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Czechoslovak  Mathematical  Jouгnal,  44  (119)  1994,  Praha 

DIRECT  PRODUCT  DECOMPOSITION  OF  MV-ALGEBRAS 

JAN  JAKUBIK,  Kosice 

(Received  December 31,  1992) 

The  notion  of  an MV-algebra  originally constructed  for  giving an algebraic struc

ture  to  the  infinite-valued  Lukasiewicz  propositional logics  (Chang [4]), turned  out 

to be related to the theory of linearly ordered groups (Chang [5]), the theory of cycli

cally  ordered groups  (Gluschankof [6]), the fuzzy  set  theory  (Belluce [1]),  functional 

analysis  and  lattice ordered groups  (Mundici  [10]). 

The  systems of axioms for defining the notion of an MF-algebra can be formulated 

in  various  ways;  cf.  [2], [4], [6]. We  shall  apply  the notation  and axioms from [6]. 

To each MV-algebra A  =  (A] ®, *, -», 0,1)  we can assign a lattice C(A)  =  (A; V, A), 

where  the operations V  and  A are defined  as  follows: 

(1)  xVy  = (£ *-»!/) 0 y , 

(2) x A y = -i(-»x V -»i/) 

(cf. [4], [5], [6]). 

Let us remark that if A\ and A2 are MV-algebras such that the lattices C(A\) 

and £(^2) a r e isomorphic, then A\ and A2 need not be isomorphic. Thus A cannot 

be reconstructed from C(A). 

Direct products of MV-algebras have been dealt with in [4] and [2]. If <p is an 

isomorphism of an MV-algebra A onto a direct product J] A , then by means of (D 
iei 

we can construct an internal direct decomposition 

< Л ) : Д — • П -
4
? , 

iЄl 

where for  each i £ I, A? is isomorphic to A{ and the underlying set of A? is a subset 

of A containing the element 0. (The method is similar to that which is well-known 

in the theory of groups; cf. e.g. Kurosh [9], p. 104.) Analogously we can construct 

internal direct product decompositions of the lattice £(^4). 
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In this paper it will be shown that there exists a one-to-one correspondence be-

tween the internal product decompositions of an MV-algebra A and the internal 

product decompositions of the lattice C(A). In fact, in a certain sense (specified in 

3.3, 3.4 and 3.5) we can say that the internal product decompositions of A and those 

of C(A) are very closely related. As a corollary we obtain that any two internal prod-

uct decompositions of an MV-algebra have a common refinement. Consequently, any 

two direct decompositions of an MV-algebra have isomorphic refinements. 

By applying some results of [8] on direct product decompositions of a complete 

lattice ordered group we establish analogous theorems for direct product decompo-

sitions of complete MV-algebras. In this way we obtain a generalization of Belluce's 

theorem [2, Theorem 12] concerning a two-factor direct decomposition of a complete 

MV-algebra, where the first factor is atomic and the second is atomless. 

It is well-known that each polar of a complete lattice ordered group is a direct 

factor. A question of the relations between polars of an MV-algebra A and prime 

ideals of A which was proposed in [1] will be solved. 

1. PRELIMINARIES 

We recall the definition of an MV-algebra (cf. [6]). 

1.1. Definition. An MV-algebra is a system A = (A; 0 , *, ->, 0,1), (where 0 , * 

are binary operations, -i is a unary operation and 0, 1 are nullary operations) such 

that the following identities are satisfied: 

(mi) x 0 (y 0 z) = (x 0 y) 0 z; 

(1112) x 0 0 = x; 

(m3) x © y = y 0 x; 

(m4) x 0 1 = 1; 

(m5) -i-a; = x; 

(m6) - 0 = 1; 

(1117) x 0 -»£ = 1; 

(m8) -n(-ix 0 y) 0 y = -*(x 0 -iy) 0 x; 

(mg) x * y = -.(-ix 0 ->u). 

For the following lemma cf. [6] or [2]. 

