Czechoslovak Mathematical Journal

Ján Jakubík

Direct product decomposition of $M V$-algebras

Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 4, 725-739

Persistent URL: http://dml.cz/dmlcz/128490

Terms of use:

© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DIRECT PRODUCT DECOMPOSITION OF MV-ALGEBRAS

Ján Jakubík, Košice

(Received December 31, 1992)

The notion of an $M V$-algebra originally constructed for giving an algebraic structure to the infinite-valued Lukasiewicz propositional logics (Chang [4]), turned out to be related to the theory of linearly ordered groups (Chang [5]), the theory of cyclically ordered groups (Gluschankof [6]), the fuzzy set theory (Belluce [1]), functional analysis and lattice ordered groups (Mundici [10]).

The systems of axioms for defining the notion of an $M V$-algebra can be formulated in various ways; cf. [2], [4], [6]. We shall apply the notation and axioms from [6].

To each $M V$-algebra $\mathcal{A}=\langle A ; \oplus, *, \neg, 0,1\rangle$ we can assign a lattice $\mathcal{L}(\mathcal{A})=\langle A ; \vee, \wedge\rangle$, where the operations \vee and \wedge are defined as follows:
(1) $x \vee y=(x * \neg y) \oplus y$,
(2) $x \wedge y=\neg(\neg x \vee \neg y)$
(cf. [4], [5], [6]).
Let us remark that if \mathcal{A}_{1} and \mathcal{A}_{2} are $M V$-algebras such that the lattices $\mathcal{L}\left(\mathcal{A}_{1}\right)$ and $\mathcal{L}\left(\mathcal{A}_{2}\right)$ are isomorphic, then \mathcal{A}_{1} and \mathcal{A}_{2} need not be isomorphic. Thus \mathcal{A} cannot be reconstructed from $\mathcal{L}(\mathcal{A})$.

Direct products of $M V$-algebras have been dealt with in [4] and [2]. If φ is an isomorphism of an $M V$-algebra \mathcal{A} onto a direct product $\prod_{i \in I} \mathcal{A}_{i}$, then by means of φ we can construct an internal direct decomposition

$$
\varphi_{0}: \mathcal{A} \longrightarrow \prod_{i \in I} \mathcal{A}_{i}^{0}
$$

where for each $i \in I, \mathcal{A}_{i}^{0}$ is isomorphic to \mathcal{A}_{i} and the underlying set of \mathcal{A}_{i}^{0} is a subset of A containing the element 0 . (The method is similar to that which is well-known in the theory of groups; cf. e.g. Kurosh [9], p. 104.) Analogously we can construct internal direct product decompositions of the lattice $\mathcal{L}(\mathcal{A})$.

In this paper it will be shown that there exists a one-to-one correspondence between the internal product decompositions of an $M V$-algebra \mathcal{A} and the internal product decompositions of the lattice $\mathcal{L}(\mathcal{A})$. In fact, in a certain sense (specified in 3.3, 3.4 and 3.5) we can say that the internal product decompositions of \mathcal{A} and those of $\mathcal{L}(\mathcal{A})$ are very closely related. As a corollary we obtain that any two internal product decompositions of an $M V$-algebra have a common refinement. Consequently, any two direct decompositions of an $M V$-algebra have isomorphic refinements.

By applying some results of [8] on direct product decompositions of a complete lattice ordered group we establish analogous theorems for direct product decompositions of complete $M V$-algebras. In this way we obtain a generalization of Belluce's theorem [2, Theorem 12] concerning a two-factor direct decomposition of a complete $M V$-algebra, where the first factor is atomic and the second is atomless.

It is well-known that each polar of a complete lattice ordered group is a direct factor. A question of the relations between polars of an $M V$-algebra \mathcal{A} and prime ideals of \mathcal{A} which was proposed in [1] will be solved.

1. Preliminaries

We recall the definition of an $M V$-algebra (cf. [6]).
1.1. Definition. An $M V$-algebra is a system $\mathcal{A}=\langle A ; \oplus, *, \neg, 0,1\rangle$, (where \oplus,* are binary operations, \neg is a unary operation and 0,1 are nullary operations) such that the following identities are satisfied:

```
\(\left(\mathrm{m}_{1}\right) x \oplus(y \oplus z)=(x \oplus y) \oplus z ;\)
\(\left(\mathrm{m}_{2}\right) x \oplus 0=x\);
\(\left(\mathrm{m}_{3}\right) x \oplus y=y \oplus x\);
\(\left(\mathrm{m}_{4}\right) x \oplus 1=1\);
\(\left(\mathrm{m}_{5}\right) \neg \neg x=x\);
\(\left(\mathrm{m}_{6}\right) ~ \neg 0=1\);
\(\left(\mathrm{m}_{7}\right) x \oplus \neg x=1\);
\(\left(\mathrm{m}_{8}\right) \neg(\neg x \oplus y) \oplus y=\neg(x \oplus \neg y) \oplus x\);
\(\left(\mathrm{m}_{9}\right) x * y=\neg(\neg x \oplus \neg y)\).
```

For the following lemma cf: [6] or [2].
1.2. Lemma. Let $\mathcal{A}=\langle A ; \oplus, *, \neg, 0,1\rangle$ be an $M V$-algebra. Then the system $\mathcal{L}(\mathcal{A})=\langle A, \vee, \wedge\rangle$, where \vee and \wedge are binary operations on A defined by (1) and (2) above, is a distributive lattice with the least element 0 and the greatest element 1 .

In what follows, when we consider a partial order on a set A, then it is always the partial order defined by means of the lattice $\mathcal{L}(\mathcal{A})$ from 1.2 .

From 1.2 we infer that the above system of axioms is equivalent to that given in [4].

