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Purpose: Our research goal is to develop an algorithm to reconstruct cardiac positron emission to-

mography (PET) kinetic parametric images directly from sinograms and compare its performance

with the conventional indirect approach.

Methods: Time activity curves of a NCAT phantom were computed according to a one-tissue com-

partmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were

simulated using the activity distribution for the time frame. The authors reconstructed the paramet-

ric images directly from the sinograms by optimizing a cost function, which included the Poisson

log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG)

algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose

diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with

parameter. The authors compared the reconstructed parametric images using the direct approach with

those reconstructed using the conventional indirect approach.

Results: At the same bias, the direct approach yielded significant relative reduction in standard de-

viation by 12%–29% and 32%–70% for 50 × 106 and 10 × 106 detected coincidences counts, re-

spectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with

numerical convergence achieved after 40–50 iterations), while more than 500 iterations were needed

for CG.

Conclusions: The authors have developed a novel approach based on the PCG algorithm to di-

rectly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of

kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed im-

ages. The PCG method increases the convergence rate of reconstruction significantly as com-

pared to the conventional CG method. © 2013 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4819821]
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1. INTRODUCTION

Parametric imaging from dynamic positron emission

tomography (PET) makes it possible to extract physiological

information via kinetic modeling of the time evolution of the

activity concentration, i.e., time-activity curve (TAC).1 In

conventional parametric imaging, frame-by-frame images are

reconstructed first followed by curve-fitting TACs voxel-wise

to estimate kinetic parameters.2, 3 This so-called indirect

approach typically results in very noisy parametric images.

Direct reconstruction was first proposed by Snyder4 and

Carson and Lange,5 and has recently gained attention as

an alternative approach for parametric imaging. In the di-

rect approach, kinetic parameters are estimated directly from

the measured data. The direct approach has potential to re-

duce noise in parametric images because it does not require

two assumptions which are made in the indirect approach.

First, curve-fitting the reconstructed image with the kinetic

model assumes that noise in the image domain follows a

model (e.g., Gaussian model in the case of least-square curve-

fitting). However, this noise model in the image domain is dif-

ficult to estimate.6, 7 Second, fitting in the indirect approach

is performed voxel-wise; therefore, intervoxel correlation is

ignored.7

There have been several studies on direct parametric re-

construction in dynamic PET imaging. Most of the ex-

isting algorithms for direct reconstruction are for linear

models, such as spectral bases,8–10 B-splines,11, 12 and the

Patlak model.13–15 The linearity of the TAC model allows

the algorithms developed for static PET image reconstruc-

tion to be extended and used for direct reconstruction of lin-

ear parametric images. For example, the maximum-likelihood

expectation-maximization (ML-EM) algorithm was used by

Matthews et al.8 and Tsoumpas et al.14 A preconditioned con-

jugate gradient (PCG) algorithm in the maximum a posteriori

(MAP) framework was presented by Wang et al.13 (and its

nested algorithm for the ML reconstruction16 to improve the

convergence rate). Recently, the EM algorithm with bound

constraints was proposed to use for direct Patlak paramet-

ric estimation by Rahmim et al.17 Most of these algorithms
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require linearization of the kinetic model.13, 14 In this work,

we focus on direct reconstruction algorithms of nonlinear

kinetic models.

One main difficulty of the direct approach with nonlin-

ear kinetic models is the complexity of the optimization al-

gorithm owing to the nonlinearity of the model with respect

to the parameters.2, 3 Unlike linear models, the log-likelihood

function for the nonlinear models in general is not concave,

and does not guarantee global convergence in the ML frame-

work. The ML-EM algorithm was used by Carson and Lange5

(and later extended by Yan et al.18) for a one-tissue com-

partmental model. The parametric iterative coordinate de-

scent (PICD) method was applied by Kamasak et al.19 for

direct parametric reconstruction of a two-tissue compartmen-

tal model. Moreover, the surrogate function technique was

deployed for direct reconstruction by Wang and Qi7 with

the paraboloidal surrogate, and by the same authors with the

EM surrogate.20 Comprehensive reviews on the topic were

presented by Tsoumpas et al.3 and Rahmim et al.2

In this work, we have developed a novel direct PET para-

metric reconstruction approach based on a PCG algorithm.