1.2. Lemma. Let A = (A; 0 , *, - . ,0,1) be an MV-algebra. Then the system 

C(A) = (A, V, A), where V and A are binary operations on A defined by (1) and (2) 

above, is a distributive lattice with the least element 0 and the greatest element 1. 
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In what follows, when we consider a partial order on a set A, then it is always the 

partial order defined by means of the lattice C(A) from 1.2. 

From 1.2 we infer that the above system of axioms is equivalent to that given 

in [4]. 

For lattice ordered groups we use the same notation as in [3]. 

Propositions 1.3 and 1.4 are due to Mundici [10] (Theorem 2.5 and 3.8). 

1.3. Proposition. Let G be an abelian lattice ordered group with a strong unit 

u. Let A be the interval [0, u] ofG. For each a and b in A we put 

a © b = (a + b) A u, ->a = u — a, 1 = u. 

Next, let the binary operation * on A be defined by (m9). Then A = (A; 0 , *, ->, 0,1) 

is an MV-algebra. 

If G and A are as in 1.3 then we denote A = AQ(G,U). 

1.4. Proposition. Let A be an MV-algebra. Then there exists an abelian 

lattice ordered group G with a strong unit u such that A = AQ(G,U). 

Let us also remark that if A = AQ(G,U), then the operations V and A as defined 

by (1) and (2) coincide with the original operations V and A on G (reduced to the 

set A). 

The following example shows that if A\ and A2 are MV-algebras and if C(A\) is 

isomorphic to C(A2), then A\ need not be isomorphic to A2. 

Let G\ be the additive group of all rationals with the natural linear order and 

G2 = G\ o G\, where o is the operation of the lexicographic product. Put u\ = 1 

and u2 = (1,0). Then Ui is a strong unit in G; (i = 1,2). The interval [0,u\] of G\ 

is isomorphic to the interval [0,u2] of G2. Let the MV-algebra Ai be constructed 

from Gi (i = 1,2) as in 1.3. Then C(A\) = [0,ux] and C(A2) = [0,u2], hence C(A\) 

is isomorphic to C(A2). It is easy to verify that A\ is not isomorphic to A2. 

2 . STRONG UNITS AND DIRECT DECOMPOSITIONS 

In this section some auxiliary results on direct decompositions of a lattice ordered 

group with a strong unit will be deduced. 

Let G be a lattice ordered group and suppose that (D is an isomorphism of G onto 

the direct product fj Gi of lattice ordered groups G{. For i(l) £ I and x G G we 
iei 

denote by x{^ the component of x in G;(i) with the respect to the isomorphism (p. 

We say that (D is a direct decomposition of G. 
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Next, let G?(1) = {g € G: g{ = 0 for each * € 7 \ {»'(!)}}, xi{l) G Gi(1) and let .r?(1) 

be the element of G°(X) such that (a^m).^) = xi(1). Then the map 

(1) ^ : G — > I 1 G ? 
£6/ 

where </?°(g) = (... , x ° , . . .)ieI is an isomorphism of G onto [1 ^?- T n e direct 

decomposition <D° will be called internal and G° are the internal direct factors of G. 

All G°'s are convex ^-subgroups of G. 

In what follows we shall deal only with internal direct decompositions and internal 

direct factors of lattice ordered groups, the word "internal" will therefore be omitted. 

A direct factor G° will be called trivial if G° = {0}. For the case G / {0} the 

trivial direct factors G° can be cancelled in (1). 

Let (1) be valid and let H be a convex ^-subgroup of G such that G° C H for each 

i G I. Then H is said to be a completely subdirect product of the lattice ordered 

groups G° (i G I); this notion is due to Sik [11]. 

The following result is well-known. 

2.1. Lemma. A convex l-subgroup KofG is a direct factor ofG if and only if 

for each x G G+ the set K D [0, x] has a greatest element; next, this greatest element 

is the component of x in K. 

