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Abstract 

 

A new joint inversion algorithm to directly estimate reservoir parameters is described. This 

algorithm combines seismic amplitude versus angle (AVA) and marine controlled source 

electromagnetic (CSEM) data.  The rock-properties model needed to link the geophysical 

parameters to the reservoir parameters is described.  Errors in the rock-properties model 

parameters, measured in percent, introduce errors of comparable size in the joint inversion 

reservoir parameter estimates.  Tests of the concept on synthetic one-dimensional models 

demonstrate improved fluid saturation and porosity estimates for joint AVA-CSEM data 

inversion (compared to AVA or CSEM inversion alone).  Comparing inversions of AVA, 

CSEM, and joint AVA-CSEM data over the North Sea Troll field, at a location with well control, 

shows that the joint inversion produces estimated gas saturation, oil saturation and porosity that 

is closest (as measured by the RMS difference, L1 norm of the difference, and net over the 

interval) to the logged values whereas CSEM inversion provides the closest estimates of water 

saturation.  

 

Introduction 

 

The estimation of reservoir parameters from geophysical data is the goal of most geophysical 

surveys performed in the context of hydrocarbon exploration and production.  In recent years the 

focus has been on the use of time-lapse seismic data for predicting changes in pressure and fluid 

saturation (Tura and Lumley, 1999; Landro, 2001; Lumley et al., 2003).  Predictions of changes 

in pore pressure (Pp) and water saturation (Sw) can be done when there is only oil saturation (So) 

and Sw, since there are only two independent variables, Pp and either Sw or So (So+Sw = 1), to be 

derived from two data (acoustic impedance and shear impedance). The presence of gas 

complicates the problem by introducing a third independent variable, gas saturation (Sg) which 

causes, for example, the change in So as a function of the change in shear and acoustic 

impedance to become multivalued.    

 

Another interesting case arises in the exploration for economic gas deposits, where 

determining the level of Sg is critical.  While the amplitude of reflections as a function of the 

source-receiver offset (AVO), or versus angle (AVA), can be used to estimate Sw and So, its use 

for Sg is more problematic. The state of affairs for seismic gas exploration using AVO was 

summarized by Castagna (1993): “According to Gassmann’s equations, a gas sand with 1 percent 

gas saturation can have the same Vp/Vs as a commercial accumulation of gas. Thus, unless 



density can be very accurately extracted utilizing far offset information, AVO cannot distinguish 

commercial and noncommercial gas accumulations.” Subsequent research on the inversion of 

AVA data to predict seismic parameters (Debski and Tarantola, 1995; Drufuca and Mazzotti, 

1995; Plessix et al., 2000; Buland and More, 2003) has concluded that density is the least well-

determined parameter in any form of AVA inversion and cannot be reliably estimated for 

practical purposes. Thus, current seismic technology cannot reliably be used to distinguish 

economic from noneconomic gas accumulations, resulting in significant exploration losses.  

 

 
 

Figure 1. Reference point for calculations is porosity (φ) = 0.2, Gas saturation (Sg) = 0.5., Soil

= 0.  Panel a) color contours of ∆Sg as a function of %∆ AVO intercept (A) and %∆ AVO 

slope (B).  Panel b) color contours of ∆φ as a function of %∆A and %∆B. Note that the axes 

for ∆Sg are a factor of 10 smaller than for ∆φ.

A simple rock-property modeling exercise is illustrative of the relative sensitivity of AVO 

data to gas saturation and porosity of sand encased in shale. We use parameters for sand and 

shale from a log in the Troll Field, North Sea, to be discussed below.  The rock properties model 

for unconsolidated sand described by Dvorkin and Nur (1996) is used for calculating the Vp, Vs, 

and density (ρ) as a function of Sg and porosity (φ), in a brine-gas system, at reservoir conditions.  

