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Abstract: Atomically thin magnets are the key element to build up spintronics based on two-

dimensional materials. The surface nature of two-dimensional ferromagnet opens up opportunities 

to improve the device performance efficiently. Here, we report the intrinsic ferromagnetism in 

atomically thin monolayer CrBr3, directly probed by polarization resolved magneto-

photoluminescence. The spontaneous magnetization persists in monolayer CrBr3 with a Curie 

temperature of 34 K. The development of magnons by the thermal excitation is in line with the 

spin-wave theory. We attribute the layer-number dependent hysteresis loops in thick layers to the 
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magnetic domain structures. As a stable monolayer material in air, CrBr3 provides a convenient 

platform for fundamental physics and pushes the potential applications of the two-dimensional 

ferromagnetism. 

 

 

Ferromagnetism in atomically thin magnet has been studied in a variety of van der Waals 

materials 1, 2, including metallic Fe3GeTe2 3, 4, semiconducting Cr2Ge2Te6 5 and insulating CrI3 6. 

Even though the long-range magnetic order is highly suppressed by the thermal excitation of 

magnons in a two-dimensional (2D) magnet at finite temperature 7, the magnetic anisotropy opens 

an energy gap in the magnon spectra and therefore, protects the ferromagnetism in two dimensions. 

The magnon-magnon interaction in such van der Waals ferromagnets also provides a platform to 

study the fundamental topological spin excitation, for example, Dirac magnon 8 and topological 

magnon surface state 9. Moreover, in contrast to the three-dimensional ferromagnet, magnetic 2D 

materials show tunable magnetic properties due to their surface nature 1-3, 10-13. Particularly the 

layer-number dependent 4, 6, 14 and gate-tunable magnetism 3, 10-13 opens a new way to build 

spintronic devices with high accuracy and efficiency 15-20.  

Among various van der Waals ferromagnets, CrBr3 is an interesting platform to study the 

magnetism in low dimensions and light matter interactions in magnetic materials. The neutron 

scattering has revealed the Dirac points in bulk CrBr3 21, 22, formed by acoustic and optical spin-

wave modes, where both intralayer and interlayer exchange interactions play an important role. 

On the other hand, optical absorption spectra in CrBr3 have shown the out-of-plane magnetic field 

dependence 23, suggesting potential applications in optoelectronics. However, magnetism in 

atomically thin CrBr3, especially in monolayer limit, is still unknown.  
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In this work, we demonstrate the ferromagnetism in 2D van der Waals CrBr3. We show the 

spontaneous magnetization in monolayer CrBr3, probed by d-d transition induced 

photoluminescence (PL) with a polarization-resolved optical confocal setup. The magnon 

excitation is limited at the low temperature region, but shows an exponential development as 

further increasing the temperature, which is in line with the spin-wave theory. It is worthy to 

mention that CrBr3 is much more stable in air as compared to CrI3 as reported previously 6, 24, 

providing a convenient platform for magnetic material applications. Our study also shows the 

ferromagnetic interlayer coupling and magnetic domain induced hysteresis loops in multilayers, 

providing an opportunity to use magnetic domains as the information carrier in a van der Waals 

magnet.  

The atomic structure of monolayer CrBr3 is shown in Figure 1a. Cr3+ ions are arranged in a 

honeycomb lattice, and the Cr-Br-Cr bond forms an angle of 95.1 degrees, suggesting that 

ferromagnetic superexchange interaction is energetically favorable. To study the magnetism in two 

dimensions, CrBr3 flakes were exfoliated on a quartz substrate as shown in the insert of Figure 1b. 