As a corollary we obtain that for each y G G the component of y in a direct factor 

K is uniquely determined. More thoroughly: if (1) is valid and if we have another 

direct decomposition 

V
0l

:G->l[G? 
jeJ 

such that there are i(l) G I and j ( l ) € J with G0,^ = G 0 ^ , then for each y G G 

the component of y in G0,^ (with respect to <D°) is the same as the component of y 

in G®.,^ (with respect to (D01). 

Let us remark that an analogous result concerning uniqueness of components does 

not hold in general for internal direct decompositions of groups. 

2.2. Proposition. Let G be a lattice ordered group with a strong unit. Assume 

that (1) is valid and that all direct factors G° are nontrivial. Then the set I is finite. 

P r o o f . By way of contradiction, suppose that the set I is infinite. Thus there 

are distinct indices i(n) G I (n = 1,2,3,...). Let u be a strong unit in G. There 

exists x G G such that for each positive integer n we have x®,, = nu®,^. Then for 

each positive integer m the relation x ^ mu is valid, which is a contradiction. • 
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Let L be the interval [0, u] of G. For direct decompositions of the lattice L we 

shall apply similar notation as in the case of lattice ordered groups. To each direct 

decomposition 

<p: L —•> J J Li 

iel 

of L we can construct the corresponding internal decomposition (analogously as in 

the case of lattice ordered groups) 

<p0:L^T[Ll 
iei 

where for each i(l) G I. L0^ is the set of all x G L such that the component of 

x in Li under (p is the least element of Li whenever i G I \ {i(l)}. Then all L°'s 

are convex sublattices of L with the least element 0. Each L° possesses a greatest 

element which will be denoted by z\ and which is the component of u in the direct 

factor L° under the isomorphism (D°. It is easy to verify that for each x G L and 

each i G I the component of x in L° under ip° is the element x A zi. 

For each subset X of G let Xs be the set 

X6 = {y G G: | j / | A |x| = 0 for each x G X}. 

2.3. Lemma. Let u be a strong unit of a lattice ordered group G. Assume that 

I/J: [ 0 , U ] — T P X Q 

is ai2 internal direct decomposition of the lattice [0,u]. Then for each x G G with 

0 ^ x the set [0, x] n P5(5 has a largest element, and similarly for Q66. Further, the 

join of these largest elements is x. 

P r o o f . For each x G G+ there exists a positive integer n such that x ^nu. We 

apply induction on n. Let p0 and go be the components of u in P or Q, respectively 

(with respect to ip). Then u = p0 V g0, Po A g0 = 0. 

Assume that n = 1. Then 

[o, x] n P** = ([o, x] n [o, H,]) n P
66

 = [o, z] n ([o, u] nP
66

) = [o, x] n P. 

The component of x in P is the element x Ap0; hence this is the largest element 

of the set [0, x] D P66. The case of Q66 is analogous. Hence 

x = x A u = x A (p0 Vg0) = (z Apo) V (rr Ago)-

Thus the assertion is valid for n = 1. 
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Next, assume tha t n > 1 and tha t the assertion is valid for n - 1. It follows from 

0 ^ x ^ nx = (n — l)x + x tha t there are elements xi and x2 in [0, x] such tha t 

x = xi + x2, x\ ^ (n — l )x , £2 ^ £• 

In view of the induction hypothesis there exist elements yi,H2,y3 and H4 in [0,u] 

such tha t 

yi = suP([o,m] n P S S ) , y2 = suP([o,Xl] n g56), 

y3 = sup([0, x2] n P w ) , 2l4 = sup([0, x2] n Q w ) , and 

z i =2/i Vy 2 , x2 = y 3 Vy 4 . 

Clearly a A b = 0 for each a G P w and each b G Q**, thus a -f- b = a V b. Then 

x = (yi V 2/2) + (2/3 V 2/4) = (2/1 + 2/2) + (y3 + 2/4) = (2/1 + 2/3) + (2/2 + 2/4) = 

(2/1 + y 3 ) v ( y 2 + y 4 ) . 