The AVO intercept (A) and slope (B) (Aki and Richards, 1980) are calculated from Vp, Vs, and 

ρ.  To see the sensitivity of A and B to changes in Sg and φ, the change in (∆) A and B are 

calculated for values of Sg and φ that increment above and below reference values of Sg=0.5 and 
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φ=0.2.  Figure 1 presents maps of the change in Sg and φ.  The contour intervals are 0.1 in Sg 

(over a range 0.0-1.0) and 0.02 in φ (over the range 0.1-0.3), so that each contour interval 

represents a 10% change.  In Figure 1, the origin corresponds to the reference case (Sg=0.5, 

φ=0.2).  Contour lines represent constant φ in the case of ∆Sg (Figure 1a) or constant Sg in the 

case of ∆φ (Figure 1b).  The calculations show that increasing Sg by 10% (from 0.5 to 0.6) would 

produce a 3.1% decrease in A and a 0.22% increase in B (Figure 1a).  By contrast, increasing 

φ by 10% (from 0.2 to 0.22) produces a 158% decrease in A and an 8% decrease in B (Figure 

1b).  These calculations can be recast in terms of changes in Vp and Vs or in terms of changes in 

acoustic and shear impedance with the same relative importance of φ versus Sg.  The conclusion 

is that differences in A-B, Vp-Vs or acoustic-shear impedance produced by differences in Sg 

(excluding Sg values in the range of 0.0 to 0.1) are too small to be accurately estimated, given 

realistic noise levels of seismic data.  On the other hand, differences in A-B, Vp-Vs or acoustic-

shear impedance produced by differences in φ are one to two orders of magnitude larger than 

those produced by Sg, and should estimable from high-quality seismic data. 

In contrast to the insensitivity of seismic 

attributes such as Vp-Vs, AVO slope and 

intercept or acoustic-shear impedance to gas 

saturation, the electrical resistivity of reservoir 

rocks is highly sensitive to Sg, through the link 

to water saturation. This sensitivity can be 

seen using Archie’s law (Archie, 1942), which 

has been demonstrated to accurately describe 

the electrical resistivity of sedimentary rocks. 

Figure 2 shows the bulk resistivity (Rbulk) as a 

function of Sg=(1–Sw) for a sand having 25% 

porosity and brine salinity of 0.07 ppm at 60
0
C 

(Rw= 0.05 Ω-m).  The relationship between 

Rbulk and Sg has the advantage of the steepest 

slope in Rbulk occurring in the Sg range from 

0.5 to 1.0, where the division between 

economic and noneconomic Sg usually occurs. 

 

The means of providing estimates for Rbulk 

have recently become available through the use of controlled-source electromagnetic sounding 

systems.  Developments over the last decade in the petroleum application of marine 

electromagnetic systems were driven, first, by the need for structural information in areas where 

high-velocity materials such as salt or basalt covered prospective sediments. Both CSEM and 

passive source magnetotelluric (MT) systems were considered for petroleum-related exploration 

(Hoversten and Unsworth, 1994). It was noted from the beginning that CSEM systems have 

superior resolving capabilities when compared to MT, but the logistics of deployment and ease 

of data interpretation favored MT, resulting in a preponderance of work on marine MT systems 

(Hoversten et al., 1998; Constable et al., 1998; Hoversten et al., 2000). The development of 
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CSEM systems actually predates the marine MT systems, in which CSEM was used for crustal 

investigations of the deep oceans (Filloux, 1983; Constable, 1990; Constable and Cox, 1996). In 

the last few years, attention has been focused on the use of CSEM systems in direct 

detection/mapping of hydrocarbons (Ellingsrud et al., 2002). 

 

A marine CSEM system consists of a ship-towed electric dipole source and a number of 

seafloor deployed recording instruments capable of recording orthogonal electric fields.  In the 

last few years, a number of contractors have begun offering marine CSEM data on a commercial 

basis.  Marine CSEM data has the potential to enhance the prediction of reservoir parameters 

over that which can be done using industry-standard AVA techniques alone, because of its high 

sensitivity to water saturation.  In this paper we illustrate the benefits of joint AVA-CSEM 

inversion for estimating fluid saturations and porosity from synthetic and field data.  

 

Model Parameterization 

 

There are substantial differences in the nature of energy propagation in the earth caused by a 

seismic source as opposed to a CSEM source.  Of particular importance to the joint inversion of 

seismic AVA and marine CSEM data is the high attenuation of electromagnetic energy 

compared to that of seismic energy.  After appropriate seismic processing (including amplitude 

recovery), we will assume that the seismic attenuation in the earth above the target interval (the 

overburden) have been accounted for and so can be neglected in the seismic modeling.  

However, this assumption cannot be made for modeling CSEM data, because the effects of the 

overburden on the target zone response are large and cannot be estimated independently, as is the 

case with velocity analysis.   This means that the CSEM calculations require a model with 

electrical conductivity described from the sea surface down (an infinite air layer is also 

included), while the seismic calculations only require reflection coefficients to be calculated over 

the area of interest. 