Although in previous studies, reflection and absorption spectra have indicated the presence of 4T2 

parity forbidden d-d transition 23 as shown in Figure S1, we first experimentally uncovered the d-

d transition induced PL at 1.35 eV (Figure 1b), excited by a continuous wave (CW) laser at 1.77 

eV. All measurements were performed at 2.7 K, unless otherwise specified. We studied the laser 

power dependent PL under the same polarization configuration (Figure S2). The PL intensity 

scales linearly with the laser power. This linear dependence rules out the possibility that the PL 

arises from the defect-bond excitons whose PL intensity trends to saturate while increasing the 

laser power 25. We further examined the PL spectra for various layer-thicknesses as shown in 

Figure 1b. The PL peak energy almost doesn’t change for the thickness ranging from 6 to 73 nm, 
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which suggests a localized transition, in agreement with the d-d transition as an inter-atom 

transition. According to Laporte rule, d-d transition is parity forbidden. To relax the Laporte rule, 

symmetry breaking must be introduced, such as spin-orbit coupling, Jahn-Teller distortion and the 

formation of odd-parity phonons 26. The broad PL linewidth serves as the evidence for the strong 

vibrionic coupling, resulting in photon sidebands.  

The d-d transition in the out-of-plane magnetic field shows circularly selective PL. Figure 1d 

shows the PL in -0.5 T and 0.5 T with 𝜎+ 𝜎+ and 𝜎− 𝜎− excitation-collection configurations, 

where 𝜎+ (𝜎− ) represents the left (right) circularly polarized light. The PL at ±0.5 T shows 

opposite helicity, indicating that the spin of electrons in CrBr3 is coupled to the circularly polarized 

light.  

The thickness of monolayer CrBr3 is around 1 nm, determined by atomic force microscope 

(AFM) (Figure S3). To precisely detect the magneto-PL in a single magnetic domain, the PL 

emission was collected by a single-mode optical fiber and detected by an avalanche photodiode 

(APD). Figure 2a shows the polarization as a function of the magnetic field under 𝜎+𝜎+, 𝜎−𝜎−, 𝜎+𝜎−, and 𝜎−𝜎+ configurations. The polarization calculated by 𝜌 =  𝐼−(𝐼↑+𝐼↓)/2(𝐼↑+𝐼↓)/2  is proportional to 

the magnetic moments, where 𝐼 is the PL intensity recorded by APD while sweeping the magnetic 

field, and 𝐼↑ (𝐼↓) is the PL intensity for fully spin up (down) states. The green symbols show the 

evolution of the PL intensity with the magnetic field sweeping from 0.1 to -0.1 T, and the orange 

symbols show the time reversal process.  

We first discuss the polarization resolved PL as a function of the magnetic field. There are three 

features in the Figure 2a: (i) The polarization abruptly increases or decreases within a narrow field 

range; (ii) Except the points near the transition field, the polarization is almost independent to the 

magnetic field; (iii) The hysteresis loops have the same shape with the same excitation polarization, 
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and it is independent to the polarization of the collection. We attribute these observations to the 

circularly selective absorption as shown in Figure 2b. Taking 𝜎+𝜎+ configuration as an example, 

at 0.1 T the electrons with up-spin selectively absorb the 𝜎+ light and are excited to the upper 

states. As the magnetic field is swept to a negatively large point, thereby flipping the spin, less 

electrons can be excited by the 𝜎+ light. Therefore, the polarization suddenly drops. And in the 

time reversal process, the polarization shows a rapid increase at a certain field. The collection-

polarization independent hysteresis loop is assigned to the depolarization of electrons at the excited 

state due to the electron-phonon scattering. This is in consistence with the strong vibronic coupling 

in the d-d transition. This electric dipole transition provides a way to optically probe the magnetic 

state of the 2D CrBr3 26. 

The non-zero polarization at zero magnetic field (0 T) indicates the presence of spontaneous 

magnetization in monolayer CrBr3. To further confirm the intrinsic ferromagnetism, we measured 

the hysteresis loops with various laser powers ranging from 10 to 100 𝜇W (Figure S4). Even 

though the APD count increases with the excitation power, the polarization as a function of the 

magnetic field doesn’t change much. The laser power independent hysteresis loops rule out the 

effect of thermal excitation on the magnetization. We also studied the magneto-optical Kerr effect 

(MOKE) in the monolayer CrBr3 on the Si/SiO substrate as shown in Figure S5(a), which agrees 

with magnetic hysteresis loops probed by PL.  