We have 2/1 + y3 G P 5 * , y2 + y4 G Q w . Let 2: G [0, x] n P w . Then z A (y2 + y4) = 0, 

hence 

z = z Ax = zA ((2/1 + 2/3) V (2/2 + 2/4)) = 2 A (yi + 2/3). 

Therefore yi -f y3 is the largest element of the set [0,x] n P 5 5 . Similarly, u2 + y4 is 

the largest element of the set [0,x] n Qss. The proof is complete . • 

2.4 . P r o p o s i t i o n . Let G,u,P and Q be as in 2.3. Then there is an internal 

direct decomposition 

ipO.G_^p65x Q85 

of the lattice ordered group G. 

P r o o f . In view of 2.1 and 2.3, both Pss and Qss are internal direct factors of 

G. Next, (Pss)s = Qss. Hence G is an internal direct product of Pss and Qss. • 

Let us remark tha t by the obvious induction we can generalize 2.4 to the case of 

direct decompositions of the lattice [0,u] with any finite number of direct factors; 

2.2 shows tha t this cannot be done for direct decompositions of [0, u] with an infinite 

number of direct factors. 

2.5. P r o p o s i t i o n . Let G and u be as in 2.3. We denote by F([0,u]) and F(G) 

the systems of all internal direct factors of the lattice [0, u] and of the lattice ordered 

group G, respectively. Both F([0,u]) and F(G) are partially ordered by inclusion. 

For each P G F([0,u]) put f(P) = Pss. Then f is an isomorphism of F([0,u]) onto 

F(G). 
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P r o o f . Let P\,P2 e F([0,u]). According to 2.3 and the facts established in the 

proof of 2.3, f(Pi) e F(G) for i = 1,2. Moreover, Px C P2 => f(Px) C f(P2). 

Assume that P2 £ P\. Hence there is x e Pz\P\- Next there is P[ e F([0,u]) such 

that [0,u] is an internal direct product of Fi and P[. Let x(P\) and x(P[) be the 

component of x in Fi and in P[, respectively Then x(P\) < x and x = x(P\)\/x(P[), 

hence x(P[) > 0. We have 

x(P{) i Pss, x(P[) e Pis, 

thus f(P2) 2 / ( ^ i ) - Therefore / is a monomorphism of the partially ordered set 

F([u,v]) into F(G). 

Let X e F(G). Hence there is Y e F(G) such that there is an internal direct 

decomposition (D: G —> X xY of the lattice ordered group G. Let X1 be the natural 

projection of [0,u] into X under <D, and let Y1 be defined analogously. Then it is 

easy to verify that 

x1 = [o,u]nx, Y1 = [o,u]nY. 

If we put <pi(t) = Kp(t) for each t e [0,u], then 

</?!. [0,u]-^Xx xY1 

is an internal direct decomposition of the lattice [0,u]. 

Clearly y C (X1)6, hence X =Y6 D (X1)68. Let x G X,x ^ 0. There is a positive 

integer n such that x ^ nu. Let u1 and u2 be the components of u in X1 and in Y1, 

respectively (with respect to the isomorphism (Di). Then nu = nu1 -\-nu2 = nu1 \/nu2 

and 

x = x A nu = (x A nu1) V (x A nu2). 

Since nu2 G y , we get x Anu2 = 0 and thus x = xAnu1. Consequently, x G (X1)66. 

Hence X+ C (X1)66 and therefore X = (X1)66. 

We verified that / is an epimorphism. By summarizing, / is an isomorphism. • 

3. INTERNAL DIRECT FACTORS OF MV-ALGEBRAS 

When defining an internal direct decomposition of an MV-algebra we proceed 

analogously as in the case of lattice ordered groups and lattices. 

Let A = (A; 0,*,-1,0,1) and A{ = (An 0 , *,->,0,1) (i G I) be MV-algebras and 

let 

if :A—>Y[Ai 
iei 
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be an isomorphism of A onto f| ^4i. For a G A let Oi be the component of a in .4i 
iei 

with respect to (D. 