For lattice ordered groups we use the same notation as in [3].
Propositions 1.3 and 1.4 are due to Mundici [10] (Theorem 2.5 and 3.8).
1.3. Proposition. Let G be an abelian lattice ordered group with a strong unit u. Let A be the interval $[0, u]$ of G. For each a and b in A we put

$$
a \oplus b=(a+b) \wedge u, \quad \neg a=u-a, \quad 1=u
$$

Next, let the binary operation $*$ on A be defined by $\left(m_{9}\right)$. Then $\mathcal{A}=\langle A ; \oplus, *, \neg, 0,1\rangle$ is an $M V$-algebra.

If G and \mathcal{A} are as in 1.3 then we denote $\mathcal{A}=\mathcal{A}_{0}(G, u)$.
1.4. Proposition. Let \mathcal{A} be an $M V$-algebra. Then there exists an abelian lattice ordered group G with a strong unit u such that $\mathcal{A}=\mathcal{A}_{0}(G, u)$.

Let us also remark that if $\mathcal{A}=\mathcal{A}_{0}(G, u)$, then the operations \vee and \wedge as defined by (1) and (2) coincide with the original operations \vee and \wedge on G (reduced to the set A).

The following example shows that if \mathcal{A}_{1} and \mathcal{A}_{2} are $M V$-algebras and if $\mathcal{L}\left(\mathcal{A}_{1}\right)$ is isomorphic to $\mathcal{L}\left(\mathcal{A}_{2}\right)$, then \mathcal{A}_{1} need not be isomorphic to \mathcal{A}_{2}.

Let G_{1} be the additive group of all rationals with the natural linear order and $G_{2}=G_{1} \circ G_{1}$, where \circ is the operation of the lexicographic product. Put $u_{1}=1$ and $u_{2}=(1,0)$. Then u_{i} is a strong unit in $G_{i}(i=1,2)$. The interval $\left[0, u_{1}\right]$ of G_{1} is isomorphic to the interval $\left[0, u_{2}\right]$ of G_{2}. Let the $M V$-algebra \mathcal{A}_{i} be constructed from $G_{i}(i=1,2)$ as in 1.3. Then $\mathcal{L}\left(\mathcal{A}_{1}\right)=\left[0, u_{1}\right]$ and $\mathcal{L}\left(\mathcal{A}_{2}\right)=\left[0, u_{2}\right]$, hence $\mathcal{L}\left(\mathcal{A}_{1}\right)$ is isomorphic to $\mathcal{L}\left(\mathcal{A}_{2}\right)$. It is easy to verify that \mathcal{A}_{1} is not isomorphic to \mathcal{A}_{2}.

2. Strong units and direct decompositions

In this section some auxiliary results on direct decompositions of a lattice ordered group with a strong unit will be deduced.

Let G be a lattice ordered group and suppose that φ is an isomorphism of G onto the direct product $\prod_{i \in I} G_{i}$ of lattice ordered groups G_{i}. For $i(1) \in I$ and $x \in G$ we denote by $x_{i(1)}$ the component of x in $G_{i(1)}$ with the respect to the isomorphism φ. We say that φ is a direct decomposition of G.

Next, let $G_{i(1)}^{0}=\left\{g \in G: g_{i}=0\right.$ for each $\left.i \in I \backslash\{i(1)\}\right\}, x_{i(1)} \in G_{i(1)}$ and let $x_{i(1)}^{0}$ be the element of $G_{i(1)}^{0}$ such that $\left(x_{i(1)}^{0}\right)_{i(1)}=x_{i(1)}$. Then the map
(1) $\varphi^{0}: G \longrightarrow \prod_{i \in I} G_{i}^{0}$
where $\varphi^{0}(g)=\left(\ldots, x_{i}^{0}, \ldots\right)_{i \in I}$ is an isomorphism of G onto $\prod_{i \in I} G_{i}^{0}$. The direct decomposition φ^{0} will be called internal and G_{i}^{0} are the internal direct factors of G. All G_{i}^{0} 's are convex ℓ-subgroups of G.

In what follows we shall deal only with internal direct decompositions and internal direct factors of lattice ordered groups, the word "internal" will therefore be omitted.

A direct factor G_{i}^{0} will be called trivial if $G_{i}^{0}=\{0\}$. For the case $G \neq\{0\}$ the trivial direct factors G_{i}^{0} can be cancelled in (1).

Let (1) be valid and let H be a convex ℓ-subgroup of G such that $G_{i}^{0} \subseteq H$ for each $i \in I$. Then H is said to be a completely subdirect product of the lattice ordered groups $G_{i}^{0}(i \in I)$; this notion is due to Sik [11].

The following result is well-known.
2.1. Lemma. A convex ℓ-subgroup K of G is a direct factor of G if and only if for each $x \in G^{+}$the set $K \cap[0, x]$ has a greatest element; next, this greatest element is the component of x in K.

As a corollary we obtain that for each $y \in G$ the component of y in a direct factor K is uniquely determined. More thoroughly: if (1) is valid and if we have another direct decomposition

$$
\varphi^{01}: G \longrightarrow \prod_{j \in J} G_{j}^{01}
$$

such that there are $i(1) \in I$ and $j(1) \in J$ with $G_{i(1)}^{0}=G_{j(1)}^{01}$, then for each $y \in G$ the component of y in $G_{i(1)}^{0}$ (with respect to φ^{0}) is the same as the component of y in $G_{j(1)}^{0}$ (with respect to φ^{01}).

Let us remark that an analogous result concerning uniqueness of components does not hold in general for internal direct decompositions of groups.
2.2. Proposition. Let G be a lattice ordered group with a strong unit. Assume that (1) is valid and that all direct factors G_{i}^{0} are nontrivial. Then the set I is finite.

Proof. By way of contradiction, suppose that the set I is infinite. Thus there are distinct indices $i(n) \in I(n=1,2,3, \ldots)$. Let u be a strong unit in G. There exists $x \in G$ such that for each positive integer n we have $x_{i(n)}^{0}=n u_{i(1)}^{0}$. Then for each positive integer m the relation $x \nless m u$ is valid, which is a contradiction.