The ferromagnetism in monolayer results from the Cr-Br-Cr superexchange interaction. In 

monolayer CrBr3, six Cr3+ ions form a honeycomb structure and each Cr3+ ion is surrounded by 

six Br-, forming an octahedral environment (Figure 1a). In this crystal field, the degeneracy of d 

orbit of Cr atom is lifted and the d level splits into t2g and eg bands. Three spin polarized electrons 

occupy the t2g band according to Hund’s first rule. Therefore, the magnetic moment each Cr3+ ion 
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yields is ~3𝜇𝐵 , corresponding to the polarization of 0.175 in monolayer case. The magnetic 

moments of monolayer CrBr3 align in the out-of-plane direction. The XXZ spin Hamiltonian 27 is 

adopted to describe the 2D ferromagnet: 𝐻𝑠𝑝𝑖𝑛 =  −𝐴 ∑ (𝑆𝑖𝑧)2 − 𝐽 ∑ 𝑆𝑖𝑆𝑗𝑖,𝑗 − 𝜆 ∑ 𝑆𝑖𝑧𝑖,𝑗 𝑆𝑗𝑧 ,𝑖  where 

A is the single-ion anisotropy term, J is the Heisenberg exchange term and 𝜆 is the anisotropic 

exchange term. The quenched d-orbit results in a negligible single-ion anisotropy term and thereby 

A is almost zero. The angle of the Cr-Br-Cr bond is around 90 degrees, which favors a 

ferromagnetic intralayer coupling and J > 0. The out-of-plane magnetic anisotropy corresponds to 𝜆 > 0.  

The Curie temperature was experimentally determined by measuring the hysteresis loops at 

various temperatures (Figure 2c). When the temperature was increased above the Curie 

temperature at 34 K, a ferromagnetism-to-paramagnetism phase transition occurred. The TC of 34 

K is only slightly lower than that of the bulk (i.e. 37 K). Figure 3 shows the polarization as a 

function of the temperature. The excitation of magnon by thermal fluctuation degrades the long-

range magnetic order. We describe the reduced polarization as increasing the temperature within 

a spin-wave theory 27. In an isotropic 2D spin system, the gapless magnon spectra leads to the 

absence of the spontaneous magnetization at finite temperature. Nevertheless, ∆0, the spin wave 

gap opens by the anisotropic energy, protects the long-range magnetic order, which plays an 

essential role in the 2D ferromagnet. The magnetization in units of ℏ per Cr atom as a function of 

the temperature is described as: 𝑀(T) = 𝑆 − 𝑘𝐵𝑇2𝜋𝐽𝑆 𝑒−∆0/𝑘𝐵𝑇, where S = 3/2, and 𝑘𝐵 is Boltzmann 

constant 27. The polarization 𝜌 is proportional to the M: 𝜌(𝑇)~𝑆 − 𝑘𝐵𝑇2𝜋𝐽𝑆 𝑒−∆0/𝑘𝐵𝑇. The solid line in 

Figure 3 shows the fitting results with this model, in line with our experimental data. In the low 

temperature region (< 15K), the polarization weakly depends on the temperature. Further 
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increasing the temperature leads to an exponential development of magnons and the polarization 

rapidly decreases until vanishing at the TC.  

Next, we study the layer-layer interaction in 2D van der Waals CrBr3. The interlayer coupling 

is revealed by a bilayer CrBr3 with the thickness of about 2 nm, determined by AFM (Figure S3). 

Distinct from bilayer CrI3, whose interlayer coupling at the ground states was antiferromagnetic 6, 

bilayer CrBr3 preserves ferromagnetism as shown in Figure 4(a), suggesting a ferromagnetic 

interlayer coupling. Note that the transition field for bilayer CrBr3 from fully spin up states to fully 

spin down states, is almost one order smaller than that for bilayer CrI3 6. This is in line with the 

different anisotropic energies of these two ferromagnetic insulators. 