For each i(l) G I we denote 

A° 1} = {a G A: a{ = 0 for each i G I \ {i(l)}}-

Then A?,^ C A and 0 G -4?n\. In general, A?,^ need not be a subalgebra of A. In a 

natural way we can introduce the MV-operations on the set -4?/^; for distinguishing, 

we shall denote these operations by ®t-(i), *i(i),_,i(i)?0i(i) a n d l»(i). 

The operation 0 ^ ) is defined as follows. Let a,b € A?(1^ and let c G A be such 

that Ci(i) = (a 0 b)i(i),Gi = 0 for each i G I \ {i(l)}> Then c G -4?^; we put 

a®i(i) 6 = c. 

Analogously we define the operations *t(i) ? ~'i(i) an-d li(i) - Clearly 0^ ) = 0. Then 
A°i(i) = (A°i(i)'i®i(i)i*i(i)^i(\)iQ,li(i)) i s a n MV-algebra. 

For each i G I and each xl G A» let (fi(xl) be an element of A? such that (<Di(xl))i = 

x%. Then <Di is an isomorphism of A\ onto A®. 

This yields that the mapping <D° of A into Yl Ai given by 
iei 

tp°(x) = (...,(Pi(Xi),...) 

is an isomorphism of A onto Yi «4?- We say that 
iei 

iei 

is an internal direct decomposition of A; *4? are called internal direct factors of A. 

In the following lemma we assume that A is an MV-algebra. Then in view of 1.4 

we can suppose that A = AQ(G,U). 

3.1. Lemma. Let us have an internal direct product decomposition 

(1) ( D : G — > X x Y 

of a lattice ordered group G. Let u\ and u2 be the component of u in X and Y, 

respectively. Then Hi is a strong unit of X and u2 is a strong unit in Y. 

P r o o f . This is an immediate consequence of (1). • 
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In view of 3.1 we can construct the MV-algebras A\ = Ao(X,u\) and A2 = 

(Y, u2). The MV -a lgebra A\ has the underlying set X° = X D [0,u] = [0,iii], and 

analogously for A2-

3.2 . L e m m a . Let us apply the same assumptions as in 3.1 and 1ef A\, A2 

be as above. Let \p be the partial map <D|[o,u]- Then for each t G [0,H] we have 

0(f) G X° x Y° and the map 

(2) ^P: [0,H] —> X° x Y° 

defines an internal direct decomposition of the MV-algebra A with direct factors A\ 

and A2 • 

P r o o f . For each f G G let fi and f2 be the components of f in X and in Y, 

respectively (in view of (1)). Let t' G X° and f" G Y°. Pu t f = t' V f". Then 

t = t\V t2 and fi = f', f2 = f". Hence ^ is an epimorphism. 

Tlie operations in A\ will be denoted by 0 ; , *;, -<;, 0t- and 1{ (i = 1,2). Clearly 

w Lave 0; = 0 and V- = U{, hence 

V(0) = (0 i ,0 2 ) , ^l)(l)=^l)(u) = (l\^2). 

Let a, b G [0,-a]. In view of 1.3 we have 

( a © b)\ = ((O + 6)At / ) i = (Oi + bi) A Hi = Oi 0 i bi, 

and similarly for (a 0 6)2, whence 

ip(aeb) = (Oi ©1 bi,a202 b2). 

Next, (->a)i = (a — O)i = u\ — a\ = - i ia i and analogously for (~«a)2, whence 

ip(-*a) = (~' iai ,-«2a2) . 

Since the operation * is defined by means of the operations 0 and -. (cf. (m9)) we 

have also 

y(a * b) = (Oi *i bi,O2 *2 b2). 

Therefore (2) defines an internal direct product decomposition of the MV -a lgehra A 

with the direct factors A\ and A2. • 
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3.3. Lemma. Let A — AQ(G,U). Assume that 

X'A^>Y[Ai 
iei 

is an internal direct product decomposition of A. For each i G I let u-i be the 

component of u in Ai. Then the map 

(3) X- [0 ,u ]—>n-° ' , i *-
iei 

is, at the same time, an internal direct decomposition of the lattice [0,u]. 