Let L be the interval $[0, u]$ of G. For direct decompositions of the lattice L we shall apply similar notation as in the case of lattice ordered groups. To each direct decomposition

$$
\varphi: L \longrightarrow \prod_{i \in I} L_{i}
$$

of L we can construct the corresponding internal decomposition (analogously as in the case of lattice ordered groups)

$$
\varphi^{0}: L \longrightarrow \prod_{i \in I} L_{i}^{0}
$$

where for each $i(1) \in I, L_{i(1)}^{0}$ is the set of all $x \in L$ such that the component of x in L_{i} under φ is the least element of L_{i} whenever $i \in I \backslash\{i(1)\}$. Then all L_{i}^{0} 's are convex sublattices of L with the least element 0 . Each L_{i}^{0} possesses a greatest element which will be denoted by z_{i} and which is the component of u in the direct factor L_{i}^{0} under the isomorphism φ^{0}. It is easy to verify that for each $x \in L$ and each $i \in I$ the component of x in L_{i}^{0} under φ^{0} is the element $x \wedge z_{i}$.

For each subset X of G let X^{δ} be the set

$$
X^{\delta}=\{y \in G:|y| \wedge|x|=0 \text { for each } x \in X\}
$$

2.3. Lemma. Let u be a strong unit of a lattice ordered group G. Assume that

$$
\psi:[0, u] \longrightarrow P \times Q
$$

is an internal direct decomposition of the lattice $[0, u]$. Then for each $x \in G$ with $0 \leqslant x$ the set $[0, x] \cap P^{\delta \delta}$ has a largest element, and similarly for $Q^{\delta \delta}$. Further, the join of these largest elements is x.

Proof. For each $x \in G^{+}$there exists a positive integer n such that $x \leqslant n u$. We apply induction on n. Let p_{0} and q_{0} be the components of u in P or Q, respectively (with respect to ψ). Then $u=p_{0} \vee q_{0}, p_{0} \wedge q_{0}=0$.

Assume that $n=1$. Then

$$
[0, x] \cap P^{\delta \delta}=([0, x] \cap[0, u]) \cap P^{\delta \delta}=[0, x] \cap\left([0, u] \cap P^{\delta \delta}\right)=[0, x] \cap P .
$$

The component of x in P is the element $x \wedge p_{0}$; hence this is the largest element of the set $[0, x] \cap P^{\delta \delta}$. The case of $Q^{\delta \delta}$ is analogous. Hence

$$
x=x \wedge u=x \wedge\left(p_{0} \vee q_{0}\right)=\left(x \wedge p_{0}\right) \vee\left(x \wedge q_{0}\right)
$$

Thus the assertion is valid for $n=1$.

Next, assume that $n>1$ and that the assertion is valid for $n-1$. It follows from $0 \leqslant x \leqslant n x=(n-1) x+x$ that there are elements x_{1} and x_{2} in $[0, x]$ such that

$$
x=x_{1}+x_{2}, \quad x_{1} \leqslant(n-1) x, \quad x_{2} \leqslant x
$$

In view of the induction hypothesis there exist elements y_{1}, y_{2}, y_{3} and y_{4} in $[0, u]$ such that

$$
\begin{aligned}
y_{1}=\sup \left(\left[0, x_{1}\right] \cap P^{\delta \delta}\right), & y_{2}=\sup \left(\left[0, x_{1}\right] \cap Q^{\delta \delta}\right), \\
y_{3}=\sup \left(\left[0, x_{2}\right] \cap P^{\delta \delta}\right), & y_{4}=\sup \left(\left[0, x_{2}\right] \cap Q^{\delta \delta}\right), \text { and } \\
x_{1} & =y_{1} \vee y_{2}, \quad x_{2}=y_{3} \vee y_{4} .
\end{aligned}
$$

Clearly $a \wedge b=0$ for each $a \in P^{\delta \delta}$ and each $b \in Q^{\delta \delta}$, thus $a+b=a \vee b$. Then

$$
\begin{aligned}
& x=\left(y_{1} \vee y_{2}\right)+\left(y_{3} \vee y_{4}\right)=\left(y_{1}+y_{2}\right)+\left(y_{3}+y_{4}\right)=\left(y_{1}+y_{3}\right)+\left(y_{2}+y_{4}\right)= \\
& \left(y_{1}+y_{3}\right) \vee\left(y_{2}+y_{4}\right) .
\end{aligned}
$$

We have $y_{1}+y_{3} \in P^{\delta \delta}, y_{2}+y_{4} \in Q^{\delta \delta}$. Let $z \in[0, x] \cap P^{\delta \delta}$. Then $z \wedge\left(y_{2}+y_{4}\right)=0$, hence

$$
z=z \wedge x=z \wedge\left(\left(y_{1}+y_{3}\right) \vee\left(y_{2}+y_{4}\right)\right)=z \wedge\left(y_{1}+y_{3}\right) .
$$

Therefore $y_{1}+y_{3}$ is the largest element of the set $[0, x] \cap P^{\delta \delta}$. Similarly, $y_{2}+y_{4}$ is the largest element of the set $[0, x] \cap Q^{\delta \delta}$. The proof is complete.
2.4. Proposition. Let G, u, P and Q be as in 2.3. Then there is an internal direct decomposition

$$
\varphi^{0}: G \longrightarrow P^{\delta \delta} \times Q^{\delta \delta}
$$

of the lattice ordered group G.
Proof. In view of 2.1 and 2.3, both $P^{\delta \delta}$ and $Q^{\delta \delta}$ are internal direct factors of G. Next, $\left(P^{\delta \delta}\right)^{\delta}=Q^{\delta \delta}$. Hence G is an internal direct product of $P^{\delta \delta}$ and $Q^{\delta \delta}$.

