 Methods

2.1 Multi-tracer Kinetic Model

A measured TAC C(t) of an image voxel for a dynamic multi-tracer PET scan de-
scribes the temporal development of the mixed uptakes of L investigated tracers.
It can be modeled as superposition of the L pharmacokinetic models [12]:

Ĉ(t) = θBC̄P +

L∑

l=1

[θPlC̃Pl + θalSal(t; νal, CPl) + θblSbl(t; νal, νbl, CPl)] (1)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

C̄P �
∑L

l=1 CPl

C̃Pl(t) �
∫ t

0
e−(t−τ)CPl(τ)dτ

Sal(t; νa, CP (t)) �
∫ t

0
e−νal(t−τ)CPl(τ)dτ

Sbl(t; νa, νb, CP (t)) �
∫ t

0
e−νbl(t−τ) − e−νal(t−τ)CPl(τ)dτ

(2)

where [θB, θPl, θal, θbl]
T and [νal, νbl]

T are intermediate parameters of tracer l;
CPl(t) is the arterial input function (AIF); Intermediate parameters are combi-
nations of conventional kinetic constants kl = [K1l, k2l, k3l, k4l, θB]

T . θB is the
fractional blood volume. The modeled Ĉ(t) can be expressed as:

Ĉ(t) = θ
T
y(ν) (3)
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where θ denotes the linear parameters [θB, θP1, θa1, θb1, · · · , θPL, θaL, θbL]
T and

y represents the nonlinear parts [C̄P , C̃P1, Sa1, Sb1, · · · , C̃PL, SaL, SbL]
T , which

is a function of nonlinear parameters ν = [νa1, νb1, · · · , νaL, νbL] and AIFs;
Reduced parameter space [7] can be then formulated through calculating the

weighted sum square error (WSSE):

WSSE =

Nt∑

t=1

wt(Ct − Ĉt)
2 (4)

where Nt is the number of acquisition time points; wt denotes the weights of
measurements [12]. To minimize Eqn. 4, we set ∂WSSE/∂θ = 0 and derive:

Nt∑

t
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⎢
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(5)
where M ∈ R

(3L+1)×(3L+1) is a symmetric matrix.
Substituting the linear parameters θ in Eqn. 3 with M−1x, the multi-tracer

model Ĉ(t) can be reduced with only non-linear parameters ν:

Ĉ = [M−1x]Ty (6)

Applying Eqn. 6 back in Eqn. 4, ν can be estimated by minimizing WSSE
using numerical algorithms. θ is calculated analytically and the original kinetic
parameters k can be obtained from θ and ν [12].

2.2 Direct Parametric Reconstruction Using Optimization Transfer

The expectation of projected PET measurements yk in the kth frame of sinogram
can be expressed as an affine transform of the current image xk(ν):

ȳk(ν) = Pxk(ν) + rk + sk (7)

P ∈ R
Ni×Nj is the system matrix where pi,j measures the probability that

an event emits from the jth voxel being detected by the ith detector pair; Nj

and Ni the total number of image voxels and line-of-responses (LORs); r and s

are randoms and scatters respectively. The relationship between image intensity
xk(νj) and activity concentration C(t;νj) of voxel j at frame k is given by:

xk(νj) =

∫ t,e

t,s

C(τ,νj)dτ (8)

where t, s and t, e are the start and end times of frame k.
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To estimate the parametric images ν from y directly, we are seeking the ν̂

that maximizes the following penalized log-likelihood function Φ(ν):

ν̂ = argmax
ν

Φ(ν) = argmax
ν

{L(y|ν)− βU(ν)} (9)

L(y|ν) =
Nk∑

k=1

Ni∑

i=1

yik log ȳik(ν)− ȳik(ν) (10)

where L(y|ν) is the log-likelihood function with respect to ν [8]; Nk the total
number of time frames; U(ν) the smoothness penalty term and β the regular-
ization parameter controlling the tradeoff between image resolution and noise.
Here a common quadratic penalty is used as described in [11].

To include multi-tracer model Eqn. 6 into reconstruction, maximization of
Eqn. 9 is achieved by in each iteration optimizing Expectation Maximization
(EM) surrogate functions QL, QU designed for L(y|ν) and U(ν) [10,11]:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QL(ν;ν
(n)) =

∑Nj

j=1

∑Ni

i=1 pij

(
∑Nk

k=1 x̂
(n)
jk log xk(νj)− xk(νj)

)

QU (ν;ν
(n)) =

1

2

∑Nk

k=1

∑Nj

j=1

∑

l∈Nj
αjl

(

x̂
reg,(n)
jk − xk(νj)

)2

x̂
(n)
jk =

xk(ν
(n)
j )

∑Ni

i=1 pij

∑Ni

i=1 pij
yik

ȳik(ν(n))

x̂
reg,(n)
jk =

1

2
∑

l∈Nj
αjl

∑

l∈Nj
αjl

(

xk(ν
(n)
j ) + xk(ν

(n)
l )

)

(11)

where Nj is the set of neighborhood voxels centering around voxel j; αjl the
weighting factors set to be the inverse of distance between voxels j and l; x̂(n) and
x̂reg,(n) are intermediate reconstructed images and smoothed images respectively
at the nth iteration.

The overall surrogate function is then Q � QL−βQU . Thus the maximization
of Eqn. 9 is transferred to maximizeQ(ν;ν(n)). As bothQL andQU are separable
for voxels, the maximization can be further transferred into a voxel-wise scale:

ν
(n+1)
j = argmax

νj

q(νj ;ν
(n)
j ) = argmax

νj

qL(νj ;ν
(n)
j )− βqU (νj ;ν

(n)
j ) (12)

Eqn. 12 resembles a 1D curve fitting problem. Here we used the modified
Levenberg-Marquardt (LM) algorithm as described in [11] and combined with
the Hooke and Jeeves pattern search.