Specifically, we chose the preconditioner to be a generalized

version of the precondition used in the direct parametric re-

construction for linear models, which imitates the precondi-

tioner for PCG-based image reconstruction in static emission

tomography. This preconditioner, which was called the EM

preconditioner,21 is a diagonal matrix derived implicitly from

the EM algorithm.22 We applied the proposed algorithm to

myocardial blood flow estimation for a PET perfusion study.

The optimization algorithm for direct parametric reconstruc-

tion in this work was implemented on the region of interest

(ROI)-targeted reconstruction where we updated parameters

only in voxels in the ROI to have feasible computation time.

We studied the performance of the estimation of kinetic pa-

rameters and the convergence behavior of the reconstruction

using our method.

We would like to point out that the aim of this work is to

investigate the improvement of the direct parametric recon-

struction as compared to the existing standard indirect ap-

proach, which is the standard OSEM method together with

kinetic model fitting. Additionally, in order to make a compar-

ison between the direct and the indirect approaches in terms of

bias and standard deviation, we need to know the true values

of kinetic parameters. Therefore, we decided to perform sim-

ulation studies using realistic kinetic parameters in this work.

2. MATERIALS AND METHODS

In dynamic PET imaging, the data which contain Ni sino-

gram bins and are measured in Nm time frames are modeled

as a set of Poisson random variables, i.e.,

yim ∼ Poisson{ȳim}, i = 1, . . . , Ni ; m = 1, . . . , Nm,

(1)

where yim is the mean of the number of detected events in

sinogram bin i at time frame m, ȳim, is related to the activ-

ity concentration distribution {xjm} at time frame m via the

system matrix

ȳim =

Nj
∑

j=1

Aijxjm, (2)

where Aij, which is the probability of a positron emitted from

voxel j to be detected sinogram in bin i, is the (i, j)th ele-

ment of the system matrix A ∈ RNi×Nj , and Nj is the num-

ber of voxels. The activity distribution xjm at voxel j in time

frame m can be computed as the accumulated concentration

xjm =
∫ tm,e

tm,s
xj (t)e−λtdt , where tm,s and tm,e are the start and

end times of time frame m, λ is the decay constant of the ra-

diotracer, and xj(t) is the activity concentration in voxel j at

time instant t. This concentration in voxel j can be modeled

by xj(t) = f(t; kj), where kj = [kj1, kj2, . . . , kjNl
]T is the

vector of kinetic model’s parameters, Nl is the number of ki-

netic parameters for each TAC, and T denotes the transpose of

a vector or a matrix. For example, we have kj = [K
(j )

1 , k
(j )

2 ]T

for a one-tissue compartmental model.

The aim of kinetic analysis is to estimate these kinetic pa-

rameters. There are two main analysis approaches: direct and

indirect.

2.A. Conventional indirect approach

The indirect approach consists of two steps: image recon-

struction frame-by-frame and curve fitting. The image recon-

struction at each time frame can be performed by maximizing

the log-likelihood term

x̂m = arg max
xm≥0

L(ym |xm ), (3)

where x̂m is the reconstructed image at frame m, and

L(ym|xm) =

Ni
∑

i=1

(yim log ȳim(xm) − ȳim(xm)). (4)

Kinetic analysis is then performed by curve-fitting the TAC in

each voxel using a nonlinear least-square fitting

k̂j = argmin
kj

Nm
∑

m=1

wm(x̃jm − zjm(kj ))2, (5)

where x̃jm = x̂jm/�tm, zjm(kj ) = 1
�tm

∫ tm,e

tm,s
f (t ; kj )e−λtdt , in

which �tm = tm,e − tm,s, is the average concentration in voxel

j at time frame m, wm is the weighting factor which herein is

chosen to be the squared frame duration divided by the total

counts in that frame.23 This nonlinear least square problem

can be solved using the Levenberg-Marquardt algorithm.7

2.B. Direct approach

The direct approach integrates the kinetic modeling within

the image reconstruction. By relating the dynamic sinogram

to the parametric image via the dynamic image, the para-

metric reconstruction can be performed by maximizing the

log-likelihood function (ignoring the constant term)

k̂ = argmax
k

L(y|k), (6)
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where L(y|k) =
∑Nm

m=1

∑Ni

i=1 (yim log ȳim(k) − ȳim(k)),

ȳim(k) =
∑Nj

j=1 Aijxjm(kj ) is the mean of the number of

detected events in sinogram bin i acquired throughout time

frame m, and xjm(kj) is the image voxel value due to the

kinetic parameters kj. It should be noted that, in general,

the log-likelihood function L(y|k) is non-concave with

respect to the parametric images k. Therefore, any convex

optimization algorithm can only guarantee convergence to a

local optimum.