Let us remark that by the obvious induction we can generalize 2.4 to the case of direct decompositions of the lattice $[0, u]$ with any finite number of direct factors; 2.2 shows that this cannot be done for direct decompositions of $[0, u]$ with an infinite number of direct factors.
2.5. Proposition. Let G and u be as in 2.3. We denote by $F([0, u])$ and $F(G)$ the systems of all internal direct factors of the lattice $[0, u]$ and of the lattice ordered group G, respectively. Both $F([0, u])$ and $F(G)$ are partially ordered by inclusion. For each $P \in F([0, u])$ put $f(P)=P^{\delta \delta}$. Then f is an isomorphism of $F([0, u])$ onto $F(G)$.

Proof. Let $P_{1}, P_{2} \in F([0, u])$. According to 2.3 and the facts established in the proof of $2.3, f\left(P_{i}\right) \in F(G)$ for $i=1,2$. Moreover, $P_{1} \subseteq P_{2} \Rightarrow f\left(P_{1}\right) \subseteq f\left(P_{2}\right)$.

Assume that $P_{2} \nsubseteq P_{1}$. Hence there is $x \in P_{2} \backslash P_{1}$. Next there is $P_{1}^{\prime} \in F([0, u])$ such that $[0, u]$ is an internal direct product of P_{1} and P_{1}^{\prime}. Let $x\left(P_{1}\right)$ and $x\left(P_{1}^{\prime}\right)$ be the component of x in P_{1} and in P_{1}^{\prime}, respectively. Then $x\left(P_{1}\right)<x$ and $x=x\left(P_{1}\right) \vee x\left(P_{1}^{\prime}\right)$, hence $x\left(P_{1}^{\prime}\right)>0$. We have

$$
x\left(P_{1}^{\prime}\right) \notin P_{1}^{\delta \delta}, \quad x\left(P_{1}^{\prime}\right) \in P_{2}^{\delta \delta}
$$

thus $f\left(P_{2}\right) \nsubseteq f\left(P_{1}\right)$. Therefore f is a monomorphism of the partially ordered set $F([u, v])$ into $F(G)$.

Let $X \in F(G)$. Hence there is $Y \in F(G)$ such that there is an internal direct decomposition $\varphi: G \longrightarrow X \times Y$ of the lattice ordered group G. Let X^{1} be the natural projection of $[0, u]$ into X under φ, and let Y^{1} be defined analogously. Then it is easy to verify that

$$
X^{1}=[0, u] \cap X, \quad Y^{1}=[0, u] \cap Y
$$

If we put $\varphi_{1}(t)=\varphi(t)$ for each $t \in[0, u]$, then

$$
\varphi_{1}:[0, u] \longrightarrow X^{1} \times Y^{1}
$$

is an internal direct decomposition of the lattice $[0, u]$.
Clearly $Y \subseteq\left(X^{1}\right)^{\delta}$, hence $X=Y^{\delta} \supseteq\left(X^{1}\right)^{\delta \delta}$. Let $x \in X, x \geqslant 0$. There is a positive integer n such that $x \leqslant n u$. Let u^{1} and u^{2} be the components of u in X^{1} and in Y^{1}, respectively (with respect to the isomorphism φ_{1}). Then $n u=n u^{1}+n u^{2}=n u^{1} \vee n u^{2}$ and

$$
x=x \wedge n u=\left(x \wedge n u^{1}\right) \vee\left(x \wedge n u^{2}\right)
$$

Since $n u^{2} \in Y$, we get $x \wedge n u^{2}=0$ and thus $x=x \wedge n u^{1}$. Consequently, $x \in\left(X^{1}\right)^{\delta \delta}$. Hence $X^{+} \subseteq\left(X^{1}\right)^{\delta \delta}$ and therefore $X=\left(X^{1}\right)^{\delta \delta}$.

We verified that f is an epimorphism. By summarizing, f is an isomorphism.

3. Internal direct factors of $M V$-algebras

When defining an internal direct decomposition of an $M V$-algebra we proceed analogously as in the case of lattice ordered groups and lattices.

Let $\mathcal{A}=\langle A ; \oplus, *, \neg, 0,1\rangle$ and $\mathcal{A}_{i}=\left\langle A_{i} ; \oplus, *, \neg, 0,1\right\rangle(i \in I)$ be $M V$-algebras and let

$$
\varphi: \mathcal{A} \longrightarrow \prod_{i \in I} \mathcal{A}_{i}
$$

be an isomorphism of \mathcal{A} onto $\prod_{i \in I} \mathcal{A}_{i}$. For $a \in A$ let a_{i} be the component of a in A_{i} with respect to φ.
For each $i(1) \in I$ we denote

$$
A_{i(1)}^{0}=\left\{a \in A: a_{i}=0 \text { for each } i \in I \backslash\{i(1)\}\right\} .
$$

Then $A_{i(1)}^{0} \subseteq A$ and $0 \in A_{i(1)}^{0}$. In general, $A_{i(1)}^{0}$ need not be a subalgebra of \mathcal{A}. In a natural way we can introduce the $M V$-operations on the set $A_{i(1)}^{0}$; for distinguishing, we shall denote these operations by $\oplus_{i(1)}, *_{i(1)}, \neg_{i(1)}, 0_{i(1)}$ and $1_{i(1)}$.

The operation $\oplus_{i(1)}$ is defined as follows. Let $a, b \in A_{i(1)}^{0}$ and let $c \in A$ be such that $c_{i(1)}=(a \oplus b)_{i(1)}, c_{i}=0$ for each $i \in I \backslash\{i(1)\}$. Then $c \in A_{i(1)}^{0}$; we put $a \oplus_{i(1)} b=c$.