 

Since the CSEM and AVA 

calculations require different model 

domains, we have chosen to 

parameterize the model as illustrated in 

Figure 3.  Layers of variable thickness 

(layer thickness can be an inversion 

parameter) are common to all zones of 

the inversion domain.   The electrical 

conductivity (σ) from the air-sea 

interfaced to the top of the reservoir 

interval are parameters.  A zone above 

the reservoir interval is also 

parameterized by Vp, Vs, and density 

(ρ). The reservoir interval is 

parameterized by porosity (φ) and fluid 

saturations (Sw, Sg, So).  Pore pressure 

Figure 3: Inversion domain. Target zone is 

parameterized by Sw, Sg, So, and φ.  Target zone is 

surrounded by Vp, Vs and density zone for AVA 

data and surrounded by conductivity zone for 

CSEM data.
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is also included in the algorithm, but will be assumed constant for the examples shown here.  

Below the reservoir, layers are again parameterized by σ, Vp, Vs, and ρ.  Above the target zone, 

σ is required for the solution of the CSEM forward problem.  Overburden Vp, Vs, and ρ above 

the target are required for two reasons.  First, the time interval for the seismic data used in the 

inversion is chosen from a time-to-depth conversion based on the available velocity model, 

which may be in error.  If the depth to the top of the target (reservoir) zone does not exactly tie to 

the selected time window, the inversion can adjust Vp above the target zone as a correction.  

Secondly, log information required to calculate the rock properties model is usually only taken 

within the reservoir, so that we can only describe the target zone itself in terms of fluid 

saturations and φ. However, we need properties for the layer directly above the reservoir to 

calculate the reflection coefficient at the top of the reservoir.  The Vp, Vs, and ρ below the target 

interval are not strictly required, but provide continuity in the seismic data fit at times below the 

reservoir. 

 

Inversion Algorithm 

 

We have chosen to cast the inverse as a nonlinear least-squares problem, in which we 

minimize the Tikhonov functional (Tikhonov and Arsenin, 1977)  

 

[ ]( ){ } [ ]( ){ } ( )1
1/ 2 / 2

T
obs obs TT

F m d F m d m W WmDθ λ−= − − +   (1) 

 

where T denotes transpose. W is a regularization matrix (we use the first spatial derivatives of the 

model parameters) that does not depend on m, and F[m] is the forward model to produce a 

calculated response to be matched to the observed data, d . The data covariance matrix, D,
obs

 has 

estimated data variances on the diagonal and zeros off the diagonal.  This is a common approach 

in geophysical inverse problems.  Buland et al. (1996) applied Levenberg-Marquardt damped 

least-squares to AVO inversion of data from the Troll Field, where their algorithm uses the 

identity matrix rather than (  in Equation (1).    )TT
m W Wm

 

This approach is often referred to as a local (Tarantola, 1987) optimization as opposed to a 

global optimization (Xie et al., 2000).  While a global approach is preferable for problems where 

the computational costs of the forward problems are low, they become impractical when the 

forward calculations become time- and/or memory-intensive. How much time and memory is 

considered too much increases each year with the advance of computer technology, but in 

general, any multidimensional geophysical forward problems involving wave propagation still 

are “too much” for most global inverse applications.  The work reported on in this paper 

represents the first steps in a larger program to develop 3D joint seismic-CSEM inversion, and as 

such the algorithms are to be applied to 3D forward problems in the future.  

 

One dimensional seismic AVA modeling uses the Zoeppritz equation (Aki and Richards, 

1980) to calculate the angle dependent reflectivity, which is convolved with an angle-dependent 

 5



wavelet to form the calculated seismic data.  The CSEM calculations are an integral equation 

solution for the electric (E) field from an electric dipole source located within a layered media 

(Ward and Hohmann, 1987).  These forward models provide the derivatives of data with respect 

to the geophysical parameters (Vp, Vs, ρ and σ) that form the Jacobian (J) of normal geophysical 

inverse problems.  The chain rule for derivatives is used to calculate the derivatives of the object 

function to be minimized (θ ) with respect to the reservoir parameters.  Equation (2) shows the 

derivative of θ  with respect to Sg in terms of all the required partial derivatives.  