2.B.1. Direct parametric reconstruction with the
preconditioned conjugate gradient (PCG) algorithm

2.B.1.a. PCG algorithm for linear parametric reconstruc-

tion. In the framework for linear models, the TAC at each

voxel is

xjm =

Nl
∑

l=1

Bmlθj l, (7)

where Bml is the value lth basis function at time frame m, θ jl

is kinetic parameter of the lth basis function in voxel j. The

kinetic parameters can be estimated using the maximum like-

lihood criterion:

θ̂ = argmax
θ

Nm
∑

m=1

Ni
∑

i=1

(yim log ȳim(θ) − ȳim(θ)), (8)

where ȳim(θ) =
∑Nj

j=1

∑Nl

l=1 AijBmlθ j l . Due to the linearity

with respect to the parameters of the TAC model, it can

be shown that the EM algorithm for linear parametric im-

age reconstruction is equivalent to the scaled gradient as-

cent method.13 The PCG algorithm can be used to accelerate

the EM algorithm in linear parametric reconstruction as well.

The PCG method can be described in the following iterative

steps:16, 24

Step 1: Compute the current update direction d[n]

= Q[n]g[n], where g[n] = {g
[n]
j l } is the gradient vector, and the

preconditioner, Q[n] = diag{q
[n]
j l }, is a diagonal matrix with

q
[n]
j l =

θ
[n]
j l

sj

(

Nm
∑

m=1

Bml

)
, (9)

where sj =
∑Ni

i=1 Aij is the sensitivity of voxel j. Note that

this Q[n] is the parametric version of the EM preconditioner.

Step 2: Compute the conjugate direction a[n] = d[n]

+ γ [n−1]a[n−1], where a[0] = d[0] initially, and γ [n−1] is

chosen according to the Polak-Ribiere form:16, 24

γ [n−1] =
(g[n] − g[n−1])T d[n]

(g[n−1])T d[n−1]
. (10)

Step 3: Calculate the new estimate θ
[n+1] = θ

[n] + α[n]a[n],

where α[n] is calculated from a line search

α[n] = argmax
α

L(y|θ [n] + αa[n]). (11)

2.B.1.b. The new preconditioner for nonlinear parametric

reconstruction. To find the preconditioner for PCG-based

nonlinear parametric reconstruction, we first modify the de-

nominator in Eq. (9) in a more general form as

q
[n]
j l =

θ
[n]
j l

(

Nm
∑

m=1

∂xjm

∂θj l

) (

Ni
∑

i=1

Aij

)
=

θ
[n]
j l

(

Nm
∑

m=1

Ni
∑

i=1

∂ȳjm

∂θj l

)
, (12)

i.e., the denominator is the sensitivity of the mean detected

counts with respect to the parameter as suggested by Li et al.12

Inspired by this definition, we proposed the preconditioner for

the nonlinear case to be the diagonal matrix whose diagonal

entries are ratio of the parameter and the sensitivity of mean

detected counts due to that parameter, i.e.,

q
[n]
j l =

k
[n]
j l

∣

∣

∣

∣

Nm
∑

m=1

Ni
∑

i=1

∂ȳjm

∂kj l

∣

∣

∣

∣

kj =k[n]
j

=
k

[n]
j l

sj

∣

∣

∣

∣

Nm
∑

m=1

∂xjm

∂kj l

∣

∣

∣

∣

kj =k[n]
j

. (13)

We used the absolute value in the denominator so that the pre-

conditioner is a symmetric positive definite matrix to guar-

antee convergence.25 In the case of one-tissue compartmen-

tal models, the TAC in voxel j follows the model xj (t ; kj )

= K
(j )

1 [Cp(t) ∗ e−k
(j )

2 t ], where Cp(t) denotes the plasma input

function, i.e., in this case kj = [kj1, kj2]T = [K
(j )

1 , k
(j )

2 ]T .