Analogously we define the operations $*_{i(1)}, \neg_{i(1)}$ and $1_{i(1)}$. Clearly $0_{i(1)}=0$. Then $\mathcal{A}_{i(1)}^{0}=\left\langle A_{i(1)}^{0} ; \oplus_{i(1)}, *_{i(1)}, \neg_{i(1)}, 0,1_{i(1)}\right\rangle$ is an $M V$-algebra.

For each $i \in I$ and each $x^{i} \in A_{i}$ let $\varphi_{i}\left(x^{i}\right)$ be an element of A_{i}^{0} such that $\left(\varphi_{i}\left(x^{i}\right)\right)_{i}=$ x^{i}. Then φ_{i} is an isomorphism of \mathcal{A}_{i} onto \mathcal{A}_{i}^{0}.

This yields that the mapping φ^{0} of A into $\prod_{i \in I} A_{i}$ given by

$$
\varphi^{0}(x)=\left(\ldots, \varphi_{i}\left(x_{i}\right), \ldots\right)
$$

is an isomorphism of \mathcal{A} onto $\prod_{i \in I} \mathcal{A}_{i}^{0}$. We say that

$$
\varphi^{0}: \mathcal{A} \longrightarrow \prod_{i \in I} \mathcal{A}_{i}^{0}
$$

is an internal direct decomposition of $\mathcal{A} ; \mathcal{A}_{i}^{0}$ are called internal direct factors of \mathcal{A}.
In the following lemma we assume that \mathcal{A} is an $M V$-algebra. Then in view of 1.4 we can suppose that $\mathcal{A}=\mathcal{A}_{0}(G, u)$.
3.1. Lemma. Let us have an internal direct product decomposition

$$
\begin{equation*}
\varphi: G \longrightarrow X \times Y \tag{1}
\end{equation*}
$$

of a lattice ordered group G. Let u_{1} and u_{2} be the component of u in X and Y, respectively. Then u_{1} is a strong unit of X and u_{2} is a strong unit in Y.

Proof. This is an immediate consequence of (1).

In view of 3.1 we can construct the $M V$-algebras $\mathcal{A}_{1}=\mathcal{A}_{0}\left(X, u_{1}\right)$ and $\mathcal{A}_{2}=$ $\left(Y, u_{2}\right)$. The $M V$-algebra \mathcal{A}_{1} has the underlying set $X^{0}=X \cap[0, u]=\left[0, u_{1}\right]$, and analogously for \mathcal{A}_{2}.
3.2. Lemma. Let us apply the same assumptions as in 3.1 and let $\mathcal{A}_{1}, \mathcal{A}_{2}$ be as above. Let ψ be the partial map $\left.\varphi\right|_{[0, u]}$. Then for each $t \in[0, u]$ we have $\psi^{\prime}(t) \in X^{0} \times Y^{0}$ and the map

$$
\begin{equation*}
\psi:[0, u] \longrightarrow X^{0} \times Y^{0} \tag{2}
\end{equation*}
$$

defines an internal direct decomposition of the $M V$-algebra \mathcal{A} with direct factors \mathcal{A}_{1} and \mathcal{A}_{2}.

Proof. For each $t \in G$ let t_{1} and t_{2} be the components of t in X and in Y, respectively (in view of (1)). Let $t^{\prime} \in X^{0}$ and $t^{\prime \prime} \in Y^{0}$. Put $t=t^{\prime} \vee t^{\prime \prime}$. Then $t=t_{1} \vee t_{2}$ and $t_{1}=t^{\prime}, t_{2}=t^{\prime \prime}$. Hence ψ is an epimorphism.

The operations in \mathcal{A}_{i} will be denoted by $\oplus_{i}, *_{i}, \neg_{i}, 0_{i}$ and $1_{i}(i=1,2)$. Clearly " Lave $0_{i}=0$ and $1_{i}=u_{i}$, hence

$$
\varphi(0)=\left(0_{1}, 0_{2}\right), \quad \psi(1)=\psi(u)=\left(1_{1}, 1_{2}\right) .
$$

Let $a, b \in[0, u]$. In vicu of 1.3 we have

$$
(a \oplus b)_{1}=((a+b) \wedge u)_{1}=\left(a_{1}+b_{1}\right) \wedge u_{1}=a_{1} \oplus_{1} b_{1},
$$

and similarly for $(a \oplus b)_{2}$, whence

$$
\psi(a \oplus b)=\left(a_{1} \oplus_{1} b_{1}, a_{2} \oplus_{2} b_{2}\right)
$$

Next, $(\neg a)_{1}=(u-a)_{1}=u_{1}-a_{1}=\neg_{1} a_{1}$ and analogously for $(\neg a)_{2}$, whence

$$
\psi(\neg a)=\left(\neg_{1} a_{1}, \neg_{2} a_{2}\right) .
$$

Since the operation $*$ is defined by means of the operations \oplus and $\neg\left(c f .\left(m_{9}\right)\right)$ we have also

$$
\psi(a * b)=\left(a_{1} *_{1} b_{1}, a_{2} *_{2} b_{2}\right)
$$

Therefore (2) defines an internal direct product decomposition of the $M V$-algebra is with the direct fa.tors \mathcal{A}_{1} and \mathcal{A}_{2}.
3.3. Lemma. Let $\mathcal{A}=\mathcal{A}_{0}(G, u)$. Assume that

$$
\chi: \mathcal{A} \longrightarrow \prod_{i \in I} \mathcal{A}_{i}
$$

is an internal direct product decomposition of \mathcal{A}. For each $i \in I$ let u_{i} be the component of u in \mathcal{A}_{i}. Then the map

$$
\begin{equation*}
\chi:[0, u] \longrightarrow \prod_{i \in I}\left[0, u_{i}\right] \tag{3}
\end{equation*}
$$

is, at the same time, an internal direct decomposition of the lattice $[0, u]$.
Proof. This is an immediate consequence of the fact that the lattice operations \vee and \wedge are defined by means of the operations $\oplus, *$ and \neg.