 

 
p s

g g p g s g

V V

S S V S V S
g

S

θ θ σ θ θ θ

σ ρ

∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

ρ

T

1

    (2) 

 

The first half of each term on the right of Equation (2) comes from the geophysics, and the 

second half from the rock-properties model.   

 

The partial derivatives relating changes in geophysical data with respect to changes in model 

parameters are calculated by finite-differencing of forward solutions about the current model for 

fast 1D problems, and by the adjoint method for the CSEM portion of the problem using finite 

difference methods (Newman and Hoversten, 2000) for 3D problems.  The model parameters can 

be any reservoir parameter (i.e., water saturation, oil saturation, gas saturation, porosity, and pore 

pressure).  In the examples presented in this paper, fluid saturations and porosity are considered 

as inversion parameters, with pore pressure held constant.  

    

Linearizing (1) about a given model, m
i
, at the i

th
 iteration produces the quadratic form;  

 

1
T T T T T TT T

i i iSJ J S J SJ S W W C C m SJm S d C hλ α δ α+  + + = + +   (3) 

where  is solved for using a quadratic programming algorithm (Fletcher and Jackson 1974) 

that allows for upper and lower bounds on the parameters. S is a matrix containing the 

reciprocals of the data standard deviations such that

1i
m +

2
S D

−= .  The current difference between 

calculated ( ) and observed data ( d ) is given byid
obs ob

id dδ s

d i= − .  The Lagrange multiplier 

(trade-off parameter) λ is adjusted from large to small as iterations proceed.  That the fluid 

saturations sum to unity can be imposed as an additional constraining equation,Cm , where 

1’s in the rows of C multiply the saturations in 

i
h=

1im + , and the elements of h corresponding to 

sums of saturations equal 1.  Elements of h that correspond to porosity are 0.  The α is fixed at a 

value (100 in these examples) large enough to insure Cm
i

h=  to within a very small tolerance.  

When variable layer thicknesses are added to the parameter vector, an additional row is added at 

the bottom of C with 1’s at positions corresponding to layer thickness in the parameter vector, 

and an additional value equal to the desired total thickness of the variable layers is added to the 
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end of h.  This addition provides the further constraint that the inversion interval has the total 

thickness of the reservoir interval. 

 

The parameter covariance of m is: 
1

( )
T T

Cov m M SJMJ S 1− −=     (4) 

where 
T T T T

M J S SJ W W C Cλ α= + +   .    (5) 

 

There are many approaches for setting λ in the inversion.  Constable et al. (1987) use a 

golden section search for determining λ,  which requires on the order of ten additional forward 

problem calculations per iteration, in addition to those required for calculation of the Jacobian.  

This approach is robust, but the run time requirements are impractical for full 3D CSEM 

inversion.  Instead, we have adopted a simpler approach described by Newman and Alumbaugh 

(1997), one that has been demonstrated to be effective for large-scale CSEM problems.  In this 

scheme, λ  is selected as the iteration weighted maximum row sum of the matrix product 
T TJ S SJ  , where 

( 1)

1
1

/ 2
np

i

mj
m np

j

Max aλ −

≤ ≤
=

= ∑  .    (6) 

 

Here amj is an element of T TJ S SJ , np is the number of parameters, and i is the inversion 

iteration number.  



 

Rock-Properties Model 

 

Direct inversion for the reservoir parameters requires a rock-properties model that links the 

reservoir and geophysical parameters. The model we have adopted uses the Hertz-Mindlin 

(Mindlin, 1949) contact theory for the dry frame bulk ( ) and shear ( ) moduli of a dense, 

random pack of spherical grains. Modified Hashin-Shtrikman lower bounds (Hashin and 

Shtrikman, 1963) are used to calculate the effective moduli for porosities below the critical 

porosity.   This model is described by Dvorkin and Nur (1996) as applied to modeling velocity-

pressure relations for North Sea Sand stones, and its use in combined seismic and EM inversion 

is described by Hoversten et al. (2003).  Archie’s law (Archie, 1942) is used to model electrical 

resistivity as a function of φ and S

dry
K

dry
G

, oilK Kw.   The fluid bulk moduli ( ) and densities 

(

,brine gK

brine
ρ ,

oil
ρ , gρ ) of brine, oil, and gas respectively are computed using relations from Batzle and 

Wang (1992).  
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The field data examples presented in this paper come from the Troll Field in the North Sea.  