Therefore, the diagonal elements of the proposed precondi-

tioner in Eq. (13) for one-tissue compartmental models are

given by

q
[n]
j1 =

k
[n]
j1

sj

(

Nm
∑

m=1

∫ tm,e

tm,s
[Cp(τ ) ∗ e−kj2τ ] e−λτdτ

)

kj =k[n]
j

,

q
[n]
j2 =

k
[n]
j2

sj

(

Nm
∑

m=1

∫ tm,e

tm,s
kj1[τCp(τ ) ∗ e−kj2τ ] e−λτdτ

)

kj =k[n]
j

.

(14)

Note that the calculation of Eq. (13) does not require signifi-

cant additional computation time since the partial derivatives

in the denominator have already been computed in the gradi-

ent calculation step.

Besides using the proposed matrix as the preconditioner,

the PCG algorithm for nonlinear case proceeds as previously

described for linear case in Sec. 2.B.1.a.

2.B.2. Algorithm implementation

Because the maximization of Eq. (6) with respect to the

parametric images k is an ill-posed problem, a regularization

term is added in the total cost function to stabilize the opti-

mization. The kinetic parameters are estimated using

k̂ = argmax
k

	(k), 	(k) = L(y|k) − βU (k). (15)

The regularization term U(k), which penalizes the roughness,

can act either on the parametric images k or on the images

xm(k), and β is a regularization parameter, which controls the
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penalty. In this report, we used the image domain penalty be-

cause this introduces only one regularization parameter in-

stead of Nl. We chose the regularization term to be the scaled

sum of the squared differences among neighborhoods in the

image domain, i.e., the regularization term is of the form

U (k) = U (x(k))

=

Nm
∑

m=1

Nj
∑

j=1

∑

p∈N(j )

1

2(�tm)2
(xjm(k) − xpm(k))2, (16)

where N(j) is the neighborhood of voxel j.

We selected the ROI, in which a kinetic model f can be

applied, and maximized Eq. (15) only in the ROI, i.e., we

updated only voxels in the ROI. In this way, the computa-

tion time for the optimization algorithm is significantly re-

duced as compared to the non-ROI optimization because of

relatively smaller number of optimization parameters. This

ROI optimization approach corresponds to replacing the pro-

jection operation, ȳim(k) =
∑Nj

j=1 Aijxjm(kj ), in L(y|k) of

Eq. (6) by
∑

j∈ROI Aijxjm(kj ) +
∑

j /∈ROI Aij x̂jm, where x̂jm

is the reconstructed image at time frame m as defined in

Sec. 2.B. Note that another type of ROI-based reconstruc-

tion for static tomographic reconstruction has been previously

discussed (see also Clackdoyle and Defrise26).

Our PCG algorithm must apply a non-negativity constraint

on all the kinetic parameters. Specifically, in each iteration, if

k[n]
j < ε (small positive value) and a[n]

j < 0, then a[n]
j = 0 is

used to prevent elements of k[n]
j from being negative. We then

applied Armijo’s rule27 to perform an inexact line search to

obtain an acceptable step size of the optimization problem:

α[n] = argmax
l[n]≤α≤u[n]

L(y|k[n] + αa[n]), (17)

where l[n] and u[n] are the lower and upper bounds, respec-

tively, on α such that k[n] + αa[n] is non-negative. We also

incorporated the upper bound constraint by performing the

second line-search. After the first line search in Eq. (17), we

obtained k̃[n], which is the truncated version of k[n] accord-

ing to kmax (the vector of the upper bounds). Then the second

inexact line search was performed with respect to the opti-

mization problem:

α∗ = argmax
0≤α≤1

L(y|k̃[n] + α(k[n] − k̃[n])). (18)

2.C. Simulated data

We performed simulation studies using a NCAT torso

phantom,28 which includes heart, lungs, liver, and soft-

tissue compartments. Thirty-two PET noise realizations were

generated. Attenuation and normalization were used in the

simulations. We did not account for random and scatter events

in this work. The LV myocardium was segmented into 17

standard segments.29 The time activity curves of all compart-

ments were simulated according to a one-tissue compartmen-

tal model with realistic kinetic parameters from previously

reported human PET perfusion studies. The simulation data

are equivalent to a 13-min dynamic PET scan with the fram-

FIG. 1. Reference K1 polar map in the LV myocardium for our simulation

study. Blue arrow indicates defect regions.

ing scheme of 6 × 5s, 3 × 30s, 5 × 60s, and 3 × 120s frames.