P r o o f . This is an immediate consequence of the fact that the lattice operations 

V and A are defined by means of the operations ©, * and ->. • 

Again, let A = AQ{G,U). Suppose that (3) is an internal direct decomposition of 

the lattice [0,u]. Let z(l) be a fixed element of I. In view of (3) there is u'^, G [0,u] 

such that there is an internal direct decomposition 

(4) x»(i). [0,u] —• [0,^(1)] x [o,u;.(1)] 

of [0,u]. Hence according to 2.4 there is an internal direct decomposition 

<Pi(i): G —> Xi{1) x X'i{1) 

of the lattice ordered group G such that ui{1) G Kt(i)
 and u'{^ G X[,xy It is 

easy to verify that ui{1) and u'{^ are the components of u in Xi{1) and in X'^y 

respectively (in view of (Di(i)). Then according to 3.1, ui{1) is a strong unit in Xi{1y, 

analogously, u'^ is a strong unit in X'^y Hence we can construct the MV-algebras 

Ai(i) — Ao{Xi{1yui{1)) and A[^ = ^(X'^yu'^,). Under this notation we have 

3.4. Lemma. Let A be as above. Assume that (3) is an internal direct decom-

position of the lattice [0,u]. Then the map 

X'A->l[Ai 
iei 

determines an internal direct decomposition of A. 

P r o o f . Let i(l) be a fixed element of I. Then (4) is valid. According to 3.2 we 

have an internal direct decomposition 

(5) A^Ai{1) xA'i{1y 

where A(i) has the underlying set [0, ui{1)] and A[^ has the underlying set [0, u'^]. 

Consider the map \ a s defined above. From (3) and (5) we obtain that \: A —> 

Yl At is an internal direct product decomposition of the MV-algebra A. D 
iei 
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By summarizing, 3.3 and 3.4 yield 

3.5. Theorem. Let A = (A; 0 , *, ->,0,1) be an MV-algebra and let C(A) = 

(A; A,V) be the corresponding lattice. Then A and C(A) have the same internal 

direct decompositions (in the sense specified in 3.3 and 3.4). 

Since any two internal direct decompositions of a lattice with the least element 0 

have a common refinement, we obtain 

3.6. Corollary. Any two internal direct decompositions of an MV-algebra A 

have a common refinement. Any two direct decompositions of A have isomorphic 

refinements. 

4. COMPLETE MV-ALGEBRAS 

An MV-algebra A is called complete if the corresponding lattice C(A) is complete. 

An element a G A is an atom of A if it is an atom of C(A). Next, A is atomic if for 

each y G A with y > 0 there is an atom x in A such that x ^ y (we apply the partial 

order from C(A)). A is atomless if it has no atom. The set of all atoms of A will be 

denoted by At. 

4 .1. Theorem. ([2], Theorem 9.) Let A be a complete MV-algebra. Assume 

that At 7-- 0 and that A is not atomic. Then A is isomorphic to a direct product 

B x C, where B is complete and atomic and C is complete and atomless. 

In the present section we shall prove a generalization of 4.1. 

Let L be a lattice and let a be an infinite cardinal. We say that L has the property 

p(a) if, whenever x, y G L and x < y, then there are xi, y\ G L with x ^ x\ < y\ ^ y 

such that card[xi,ui] < a. 

The following two lemmas are easy to verify. 

4.2. Lemma. Let A be an MV-algebra, card A > 1. Then the following 

conditions are equivalent: 

(i) A is atomic. 

(ii) The lattice C(A) satisfies the condition p(H0). 

4 .3. Lemma. Let A be an MV-algebra. Then the following conditions are 

equivalent: 

(i) A is atomless. 
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(ii) If B is an interval of C(A), card B > 1, then B does not satisfy the condition 

p(«o). 