Seismic rock-properties model parameters are found by using a simplex algorithm to minimize 

L1, given by Equation (7). 

1
1 1

obs calc obs calc
p p

N N

V VL ρ ρ−= +∑ ∑ − ,    (7)  

where 

 are 

the sonic log compressional 

velocity, model-calculated 

compressional velocity, log 

density, and model calculated 

density, respectively.  The 

units used in defining L

, , ,obs calc obs calc
p pV V andρ ρ

1 are 

m/s and Kg/m
3
, so that the 

velocity and density have 

approximately equal numerical 

magnitude and hence equal 

weight in the value of L1.  If shear-velocity logs are available, Vs data misfit can be added to L1.   

Log data from a well approximately 4 km to the northeast of the site used for the inversion tests 

(to be discussed below) was used to derive the rock-properties model.  Figure 4 shows the log 

data with the calculated fit over the reservoir interval.  Table 1 shows the parameters fixed in the 

inversion (assumed known) and those determined by the regression.  The values for the Shear 

modulus, grain Poisson ratio, and grain density are very close to that of feldspar.  For the 

inversions of Troll Field data, the parameters shown in Table 1 were used. 

Table 1. Fixed Parameters for rock-properties model 

regression and parameters determined from the regression. 

 

Fixed Parameters  Regression Fit 

Critical Porosity 0.38  Grain Shear Mod. 22.5 

Oil API 28.5  Grain Poisson 0.34 

Brine Salinity 0.07  Grain Density 2567

Gas Gravity 0.59  # Contacts/grain 13.5 

Temperature (C) 65    

The three parameters, C, m and n, of Archie’s law, Equation (8), are found by linear 

regression in the log10 domain: 

m n

bulk w
R CS φ− −=                  (8) 

Employing the Sw, Rbulk, and φ logs from the same well used for the seismic model 

parameters yielded values of 0.78 Ω-m, 1.31 and 0.14 for C, m, and n, respectively.  The low 

value of n indicates very little sensitivity to porosity.  This was also noted in developing Archie’s 

law parameters for logs from the Snorre field in the North Sea (Hoversten et al., 2001) and was 

caused, in that case, by clay filling the pore space.  The effects of the small value of n on the 

inversion for porosity will be discussed further below.  
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Figure 4. Rock-properties regression fits for data from a well 4 km to the northeast of the site 

where AVA and CSEM data are jointly inverted.  Log Vp, density and Vs (blue crosses) 

compared to calculated values (red line) from regression fit are shown in the left most three 

panels.  Input saturations and porosity are shown in right panel. 
 

Synthetic Example 

 

To illustrate the properties of the individual and combined inversion of AVA and CSEM data, 

we have constructed a simple five-layer model, from the rock-properties parameters given in 

Table 1 and the Archie’s law parameters given above.  The synthetic AVA data is sampled at 2 

ms for seven angles (7.2, 13.5, 19.7, 25.6, 31.1, 36.3, and 41.0 degrees).  Gaussian random noise 
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was added, starting with a signal-to-noise ratio (SNR) of 5 for the first angle and decreasing to a 

SNR of 2.5 for the far angle.  The CSEM data is the amplitude and phase of the electric field at 3 

frequencies (0.25, 0.75, 1.25 Hz) for 8 source-receiver offsets (0.775, 1.7, 2.5, 3.3, 4.1, 4.5, 5.7, 

and 6.5 km) from an electric dipole source 50 m off the seafloor and electric field receivers on 

the seafloor.  Twenty percent Gaussian noise was added to the electric fields at the near offsets, 

increasing to 40 % at the maximum offset. The model has 1 km of seawater, with the target zone 

1.4 km below the sea floor.  Overburden (between seafloor and top of the target zone) 

conductivity is 1 Ω-m. The target zone is comprised of five 25 m thick layers, each with variable 

φ and Sg, with So = 0.  

 

We tested two starting models: (1) all five layers with constant Sg = 0.5, φ  = 0.2 within the 

target zone, and (2) Sg = (0.7, 0.2, 0.7, 0.2, 0.7), φ = (0.2, 0.2 ,0.2, 0.2, 0.2) for the five layers 

from top to bottom within the target zone.  AVA-only, CSEM-only, and joint AVA-CSEM 

inversions are presented to illustrate the sensitivities of the data used separately and together.  