The radionuclide decay was not simulated as, in this work,

we intended for F-18 tracers (such as F-18 flurpiridaz), which

have relatively long half-lives for 13-min long dynamic PET

study.

We simulated a defect in the anterior wall by lowering K1

and k2 values by 50% and 20%, respectively, of the origi-

nal values. The reference K1 polar map in LV myocardium

is shown in Fig. 1. The blood input function, Cp(t), and TACs

for one normal and one defect segments are shown in Fig. 2.

We performed parameter estimation by optimizing the cost

function 	(k) in Eq. (15), where the ROI mask in the ROI-

targeted reconstruction was a dilated myocardium mask. The

stopping criterion for our PCG in the simulations is that rel-

ative change of the cost function is less than 10−6. The up-

per bounds on K1 and k2 are Kmax
1 = 5.0 min−1 and kmax

2

= 0.3 min−1, respectively. We also used a small positive value

ε in Sec. 2.B.2 that prevents negativity to be 0.001Kmax
1 for K1

and 0.001kmax
2 for k2.

To address the local maxima problem, the initial values

used by our direct approach were set to the kinetic parameters

obtained from the indirect approach, which uses frame-by-

frame OSEM reconstruction (with 16 subsets and 8 iterations

to cope with underconvergence of the OSEM) and voxel-wise

curve-fitting. It is worth noting that, in fact, there are sev-

eral image reconstruction algorithms that can be used in the

0 2 4 6 8 10 12
0

0.5

1

1.5

Scan time (min)

A
c
ti
v
it
y

Input function
Normal
Defect

FIG. 2. The blood input function, and TACs of one normal, and one defect

segments in the LV myocardium.

Medical Physics, Vol. 40, No. 10, October 2013



102501-5 Rakvongthai et al.: Direct reconstruction of cardiac PET kinetic parametric images 102501-5

0 20 40 60 80 100
−1.798

−1.796

−1.794

−1.792

−1.79

−1.788
x 10

7

Iteration

C
o
s
t 
fu

n
c
ti
o
n

 

 

PCG
CG
PCG after 500 iterations

0 20 40 60 80 100
−1.802

−1.8

−1.798

−1.796

−1.794

−1.792

−1.79
x 10

7

Iteration

C
o
s
t 
fu

n
c
ti
o
n

 

 

PCG
CG
PCG after 500 iterations

0 20 40 60 80 100
−2.25

−2.2

−2.15

−2.1

−2.05

−2

−1.95

−1.9

−1.85

−1.8
x 10

7

Iteration

C
o
s
t 
fu

n
c
ti
o
n

 

 

PCG
CG
PCG after 500 iterations

(a)

(b)

(c)

β = 0

β = 10

β = 1000

FIG. 3. (a)–(c) Cost function vs iteration number for the PCG and CG

methods.

indirect approach, but we chose to use the OSEM reconstruc-

tion since it is close to the image reconstruction algorithm

used in current clinical applications.

3. RESULTS

Figure 3 shows the cost function as a function of iteration

number for both PCG and CG algorithms for three different β

values (0, 10, and 1000) which cover the range of regulariza-

tion parameters that we used in this work. The cost function

after 500 PCG iterations is used as a benchmark for conver-

gence. The proposed PCG algorithm significantly improves

convergence rate as compared with the CG algorithm for all

β values. After only 10 iterations, the PCG method effec-

tively reached a constant value (with numerical convergence

achieved after 40–50 iterations), while more than 500 itera-

tions were needed for CG. The average computation times per

iteration for both PCG and CG methods are almost the same

(about 9 min on Intel 3.2 GHz Xeon processor).