It is easy to verify that each direct factor of a complete MV -a lgebra must be 

complete. Hence in view of 4.2 and 4.3, Theorem 4 A above can be expressed as 

follows. 

4 . 1 ' . T h e o r e m . Let A be a complete MV-algebra. Then A is an internal direct 

product of complete MV-algebras B\ and C\ such that 

(a) either Bi is a one-element MV-algebra or B\ is atomic; 

(b) Ci satisfies the condition (ii) from 4.3. 

Let A, G and u be as in 1.3 and 1.4. Assume that A is complete and tha t G is 

an internal completely subdirect product of lattice ordered groups Gi (i e I). Hence 

each Gi is an internal direct factor of G. For each i G I let Hz- be the component of 

u in Gi. 

Under the above assumptions and notation we have 

4 .2 . P r o p o s i t i o n . A is an internal direct product of the MV-algebras Ai 

(i G / ) . 

P r o o f . Let i(l) be a fixed element of I. Since G is an internal completely 

subdirect product of the system {Gi}i^i there exists a convex ^-subgroup G'^^ such 

tha t G is an internal direct product of lattice ordered groups Gi(i) and G'i{ly Let 

u'j,^ be the component of u in G'i{l). Then the lattice [0,H] is an internal direct 

product of lattices [O.ix^i)] and [ 0 , 1 / ^ ] . Hence for each i G I, [0,U{] is a direct 

factor of the lattice [0,u]. Thus according to 3.4 each MV -a lgebra Ai is an internal 

direct factor of A. For each x G [ 0 ^ ] and i G I the component of x in Ai is x A u r 

Consider the mapping (D: [0,u] —•> Yl [0,U{] defined by (ip(x))i = x A U{ for each 
iei 

i G I. To complete the proof it suffices to verify that <D is an epimorphism. 

For each i G I choose xl G [0,Ht]. Since [0, u] is a complete lattice there exists 

x G [0,TX] such tha t x = \f x%. Each interval of a lattice ordered group is infinitely 
iei 

distributive; thus for each i(l) G I, 

ui{l) Ax = ui{l)A (\Jxlj= \J(ui{1)Axl) ^u^Ax1^ = xi{l). 

^iei ' iei 

Hence (f(x) = ( x 1 ) ^ / , completing the proof. • 

An interval of a lattice is called nontrivial if it has more than one element. 
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4.3. Theorem. Let A be a complete MV-algebra. Then there exists an internal 

direct decomposition (p: A —> Yi "4* s u c ^ tna^ f°r eacn i € I one °f the following 
iei 

conditions is satisfied: 

(a) each nontrivial interval of Ai is finite; 

(b) there exists an infinite cardinal ai such that each nontrivial interval of Ai has 

cardinality ai; moreover, a{° = ai. 

P r o o f . This is a consequence of [5], Theorem 3.7 and of Proposition 4.2 above. 

• 

Let a be an infinite cardinal and let I be as in 4.3. We denote by I(l) the set of 

ali i G I such that ai ^ a; next, we put I(2) = I \ I(l). Then A is an internal direct 

product of MV-algebras A1 and A2, where 

(i) A1 is an internal direct product of MV-algebras Ai (i G I(l)) if 1(1) ?- 0, 

and A1 is a one-element MV-algebra otherwise, 

(ii) A2 is an internal direct product of MV-algebras Ai (i G 1(2)) if 1(2) 7- 0, 

and A? is a one-element MV-algebra otherwise. 

Then A2 satisfies the condition p(a) and either A1 is a one-element MV-algebra 

or A1 fails to satisfy the condition p(a). Thus we have 

4.4. Theorem. Let a be an infinite cardinal. Let A be a complete MV-

algebra. Then A is an internal direct product of MV-algebras A1 and A2 such that 

A2 satisfies the condition p(a), and either A1 is a one-element MV-algebra or A1 

fails to satisfy the condition p(a). 

In view of 4.1', Theorem 4.4 generalizes Theorem 4.1 above. 