Again, let $\mathcal{A}=\mathcal{A}_{0}(G, u)$. Suppose that (3) is an internal direct decomposition of the lattice $[0, u]$. Let $i(1)$ be a fixed element of I. In view of (3) there is $u_{i(1)}^{\prime} \in[0, u]$ such that there is an internal direct decomposition
(4) $\chi_{i(1)}:[0, u] \longrightarrow\left[0, u_{i(1)}\right] \times\left[0, u_{i(1)}^{\prime}\right]$
of $[0, u]$. Hence according to 2.4 there is an internal direct decomposition

$$
\varphi_{i(1)}: G \longrightarrow X_{i(1)} \times X_{i(1)}^{\prime}
$$

of the lattice ordered group G such that $u_{i(1)} \in X_{i(1)}$ and $u_{i(1)}^{\prime} \in X_{i(1)}^{\prime}$. It is easy to verify that $u_{i(1)}$ and $u_{i(1)}^{\prime}$ are the components of u in $X_{i(1)}$ and in $X_{i(1)}^{\prime}$, respectively (in view of $\varphi_{i(1)}$). Then according to $3.1, u_{i(1)}$ is a strong unit in $X_{i(1)}$; analogously, $u_{i(1)}^{\prime}$ is a strong unit in $X_{i(1)}^{\prime}$. Hence we can construct the $M V$-algebras $\mathcal{A}_{i(1)}=\mathcal{A}_{0}\left(X_{i(1)}, u_{i(1)}\right)$ and $\mathcal{A}_{i(1)}^{\prime}=\mathcal{A}_{0}\left(X_{i(1)}^{\prime}, u_{i(1)}^{\prime}\right)$. Under this notation we have
3.4. Lemma. Let \mathcal{A} be as above. Assume that (3) is an internal direct decomposition of the lattice $[0, u]$. Then the map

$$
\chi: \mathcal{A} \longrightarrow \prod_{i \in I} \mathcal{A}_{i}
$$

determines an internal direct decomposition of \mathcal{A}.
Proof. Let $i(1)$ be a fixed element of I. Then (4) is valid. According to 3.2 we have an internal direct decomposition
(5) $\mathcal{A} \longrightarrow \mathcal{A}_{i(1)} \times \mathcal{A}_{i(1)}^{\prime}$,
where $\mathcal{A}_{i(1)}$ has the underlying set $\left[0, u_{i(1)}\right]$ and $\mathcal{A}_{i(1)}^{\prime}$ has the underlying set $\left[0, u_{i(1)}^{\prime}\right]$.
Consider the map χ as defined above. From (3) and (5) we obtain that $\chi: \mathcal{A} \longrightarrow$ $\prod_{i \in I} \mathcal{A}_{i}$ is an internal direct product decomposition of the $M V$-algebra \mathcal{A}.
3.5. Theorem. Let $\mathcal{A}=\langle A ; \oplus, *, \neg, 0,1\rangle$ be an $M V$-algebra and let $\mathcal{L}(\mathcal{A})=$ $\langle A ; \wedge, \vee\rangle$ be the corresponding lattice. Then \mathcal{A} and $\mathcal{L}(\mathcal{A})$ have the same internal direct decompositions (in the sense specified in 3.3 and 3.4).

Since any two internal direct decompositions of a lattice with the least element 0 have a common refinement, we obtain
3.6. Corollary. Any two internal direct decompositions of an $M V$-algebra \mathcal{A} have a common refinement. Any two direct decompositions of \mathcal{A} have isomorphic refinements.

4. Complete $M V$-algebras

An $M V$-algebra \mathcal{A} is called complete if the corresponding lattice $\mathcal{L}(\mathcal{A})$ is complete. An element $a \in A$ is an atom of \mathcal{A} if it is an atom of $\mathcal{L}(\mathcal{A})$. Next, \mathcal{A} is atomic if for each $y \in A$ with $y>0$ there is an atom x in \mathcal{A} such that $x \leqslant y$ (we apply the partial order from $\mathcal{L}(\mathcal{A})) . \mathcal{A}$ is atomless if it has no atom. The set of all atoms of \mathcal{A} will be denoted by $A t$.
4.1. Theorem. ([2], Theorem 9.) Let \mathcal{A} be a complete $M V$-algebra. Assume that $A t \neq \emptyset$ and that \mathcal{A} is not atomic. Then \mathcal{A} is isomorphic to a direct product $\mathcal{B} \times \mathcal{C}$, where \mathcal{B} is complete and atomic and \mathcal{C} is complete and atomless.

In the present section we shall prove a generalization of 4.1.
Let L be a lattice and let α be an infinite cardinal. We say that L has the property $p(\alpha)$ if, whenever $x, y \in L$ and $x<y$, then there are $x_{1}, y_{1} \in L$ with $x \leqslant x_{1}<y_{1} \leqslant y$ such that $\operatorname{card}\left[x_{1}, y_{1}\right]<\alpha$.

The following two lemmas are easy to verify.
4.2. Lemma. Let \mathcal{A} be an $M V$-algebra, card $A>1$. Then the following conditions are equivalent:
(i) \mathcal{A} is atomic.
(ii) The lattice $\mathcal{L}(\mathcal{A})$ satisfies the condition $p\left(\aleph_{0}\right)$.
4.3. Lemma. Let \mathcal{A} be an $M V$-algebra. Then the following conditions are equivalent:
(i) \mathcal{A} is atomless.
(ii) If B is an interval of $\mathcal{L}(\mathcal{A})$, card $B>1$, then B does not satisfy the condition $p\left(\aleph_{0}\right)$.