Next, we looked at the quantification results, where the aim

was to estimate the flow (K1) in the LV myocardium using the

direct approach based on PCG algorithm. Figure 4 displays

results from the direct approach (at β = 0 for 50 × 106 counts)

by using two different ROI masks in ROI-targeted reconstruc-

tion that we mentioned in Sec. 2.B.2. We considered two di-

lated myocardial masks that represented two levels of dilation

[in Fig. 4(a)]; the first mask (Mask 1) had shape very close to

the true myocardium while the second one (Mask 2) was a di-

lated version of the first one. Figures 4(b) and 4(c) show slices

of the K1 mean and standard deviation (SD), respectively, for

voxels inside the two masks. The values of voxels outside the

mask are displayed as zero. The horizontal and vertical pro-

files through the defect regions of the mean and SD images are

shown in Figs. 4(d) and 4(e). Both masks yielded similar re-

sults, especially for voxels in the true myocardium, except for

some voxels in which most of them are in Mask 2 but outside

Mask 1 (the values for those voxels are displayed as zero).

Since the shape of Mask 1 was more complex and closer to

the true myocardium’s shape, Mask 2 could be obtained eas-

ier in practice. In the following, we therefore used Mask 2 as

the ROI mask in ROI-targeted reconstruction.

Figures 5(a) and 5(b) show slices of the K1 mean and SD

for both indirect and direct (at β = 0.0 for 50 × 106 counts)

approaches. The horizontal and vertical profiles through the

defect regions of the mean and SD images are shown in

Figs. 5(c) and 5(d). Both approaches yielded similar bias.

However, the direct approach yielded lower noise level than

the indirect approach. This was also consistent for the case of

25 × 106 counts as in Figs. 5(e)–5(h).

Figure 6 shows the bias and SD of the estimation of K1 in

one normal segment in the anteroseptal wall, and one defect

segment in the anterior wall with different total numbers of

counts (50 × 106, 25 × 106, and 10 × 106 counts which cor-

respond to an injection dose of 2.5, 1.25, and 0.5 mCi, respec-

tively). When analyzing the ROI-based results in this work,

we assumed that we had the true segmentation where we knew

which segment a voxel in the myocardium belongs to. For the

direct approach, kinetic parameters were estimated for β = 0,

10−1, 100, 101, 102. For the indirect approach in this figure, ki-

netic parameters were obtained by curve-fitting the smoothed

reconstructed images, where we used Gaussian filter with pa-

rameter σ for σ = 0, 0.45, 0.9, 1.35, 1.8 mm. To compute

the bias and SD values in each ROI, the mean and SD values

were those values of estimated K1 of a voxel from all noise re-

alizations in that ROI (i.e., estimated K1 values of all voxels in

that ROI from all noise realizations were used to compute the
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FIG. 4. (a)–(e) Comparison of the mean and SD images from the direct approach using two different masks for ROI-targeted reconstruction (when β = 0) in

estimating K1 for 50 × 106 counts. The profiles are horizontal (Horz.) and vertical (Vert.) lines (as in the horizontal and vertical arrows, respectively) through

the same myocardial voxels in defect regions for both masks. For each mask, the estimated values from the voxels outside the mask are displayed as zero.

corresponding mean and SD values). We studied the improve-

ment of using the direct approach by calculating SD reduction

from what we achieved with the indirect approach with no

postfiltering. The bias-SD curve of the direct approach was

used to compute the SD for a bias value that equals to the

bias of the indirect value. The resulting SD of the direct ap-

proach was then used to compute the relative reduction of SD

as compared to the indirect approach. At the same bias as the

results from the indirect approach with no postreconstruction

filtering (σ = 0 mm), the direct approach reduces SD from

22.7% to 19.2% (3.5 percentage points reduction, or 15.5%

relative reduction), 32.8% to 23.3% (9.6% points reduction,

or 29.1% relative reduction), 56.2% to 26.1% (30.1% points

reduction, or 53.5% relative reduction) in the defect segment

for 50 × 106, 25 × 106, and 10 × 106 counts, respectively,

compared to the indirect approach. It is also consistent with

the normal segments, where the 17-segment polar maps of the

SD relative reduction for different total numbers of counts in

17 segments are displayed in Fig. 7. The SD relative reduction

is more pronounced for lower counts. Similarly, such reduc-

tion is more pronounced in the defect segments compared to

the normal ones. The overall relative SD reduction is 17.6%,

23.2%, and 43.1% for 50 × 106, 25 × 106, and 10 × 106

counts, respectively.
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FIG. 5. (a)–(h) Comparison of the mean and SD images between the direct (when β = 0) and indirect approaches in estimating K1 for 50 × 106 and