Overall, the proposed algorithm consists of three main steps. Given ν
(0), the

dynamic dual-tracer images x is initialized in Eqn. 8. Each iteration consists of a
frame-wise reconstruction to obtain QL, a frame-wise regularization to calculate
QU in case of β > 0, and a voxel-wise fitting step to update ν. As loops end,
linear parameters θ are calculated from Eqn. 5 analytically. Separated dynamic
images of each tracer are retrieved from corresponding pharmacokinetic models.
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3 Results

To validate the algorithm, a realistic phantom was generated using computa-
tional simulations following the procedure in [11]. The combination of [18F]FDG
and [18F]FET were simulated with an interval of 15 mins for 45 minutes of
65 frames on the Zubal brain phantom, which includes gray matter (2 types),
white matter, caudate, putamen, skin, skull, thalamus and an additional tumor.
The pharmacokinetic parameters of [18F]FDG and [18F]FET were derived from
clinic data. To test the separation of tracers, exclusive uptake was assumed on
the tumor area and therefore there is only contrast in FET and the tumor is
not differentiable in FDG. The PET measurements were simulated based on the
geometry of real clinical scanner (FWHM 4.0mm) with attenuation, scattering
and random effects. Poisson noise was added to each generated sinogram bin.

Fig. 1. The results of the separated tracer uptakes and the kinetic parametric images
using the conventional and the proposed method on a phantom

Fifty datasets were simulated with different noise realizations. The separation
of two tracers were tested with the proposed algorithm without regularization
and the conventional indirect method (kinetic modeling after image reconstruc-
tion). For both methods, 128 iterations were used for EM reconstruction to
keep the balance between bias and noise. For the conventional method, kinetic
parameters were estimated using nonlinear least square regression. For fair com-
parisons, uniform weights were assigned here for the proposed method. Initial
values of all parameters in both methods were set to 0.001 for all voxels. The
lower and upper bounds were set to 0 and 2.0 respectively. The last frame (t=45
min) of the overlapped and separated tracer uptake maps as well as the para-
metric images were compared with the ground truth (GT) as shown in Fig. 1.
The conventional method was able to recover some voxels of single tracers but
it was in general unstable and noisy. With the proposed method, parametric
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images and individual tracer uptakes were well recovered with relative less mean
bias (B2) and variations over all datasets. Tumor is clearly visible in the recov-
ered FET images and no contrast in FDG. Although k3 is sensitive to noise, the
new method has better result than the conventional method. Overall, the new
algorithm has reduced up to 87.8% variance and 85.7% bias for the separated
tracer uptake maps and up to 97.8% variance and 98.4% bias for the parametric
images.

Fig. 2. The fitting results of the conventional (left) and the proposed method (right)
for an example TAC in the tumor area

The effect of the regularization term β of the proposed algorithm was further
evaluated on the phantom. The total square bias and variance of intermediate
parameter ν with β from 0 to 4e − 1 were computed and the variance-bias2

curves were plotted in Fig. 3. An optimized β = 1e − 1 was chosen for the
tradeoff between bias and variance for νFET . The results were shown in Fig. 1.
With the regularization, the variance can be further reduced up to 1.1% for the
separated tracer uptake and 10.1% for the parametric images.

The conventional method failed to separate the tracer uptake in the tumor
area. An example TAC is shown in Fig. 2. The left plot demonstrates the fitting
result of the conventional method. It falsely ended up with a zero uptake for
FET, which conflicts with the expectation. The right plot shows the result for the
proposed algorithm, the temporal information of each tracer were well recovered
and reflected the true designed TACs.

We further evaluated the proposed algorithm with the real micro-PET data.
Four mice with SUDHL-1 tumor model were scanned for 70 min after injection
of approximately 6 MBq [18F]FDG and [18F]FLT with an interval of 10 min. The
dual-tracer AIF was derived from left ventricle data at early time and 2 venous
blood samples in the end of the scan [13]. Two single tracer AIFs were separated
by fitting the combined AIF models [14]. This lymphoma tumor model has been
reported to have higher specificity for FLT [15]. Thus the FLT image has higher
tumor to muscle contrast than FDG images. The better consistency of the results
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Fig. 3. Total squared bias v.s. variance tradeoff of ν images

Fig. 4. An example of the results of the conventional and the proposed methods for a
mouse with lymphoma tumor model scanned using [18F]FDG and [18F]FLT PET

of the new method (an example shown in Fig. 4) with the know properties of
the tumor model confirms further that the new method can separate the two
tracers better.

4 Conclusion

This study proposed a novel direct rapid multi-tracer PET reconstruction algo-
rithm which can robustly retrieve single tracer images from overlapped acquisi-
tions. In particular, we integrated a multi-tracer model with reduced number of
parameters into parametric image reconstruction and incorporate EM surrogate
functions for the optimization of the penalized log-likelihood. Both phantom and
real data has proved that this new algorithm can separate the overlapped sig-
nals significantly better than the conventional methods. Further improvements
may be done by smoothing noisy TAC for better model fitting concerning low
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measurement statistics of dynamic PET acquisitions. The reliable and less noisy
separation of the overlapped PET signal using the proposed method demon-
strated a great potential to promote the application of multi-tracer in clinical
practice, which could influence the state of the art of the individualized medicine.
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