Finally, we discuss the magnetism in multilayer CrBr3. Figure 4b shows the polarization as a 

function of the magnetic field for 8, 54 and 73 nm samples. Different from the thin sample, whose 

rectangular hysteresis loops indicate single-domain and fully out-of-plane anisotropic magnetic 

ordering, the polarization of thicker CrBr3 samples vanishes at 0 T. As the magnetic field was 

increased, the polarization became saturated after reaching a transition field, being similar to that 

of previously reported multilayer Fe3GeTe2 4 and Co/Pt thin films 28. We attribute this magnetic 

behavior to the formation of strip- and honeycomb-like magnetic domain structures as reported in 

Ref 29, which is beyond the resolution of the PL setup. The spot size of our excitation laser is about 

1 𝜇m, and thereby the polarization is contributed by several domains. As a result, the polarization 

at 0 T vanishes and shows a gradual evolution as increasing the magnetic field, and abruptly 

saturates at a certain magnetic field. The possible reason for forming this kind of domains might 

be the low out-of-plane anisotropic energy in thick CrBr3 30. Even in a very low temperature (2.5K), 

the ratio of out-of-plane anisotropy to the exchange interaction is strongly dependent on the 

dimension. The enhanced out-of-plane anisotropy in thin layers might result from a reduced 
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screening effect 24. Even though we could expect a higher TC with a larger out-of-plane anisotropy, 

the competition of the increased thermal fluctuation in thin layers eventually makes the TC slightly 

lower than that of bulk. 

To conclude, we demonstrate ferromagnetism in atomically thin CrBr3 through polarization 

resolved magneto-PL. In monolayer CrBr3, a rectangular hysteresis loop shows the spontaneous 

magnetization persists despite the thermal fluctuation. The polarization vanishes at 34 K due to 

the excitation of magnons. We also reveal the ferromagnetic interlayer coupling in a bilayer. 

Finally, the hysteresis loops of thick layers are assigned to the formation of strip- and honeycomb- 

like magnetic domains, whose magnetization is strongly dependent on the layer number of CrBr3. 

Our study uncovers the magnetism in 2D CrBr3 and might pave a way for novel opto-electronic 

and spintronic devices. 

 

Methods 

We fabricated atomically thin CrBr3 layers by mechanical exfoliation on a quartz substrate in 

an argon-filled glovebox. The thickness of the sample was firstly estimated by optical contrast and 

then confirmed by AFM. After fabrication, the sample was load into a magneto-cryostat 

(Cryomagnetics close-cycle cryostat) with an out-of-plane magnetic field ranging from -7 T to 7 

T. We use a home-made fiber based confocal microscope to perform the polarization resolved PL. 

Polarizers and waveplates are equipped on the excitation and collection arms to selectively excite 

and detect circularly polarized light. The PL spectra are obtained by a spectrometer (Andor 

Shamrock) with a CCD detector. To measure the hysteresis loops, the PL emission was collected 

by a single-mode fiber and detected by an APD.  
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Figures: 

 

 

Figure 1. Crystal structure and PL of two-dimensional van der Waals CrBr3. a, Top view 

and side view of the atomic structure of monolayer CrBr3. The Cr3+ ion was surrounded by six 

Br- ions, forming an octahedral environment. The Cr-Br-Cr bond forms an angle of 95.1 degrees. 

b, PL spectra for CrBr3 with various thickness. Insert: Optical image of the exfoliated 2D CrBr3 

on a quartz substrate. The scale bar is 15 𝜇m. c, Polarization resolved PL for monolayer CrBr3 

at ±0.5 T. All PL data were fitted by Gaussian functions. 
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Figure 2. Ferromagnetism in monolayer CrBr3. a, Polarization as a function of the magnetic 

field. The orange symbols show the polarization as the magnetic field is swept from -0.1 T to 