25 × 106 counts. The profiles are horizontal and vertical lines [as in the horizontal and vertical arrows displayed in Fig. 4(a) for Mask 2] through defect

regions. The estimated values from the voxels outside the mask are displayed as zero.
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FIG. 6. K1 bias-SD curves for the defect and normal segments in the myocardium for different total number of counts. For the direct approach, the curves were

obtained by varying the regularization parameterβ (0 for the right-most point and 100 for the left-most point). The curves of the indirect approach were obtained

by varying the parameter σ of the smoothing function (0 mm for the right-most point and 1.8 mm for the left-most point).

Figure. 8 displays the polar plots of the SD relative re-

duction of the direct approach over the indirect one for two

different datasets with the same input function: one with-

out defects (normal kinetic parameters were used) and the

other one with defects. The average SD relative reduction in

the four defect segments is 23.6% and 14.7% for the dataset

with and without defects. The average relative reduction in

the other segments is 15.8%, and 17.1% for the dataset with

and without defects, respectively. The SD relative reduction

is more pronounced in the defect regions compared to normal

regions.

0 10 20 30 40 50 60

(a) 50M                         (b) 25M         (c) 10M 

FIG. 7. SD relative reduction in percentage of K1 estimation using the di-

rect approach as compared to the indirect approach at different total number

of counts. The reduction was compared at the same bias from the indirect

approach without postreconstruction filtering.

4. DISCUSSION

In this work, we proposed a direct nonlinear parametric

reconstruction method based on a new PCG approach. The

key idea of the proposed method is the preconditioner which

is chosen to be a diagonal matrix whose each diagonal en-

try is the ratio of the parameter and its associated sensitiv-

ity of radioactivity. This preconditioner in Eq. (13) reduces

to the commonly used preconditioner for PCG-based linear

parametric reconstruction, i.e., the proposed preconditioner

includes the preconditioner for linear models as a special case.

 0 5 10 15 20 25

(a) No defect                   (b) With defects  

FIG. 8. SD relative reduction in percentage of K1 estimation using the direct

approach as compared to the indirect approach at 50 × 106 total counts for

defect-absent and defect-present studies. The reduction was compared at the

same bias from the indirect approach without postreconstruction filtering.
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We applied the proposed direct reconstruction method to my-

ocardial blood flow estimation with a one-tissue compartmen-

tal modeling. We compared the quantification results to the

indirect approach.

In general, fast convergence is desirable for image recon-

struction algorithms, especially in direct parametric recon-

struction where the algorithms are usually complex due to the

nonlinearity relationship between the data and kinetic param-

eters. The proposed PCG algorithm yields substantially faster

convergence (Fig. 3) than the conventional CG algorithm for

a wide range of regularization parameters. In terms of com-

putation time, the proposed PCG method requires very little

additional computational cost compared to the CG method.

The only difference between the PCG and the CG algorithms

is Eq. (13), in which the related partial derivatives have al-

ready been calculated during the gradient calculation.

In fact, the essence of PCG algorithm is the appropriate

preconditioner to improve convergence rate. Ideal case for

preconditioner would be the scaled inverse of the Hessian,

but is not practical in medical imaging because large imag-

ing dimensions are used.25 Besides the EM preconditioner

frequently used in emission tomography problem, another

choice for the preconditioner in general is the inverse of the

diagonal of Hessian matrix, which approximates the inverse

of Hessian matrix. Even though, in this work the modified

parametric version the EM preconditioner is simple and works

well in improving convergence rate from the CG, it would

be interesting to study convergence comparison with the ap-

proximated Hessian inverse or other preconditioners for direct

parametric image reconstruction.

In the ROI-targeted reconstruction, the ROI mask had to

be chosen to specify the region we would like to perform di-

rect reconstruction. We tested the direct reconstruction with

two different masks, both of them were dilated myocardium

masks but with different levels of dilation. Both masks yielded

very similar estimation results, which imply that our proposed

ROI-targeted direct reconstruction is not affected much by

the choice of ROI mask at least for two dilated-myocardium-

shaped masks. We then chose to use the more dilated mask

(Mask 2) since it is easier to obtain due to its less com-

plex shape as compared to Mask 1. In practice, a dilated my-

ocardium mask can be generated by single thresholding of the

static PET image. Due to partial volume effect (PVE), we ex-

pect such mask should be not too far to the dilated mask that

we used in this work.