It is easy to verify that each direct factor of a complete $M V$-algebra must be complete. Hence in view of 4.2 and 4.3 , Theorem 4.1 above can be expressed as follows.
4.1'. Theorem. Let \mathcal{A} be a complete $M V$-algebra. Then \mathcal{A} is an internal direct product of complete $M V$-algebras \mathcal{B}_{1} and \mathcal{C}_{1} such that
(a) either \mathcal{B}_{1} is a one-element $M V$-algebra or \mathcal{B}_{1} is atomic;
(b) \mathcal{C}_{1} satisfies the condition (ii) from 4.3.

Let \mathcal{A}, G and u be as in 1.3 and 1.4. Assume that \mathcal{A} is complete and that G is an internal completely subdirect product of lattice ordered groups $G_{i}(i \in I)$. Hence each G_{i} is an internal direct factor of G. For each $i \in I$ let u_{i} be the component of u in G_{i}.

Under the above assumptions and notation we have
4.2. Proposition. \mathcal{A} is an internal direct product of the $M V$-algebras \mathcal{A}_{i} $(i \in I)$.

Proof. Let $i(1)$ be a fixed element of I. Since G is an internal completely subdirect product of the system $\left\{G_{i}\right\}_{i \in I}$ there exists a convex ℓ-subgroup $G_{i(1)}^{\prime}$ such that G is an internal direct product of lattice ordered groups $G_{i(1)}$ and $G_{i(1)}^{\prime}$. Let $u_{i(1)}^{\prime}$ be the component of u in $G_{i(1)}^{\prime}$. Then the lattice $[0, u]$ is an internal direct product of lattices $\left[0, u_{i(1)}\right]$ and $\left[0, u_{i(1)}^{\prime}\right]$. Hence for each $i \in I,\left[0, u_{i}\right]$ is a direct factor of the lattice $[0, u]$. Thus according to 3.4 each $M V$-algebra \mathcal{A}_{i} is an internal direct factor of \mathcal{A}. For each $x \in[0, u]$ and $i \in I$ the component of x in \mathcal{A}_{i} is $x \wedge u_{i}$. Consider the mapping $\varphi:[0, u] \longrightarrow \prod_{i \in I}\left[0, u_{i}\right]$ defined by $(\varphi(x))_{i}=x \wedge u_{i}$ for each $i \in I$. To complete the proof it suffices to verify that φ is an epimorphism.

For each $i \in I$ choose $x^{i} \in\left[0, u_{i}\right]$. Since $[0, u]$ is a complete lattice there exists $x \in[0, u]$ such that $x=\bigvee_{i \in I} x^{i}$. Each interval of a lattice ordered group is infinitely distributive; thus for each $i(1) \in I$,

$$
u_{i(1)} \wedge x=u_{i(1)} \wedge\left(\bigvee_{i \in I} x^{i}\right)=\bigvee_{i \in I}\left(u_{i(1)} \wedge x^{i}\right)=u_{i(1)} \wedge x^{i(1)}=x^{i(1)}
$$

Hence $\varphi(x)=\left(x^{i}\right)_{i \in I}$, completing the proof.
An interval of a lattice is called nontrivial if it has more than one element.
4.3. Theorem. Let \mathcal{A} be a complete $M V$-algebra. Then there exists an internal direct decomposition $\varphi: \mathcal{A} \longrightarrow \prod_{i \in I} \mathcal{A}_{i}$ such that for each $i \in I$ one of the following conditions is satisfied:
(a) each nontrivial interval of \mathcal{A}_{i} is finite;
(b) there exists an infinite cardinal α_{i} such that each nontrivial interval of \mathcal{A}_{i} has cardinality α_{i}; moreover, $\alpha_{i}^{\aleph_{0}}=\alpha_{i}$.

Proof. This is a consequence of [5], Theorem 3.7 and of Proposition 4.2 above.

Let α be an infinite cardinal and let I be as in 4.3. We denote by $I(1)$ the set of all $i \in I$ such that $\alpha_{i} \geqslant \alpha$; next, we put $I(2)=I \backslash I(1)$. Then \mathcal{A} is an internal direct product of $M V$-algebras \mathcal{A}^{1} and \mathcal{A}^{2}, where
(i) \mathcal{A}^{1} is an internal direct product of $M V$-algebras $\mathcal{A}_{i}(i \in I(1))$ if $I(1) \neq \emptyset$, and \mathcal{A}^{1} is a one-element $M V$-algebra otherwise,
(ii) \mathcal{A}^{2} is an internal direct product of $M V$-algebras $\mathcal{A}_{i}(i \in I(2))$ if $I(2) \neq \emptyset$, and \mathcal{A}^{2} is a one-element $M V$-algebra otherwise.
Then \mathcal{A}^{2} satisfies the condition $p(\alpha)$ and either \mathcal{A}^{1} is a one-element $M V$-algebra or \mathcal{A}^{1} fails to satisfy the condition $p(\alpha)$. Thus we have
4.4. Theorem. Let α be an infinite cardinal. Let \mathcal{A} be a complete $M V$ algebra. Then \mathcal{A} is an internal direct product of $M V$-algebras \mathcal{A}^{1} and \mathcal{A}^{2} such that \mathcal{A}^{2} satisfies the condition $p(\alpha)$, and either \mathcal{A}^{1} is a one-element $M V$-algebra or \mathcal{A}^{1} fails to satisfy the condition $p(\alpha)$.

In view of 4.1^{\prime}, Theorem 4.4 generalizes Theorem 4.1 above.
Let L be a lattice. Let $[a, b]$ be a nontrivial interval of L and let $\mathcal{R}[a, b]$ be the system of all maximal chains of $[a, b]$. We define the length $s[a, b]$ of $[a, b]$ by

$$
s[a, b]=\min \{\operatorname{card} R: R \in \mathcal{R}[a, b]\}
$$

From 4.2 and from Theorem 2.6 of [8] we obtain
4.5. Theorem. Let \mathcal{A} be a complete $M V$-algebra, $\operatorname{card} A>1$. Then \mathcal{A} is an internal direct product of $M V$-algebras $\mathcal{A}_{i}(i \in I)$ such that for each $i \in I$ one of the following conditions is satisfied:
(i) Every interval in \mathcal{A}_{i} is finite.
(ii) There is an infinite cardinal α_{i} such that the length of each nontrivial interval in \mathcal{A}_{i} is α_{i}.