0.1 T and the green symbols show the polarization as the magnetic field is swept from 0.1 T to 

-0.1 T. The none-zero polarization at zero magnetic field indicates the spontaneous 

magnetization. 𝜎+(𝜎−) is the left (right) circularly polarized light. b, Origin of the magnetic 

field dependent PL. The helicity of the absorption ties to the spin of the electrons at the ground 

states. The unbalance of the spin-up and spin-down states makes a higher 𝜎+/𝜎− absorption and 

eventually leads to the high/low PL emission. Due to the phonon scattering at the excited state, 

the output light is depolarized (𝜋). c, Hysteresis loops at various temperature. The hysteresis 

loop disappears as the temperature was increased above the Curie temperature TC at 34 K, slight 

lower than that of the bulk crystal.  
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Figure 3. The polarization as a function of temperature for monolayer CrBr3. The data is 

fitted by 𝜌(𝑇)~𝑆 − 𝑘𝐵𝑇2𝜋𝐽𝑆 𝑒−∆0/𝑘𝐵𝑇. Insert: Spin wave excited by the thermal fluctuation, which 

accounts for the decay of the polarization as increasing the temperature. 
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Figure 4. Layer dependent magnetism in CrBr3. a. The hysteresis loop for bilayer CrBr3. A 

non-zero polarization at zero magnetic field indicates a ferromagnetic interlayer coupling. b. 

The polarization as a function of the magnetic field for 8 nm, 54 nm and 73 nm CrBr3. The 

formation of the strip- or honeycomb-like magnetic domains may account for the layer 

dependent magnetism in CrBr3. 
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S1. The origin of the photoluminescence 

 

Figure S1. Configurational coordinate diagram for the 4A2 to 4T2 d-d transition. We 

assign the photoluminescence (PL) at 1.35 eV to the d-d transition in CrBr3. We note the 

Ref1 reported the absorption peak at 1.67 eV, which was assigned to the absorption to the 

4T2 state at 1.5 K. A Stokes shift of 320 meV between absorption and PL peaks is due to the 

strong electron-lattice coupling. 
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S2. Dependence of photoluminescence on the excitation power  

 

 

Figure S2. PL intensity as a function of the excitation laser power with a linear fitting. 

The PL intensity as a function of the laser power for monolayer is used to rule out the effect 

of defect on PL. The PL emission was collected by a single-mode fibre and detected by the 

APD. The linear dependence indicates that the PL doesn’t arise from the defect-bound 

excitons 2, whose PL intensity trends to saturate at a high excitation power. 
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S3. AFM images for monolayer and bilayer CrBr3 

 

Figure S3. AFM images for monolayer and bilayer CrBr3. The thickness of the monolayer 

and bilayer was first examined by the optical contrast and confirmed by AFM. AFM images 

show the thicknesses of monolayer and bilayer are around 1 and 2 nm, respectively. 
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S4. Hysteresis loops at various excitation laser powers 

 

Figure S4. Hysteresis loops at various excitation laser powers. The left column shows the 

APD count as a function of the magnetic field under 𝜎+𝜎+ configuration, and the left column 

shows the calculated polarization as a function of the magnetic field. By studying the laser 

power dependent hysteresis loops, we rule out the effect of thermal excitation on magnetism. 
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Furthermore, the polarization is almost independent to the laser power, indicating that the 

defined polarization is proportional to the magnetization. 
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S5. Magneto-optical Kerr effect (MOKE) for CrBr3 

 

Figure S5. MOKE for two-dimensional CrBr3. To further confirm the ferromagnetism in 

two-dimensional CrBr3, we also performed MOKE measurements. (a), (b) and (c) show MOKE 

for CrBr3 with various thickness. CrBr3 flakes were exfoliated on Si/SiO2 substrates and then 

loaded into a magneto-cryostat (Cryomagnetics close-cycle cryostat). The MOKE measuring 

protocols were described in Ref 3 . The magnetic field was applied in the out-of-plane direction. 

The incident laser with the wavelength of 405 nm was adopted to perform the MOKE 

measurement and the laser power was 12 𝜇𝑊. The MOKE results agree well with the magnetic 

hysteresis loops probed by PL, indicating that the direct PL probing ferromagnetism is reliable. 
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S6. TC for bilayer and bulk CrBr3 

 

Figure S6. Temperature dependent hysteresis loops for bilayer and 73 nm CrBr3. The 

Curie temperatures of the bilayer and 73 nm CrBr3 were determined by increasing the 

temperature until the hysteresis loops disappeared. The TC for bilayer is around 35 K. The 

TC for 73 nm sample is around 37 K, the same as bulk CrBr3 as reported previously1. 
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