The target RMS misfit of the error-weighted data was 1.0 and was reached in all inversions 

unless otherwise stated. 

 

 
 

 
Figure 5. CSEM-only inversion of synthetic model target zone.  True values are + symbols. 

Starting values (green line), from top to bottom layer were Sg = (0.2, 0.7, 0.2, 0.7, 0.2), φ = 

(0.2, 0.2, 0.2, 0.2, 0.2). Blue lines show final parameter estimates from inversion.  Black 

dashed lines represent +- 1 standard deviation of model parameters.

Both CSEM-only and AVA-only inversions that began with uniform Sg=0.5 failed to 

converge to a model anywhere near the true model.  Both inversions became trapped in local 

minimum in the object function, far from the true model.  In order for either CSEM-only or 
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AVA-only inversions to converge to a nearly correct model they had to be started from Sg = (0.7, 

0.2, 0.7, 0.2, 0.7), φ = (0.2, 0.2 ,0.2, 0.2, 0.2).  This starting model, with layers 2 and 4 having 

higher Sg than the surrounding layers, produces individual inversions (CSEM -only and AVA-

only) that distinguish the two high Sg layers.  Figure 5 shows the results of using the CSEM data 

only; Figure 6 shows the results of using only AVA data.  Using only the CSEM data produces 

Sg estimates that are very close in the high Sg layers and no more than 0.08 off in the low Sg 

layers.  However the Sg standard deviations are large and only plot on the scale of the figure for 

the high Sg layers.  The CSEM-only inversion provides essentially no information about the 

porosity. 
 

The inversion of the AVA data produces better estimates of Sg in the top and bottom layers 

(low Sg), with much lower parameter standard deviations overall.  The Sg estimate of the second 

high Sg layer is less accurate than that of the CSEM inversion.  The seismic inversion has 

produced much better estimates of layer porosities when compared to the CSEM inversion. 

 

 
 

 
Figure 6. Inversion for gas saturation (left panel) and porosity (right panel) of synthetic model 

target zone, using only seismic AVA data.  True values are + symbols.  Starting values (green 

line), from top to bottom layer were Sg= (0.2, 0.7, 0.2, 0.7, 0.2), φ = (0.2, 0.2, 0.2, 0.2, 0.2). 

Blue lines show final parameter estimates from inversion.  Black dashed lines represent +- 1 

standard deviation of model parameters. 
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For the joint inversion of both the CSEM and AVA data, each data is weighted only by its 

assigned data errors.  No relative weighting between CSEM and AVA data in Equation (2) was 

used, although this may be considered in certain circumstances if there is reason to believe that 

one data set should dominate (e.g., the CSEM data is thought to be highly 3D, so that the 1D 

assumption is less valid for the CSEM than for the seismic). 

 

Figure 7 shows the Sg and φ estimates from jointly inverting both the CSEM and AVA data 

sets.  The CSEM and AVA observed and calculated data from the inversion are shown in 

 

 
 

Figure 7.   Inversion for gas saturation (left panel) and porosity (right panel) of synthetic 

model target zone, using seismic AVA and CSEM data.  True values are + symbols.  Starting 

values (green line), from top to bottom layer were Sg = (0.2, 0.7, 0.2, 0.7, 0.2), φ = (0.2, 0.2, 

0.2, 0.2, 0.2). Blue lines show final parameter estimates from inversion.  Black dashed lines 

represent +- 1 standard deviation of model parameters. 

Figures9 and 10 respectively.  The starting model here is the constant Sg and φ that caused both 

the CSEM and AVA inversions to find local minima that were not close to the true model.  Here, 

the CSEM data has provided enough low wave number information so that when the seismic 

data is added, the joint inversion does not get trapped in local minima and produces a final model 

close to the true model.  In general, the estimated Sg and φ are closer to the true values in the 
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joint inversion when compared to either the AVA- or CSEM-only inversions.  The Sg estimates 

from the joint inversion are the same or better than those from the AVA-only inversion.  In 

particular, the Sg estimates of the lower two layers are significantly closer to their true values in 

the joint inverse model (Figure 7) when compared to the AVA-only inverse model (Figure 6).  In 

addition, the parameter standard deviations of the Sg estimates are decreased.  The parameter 

standard deviations of the φ estimates are slightly increased in the joint inverse estimates when 

compared to the seismic only standard deviations.  However, φ estimates for the first three layers 

are the same for the joint and AVA-only inversion, and the φ estimates of the lower two layers 

re improved in the joint inversion.  