By a method analogous to that in 4.4 we can verify that Theorem 4.1 can be deduced from 4.5.

5. Polars in $M V$-algebras

Again, let \mathcal{A} be an $M V$-algebra and let the operations \wedge and \vee be defined as in the introduction. For each $X \subseteq A$ we put

$$
X^{\perp}=\{a \in A: x \wedge a=0 \text { for each } x \in X\}
$$

The set X^{\perp} is called a polar in \mathcal{A}; it is also called the annihilator of X (cf. [1]).
A subset Y of A is said to be an ideal of \mathcal{A} if it satisfies the following conditions: (i) $0 \in Y$; (ii) if $x, y \in Y$, then $x \oplus y \in Y$, and (iii) if $x \in Y$ and $y \leqslant x$, then $y \in Y$. (Cf. [4], Definition 4.1.)

For each ideal Y in \mathcal{A} we can construct the factor structure \mathcal{A} / Y; it is an $M V$ algebra; cf. [4] (1.18 and 4.3 (ii)).

An ideal Y of \mathcal{A} will be called prime if the factor structure \mathcal{A} / Y is linearly ordered (cf. [1], p. 1360).
5.1. Theorem. ([1], Theorem 26). If Y is a linearly ordered ideal of \mathcal{A} then Y^{\perp} is a prime ideal.

In [1] it is remarked that it is not known if all prime ideals of \mathcal{A} can be obtained as annihilators in this manner. We shall answer this question in the negative.

Let B be a Boolean algebra such that B is infinite and has no atom. Hence no nontrivial ideal of B is linearly ordered. The greatest element of B will be denoted by u.

Let E be the vector lattice of all elementary Carathéodory functions on B (cf. [8], Section 3, or Gofman [11]). Each nonzero element f of E can be expressed as
(1) $f=a_{1} b_{1}+\ldots+a_{n} b_{n}$
where $a_{i} \neq 0$ are reals and $b_{i} \in B, b_{i}>0, b_{i(1)} \wedge b_{i(2)}=0$ whenever $i(1)$ and $i(2)$ are distinct elements of $\{1,2, \ldots, n\}$. We can identify the zero element of E with the element 0 of B, and for any $b \in B$ we can put $1 b=b$. Let H be the subset of E consisting of the zero element of E and of all elements $f \in F$ that have the form (1) where all a_{i} 's $(i=1,2, \ldots, n)$ are nonzero integers. Then H is a lattice ordered group; the interval $[0, u]$ of H coincides with the Boolean algebra B. Next, let G be the convex ℓ-subgroup of H which is generated by the element u. Then u is a strong unit of the lattice ordered group G. Let us consider the $M V$-algebra $\mathcal{A}=\mathcal{A}_{0}(G, u)$. Hence \mathcal{A} has the underlying set B.

From the definition of G we obtain that for each $x \in G$ the relation $2 x \wedge u=x$ is valid; hence $x \oplus x=x$. Thus in view of Theorem 1.17, [4]

$$
x \oplus y=x \vee y, \quad x * y=x \wedge y
$$

for each x, y in A. This yields that for a nonempty subset Y of A the following conditions are equivalent:
(i) Y is an ideal of the Boolean algebra B,
(ii) Y is an ideal of the $M V$-algebra \mathcal{A}.

Hence the notion of a maximal ideal in \mathcal{A} and a maximal ideal in B coincide as well.
There exists a maximal ideal Z of the Boolean algebra B. Hence Z is a maximal ideal of \mathcal{A}. Thus according to [4] (Theorems 4.7 and 3.12) the $M V$-algebra \mathcal{A} / Z is linearly ordered and therefore Z is a prime ideal of \mathcal{A}. But Z cannot be represented as $Z=Y^{\perp}$, where Y is a linearly ordered ideal of \mathcal{A}; namely, such an ideal Y of \mathcal{A} would be a nonzero linearly ordered ideal of the Boolean algebra B, which is impossible.

References

[1] L. P. Belluce: Semisimple algebras of infinite valued logic and bold fuzzy set theory. Canad. J. Math. 38 (1986), 1356-1379.
[2] L. P. Belluce: Semi-simple and complete $M V$-algebras. 29 (1992), 1-9.
[3] G. Birkhoff: Lattice theory. Amer. Math. Soc. Colloquium Publ. Vol. 25, Third Edition, Providence, 1967.
[4] C. C. Chang: Algebraic analysis of many-valued logics. 88 (1958), 467-490.
[5] C. C. Chang: A new proof of the completeness of the Lukasiewicz axioms. 89 (1959), 74-80.
[6] D. Gluschankof: Cyclic ordered groups and MV-algebras. Czechoslovak Math. J. 43 (1993), 249-263.
[7] C. Goffman: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. 88 (1958), 107-120.
[8] J. Jakubik: Cardinal properties of lattice ordered groups. 74 (1972), 85-98.
[9] A. G. Kurosh: Group Theory, Third Edition. Moskva, 1967. (In Russian.)
[10] D. Mundici: Interpretation of $A F C^{*}$-algebras in Lukasiewicz sentential calculus. 65 (1986), 15-63.
[11] F. Sik: Über subdirekte Summen geordneter Gruppen. Czech. Math. J. 10 (85) (1960), 400-424.

Author's address: Matematický ústav SAV, dislokované pracovisko, Grešákova 6, 04001 Košice, Slovakia.