The simulation studies described in Sec. 3 demonstrated

the effectiveness of the proposed direct approach over the con-

ventional indirect approach in estimating the flow in the LV

myocardium. Qualitatively, the direct approach yielded less

noisy estimation of K1 than the indirect approach (Fig. 5).

We compared the two approaches by plotting the ROI-

based bias-SD curves (Fig. 6). The direct approach allowed

the estimation with lower SD without compromising the bias

(SD relative reduction of 12%–29% at 50 × 106 counts, the

normal count level). This reduction in SD is more visible

(Fig. 7) when the total number of counts is lower (SD relative

reduction of 32%–70% at 10 × 106 counts), or (Fig. 8) in ar-

eas where there are less counts (average SD relative reduction

of 15% as compared to 24% in the same segment locations

but with lower values of K1). This pronounced SD relative re-

duction for low count studies or in defect regions results from

the fact that the noise is more properly modeled in the direct

approach (see Sec. 1).

The choice of the indirect approach for parametric recon-

struction is not unique. Wang and Qi7 used the same opti-

mization algorithm for both image reconstruction of the indi-

rect approach and the direct parametric reconstruction, except

that the former searches in the image space while the latter

searches in the parametric space. In this work where the opti-

mization algorithms for the two approaches are different, the

indirect approach was chosen to be similar to what is used in

clinical applications. Moreover, to cope with the local max-

ima problem in the direct approach, we initialized the direct

reconstruction algorithm by the parametric images from the

indirect one. This choice is based on the assumption that the

solution obtained from the indirect approach is in the same

concave neighborhood as the true parametric images. As a re-

sult of this initialization, the OSEM without postfiltering was

used in the image reconstruction step of the indirect approach

in order to prevent additional bias of the initial values for the

direct approach.

It is worth comparing our work to previous studies on

direct reconstruction, such as Wang and Qi7. In that work,

based on the surrogate function techniques, the authors per-

formed direct PET reconstruction with simulation studies for

brain imaging applications. In our work, we used the PCG ap-

proach in simulation studies for cardiac imaging applications,

where the results from the indirect approach (OSEM recon-

struction) were used as initial to address the local-maximum

problem. Moreover, our direct reconstruction framework is

a ROI-targeted reconstruction. In terms of performance re-

ported in Wang and Qi,7 the mean images of the estimated

influx rate (for two-tissue compartmental modeling) for both

direct and indirect (which was also based on the surrogate

function technique as in the direct case) approaches were very

similar, while the SD image of the direct approach had lower

values than those from the indirect one. In our work, the mean

and SD images from both approaches in estimating K1 (for

one-tissue compartmental modeling) also followed similar re-

sults. In a study to estimate blood flow using a one-tissue com-

partmental modeling in that work, the SD relative reduction

at the same bias was approximately 25% in the region with

higher blood flow as compared to approximately 40% in the

region with lower blood flow. These were also similar to what

we found, i.e., SD relative reduction is more pronounced in

the areas where there are less counts.

The possible future research may include applying our

method to patient data. In this paper, the proposed method has

been applied to myocardial blood flow estimation in a digi-

tized phantom study. Applying the proposed algorithm in real

data should also be investigated for further evaluation. Ex-

tending our PCG algorithm to two-tissue compartmental mod-

els can also be one of the future directions. In addition, motion

correction is essential in in vivo dynamic PET imaging, espe-

cially in cardiac applications where the heart motion affects

quantitation.30 Including motion correction in our PCG-based
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direct reconstruction would make it more practical for in vivo

study.

5. CONCLUSION

We have proposed a novel preconditioner for direct PET

parametric reconstruction based on the PCG approach. We

applied our approach to a realistic cardiac simulation study

to estimate the myocardial blood flow. The PCG with the pro-

posed preconditioner increases significantly convergence rate

of the reconstruction as compared to the CG. Our direct ap-

proach yields lower SD with the same bias as compared to the

indirect approach. Such improvement is more pronounced for

low-count studies and defect regions in the myocardium.
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