Let L be a lattice. Let [a, b] be a nontrivial interval of L and let 7l[a, b] be the 

system of all maximal chains of [a, b]. We define the length s[a, b] of [a, b] by 

s[a,b] = min{card#: R G 1Z[a,b]}. 

From 4.2 and from Theorem 2.6 of [8] we obtain 

4.5. Theorem. Let A be a complete MV-algebra, card A > 1. Then A is an 

internal direct product of MV-algebras Ai (i G I) such that for each i G I one of 

the following conditions is satisfied: 

(i) Every interval in Ai is finite. 

(ii) There is an infinite cardinal ai such that the length of each nontrivial interval 

in Ai is ai. 
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By a method analogous to that in 4.4 we can verify that Theorem 4A can be 

deduced from 4.5. 

5. POLARS IN MV-ALGEBRAS 

Again, let A be an MV-algebra and let the operations A and V be defined as in 

the introduction. For each I C A w e put 

X1- = {a G A: x A a = 0 for each x G X}. 

The set X1- is called a polar in A; it is also called the annihilator of X (cf. [1]). 

A subset Y of A is said to be an ideal of A if it satisfies the following conditions: 

(i) 0 G Y; (ii) if x, y G Y, then x<$y GY, and (iii) if x G Y and y < x, then y G Y. 

(Cf. [4], Definition 4.1.) 

For each ideal Y in A we can construct the factor structure AjY\ it is an MV-

algebra; cf. [4] (1.18 and 4.3 (ii)). 

An ideal Y of A will be called prime if the factor structure Aj Y is linearly ordered 

(cf. [1], p. 1360). 

5.1. Theorem. ([1], Theorem 26). IfY is a linearly ordered ideal of A then YL 

is a prime ideal. 

In [1] it is remarked that it is not known if all prime ideals of A can be obtained 

as annihilators in this manner. We shall answer this question in the negative. 

Let B be a Boolean algebra such that B is infinite and has no atom. Hence no 

nontrivial ideal of B is linearly ordered. The greatest element of B will be denoted 

by u. 

Let E be the vector lattice of all elementary Caratheodory functions on B (cf. [8], 

Section 3, or Gofman [11]). Each nonzero element / of E can be expressed as 

(1) / = aibi + . . . + anbn 

where a; 7-= 0 are reals and b{ G B, b{ > 0, b^ A b^2) = 0 whenever i(l) and z(2) 

are distinct elements of {1 ,2 , . . . , n} . We can identify the zero element of E with 

the element 0 of H, and for any b G B we can put lb = b. Let H be the subset of 

E consisting of the zero element of E and of all elements / G F that have the form 

(1) where all a;'s (i = 1, 2 , . . . , n) are nonzero integers. Then H is a lattice ordered 

group; the interval [0,u] of H coincides with the Boolean algebra B. Next, let G be 

the convex ^-subgroup of H which is generated by the element u. Then u is a strong 

unit of the lattice ordered group G. Let us consider the MV-algebra A = AQ (G, U). 

Hence A has the underlying set B. 
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From the definition of G we obtain that for each x £ G the relation 2x A u = x is 

valid; hence x 0 x = x. Thus in view of Theorem 1.17, [4] 

x 0 H = xVH, x *y = x Ay 

for each x, y in A. This yields that for a nonempty subset Y of A the following 

conditions are equivalent: 

(i) Y is an ideal of the Boolean algebra H, 

(ii) Y is an ideal of the MV-algebra A. 

Hence the notion of a maximal ideal in A and a maximal ideal in B coincide as well. 

There exists a maximal ideal Z of the Boolean algebra B. Hence Z is a maximal 

ideal of A. Thus according to [4] (Theorems 4.7 and 3.12) the MV-algebra A/Z is 

linearly ordered and therefore Z is a prime ideal of A. But Z cannot be represented 

as Z = Y-1, where Y is a linearly ordered ideal of A; namely, such an ideal Y of 

A would be a nonzero linearly ordered ideal of the Boolean algebra H, which is 

impossible. 
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