 

 

a

Figure 8.  Synthetic marine CSEM data (red dashed curves with error bars) from the true 

model and calculated data (solid blue curves) from the joint inversion of synthetic AVA and 

CSEM data to produce the inverse model shown in Figure 7.  The left panels are amplitude of 

the received electric field and the right panels are the phase of the received electric field. 
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Figure  9.   Observed, calculated and difference AVA data for joint inversion model shown in 

Figure 7.  Left panel, synthetic data (considered as observed data by inversion) with SNR = 5 

to 2.5 from near to far angle respectively.  Middle panel calculated data from joint inverse 

model shown in Figure 7.  Right panel, difference between observed and calculated data.   

Sensitivity to Rock-Properties Model Parameters  

 

parameters that control Kdry (grain density, grain shear modulus, critical porosity, number of 

For Sg and φ, the inversion of either the CSEM or seismic data in isolation or in combination 

relies on the parameters of the rock-properties model, which can be determined by laboratory 

core measurements and/or regression fits to log data as described above and in Hoversten et al. 

(2003).  To check the sensitivity of the inversion to errors in the rock-properties model, the joint 

inverse shown in Figure 7 was run successively with 5% errors in each of the rock-properties 

parameters, and the mean error on φ and Sg was calculated (Figure 10). The red line in Figure 10 

shows the mean errors in the Sg and φ estimates with exact rock-properties parameters.  The 
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grain contacts, and grain Poisson ratio) are the most important.  The inverse estimates of φ are 

less sensitive to rock-properties errors than is Sg.  The sensitivity to parameters controlling Kdry  

 

 
 

Figure 10. Mean absolute errors in inversion parameters for 5% error in rock properties 

parameters. Mean errors in Sg estimates are shown in panel (a). Μean errors in φ estimates are 

shown in panel (b). 

can be understood by considering the Hertz-Mindlin representation of Kdry; 
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where φ0 is the critical porosity (the porosity above which the grains become a liquid 

suspension), Peff is the effective pressure, ν is the grain Poisson’s ratio, Ggrain is the grain shear 

modulus, and  l is the average 

number of grain contacts per 

grain.  Since Kdry is a non-

linear function of φ0,  l, 
ν, Ggrain, and Peff, using Kdry 

directly would be preferred if 

core measurements of Kdry are 

available.  When Kdry is used 

as a bulk parameter, not 

calculated from Equation (9), 

5% errors on Kdry  produce 

approximately 7% and 4% 

rrors for estimated Sg and φ 

Tro

e

respectively. 

 

ll Field Data 

 

Seismic and marine 

CSEM data were acquired 

over a portion of the Troll 

Field in 2003.  Figure 11 

shows the location of the 

marine CSEM line (dashed 

line between receiver sites 1 

and 24).  Well 31/2-1 

intersects the reservoir 

beneath the CSEM transect, as 

shown by the arrow in Figure 

11.   The CSEM receiver units 

were laid out in a line, with 

nominal separation of 750 m 

between location 1 and 24.  A 

200 m electric dipole 

transmitter, producing 200 

amps, was towed at 

approximately 2 knots along 

the receiver line in both 

directions, producing data at 

the receivers for transmitters on either side of the receiver. The electric dipole transmitter is 

nominally aligned with the survey line, course corrections and ocean currents produce some 

variation in the orientation of the transmitter along the line.  The received CSEM data along with 

Figure 11. Troll top reservoir (Sognefjord) two-way time in  

seconds (after Hwang and McCorkindale, 1994). Marine  

CSEM line from Receivers 1 to 24.  The location of the 

intersection of well 31/2-1 with the vertical plane containing 

the CSEM line is shown by the black arrow. 
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the transmitter locations and current are recorded as time series.  In postprocessing, the CSEM 

time series are averaged to produce in-phase and out-of-phase electric field for average 

transmitter locations spaced 100 m apart along the line.  The transmitter fundamental is 0.25 Hz.  

There is sufficient power to extract the third and fifth harmonics, so that three frequencies (0.25, 

0.75, and 1.25 Hz) were acquired. 

 

 
 

Figure 12 shows the CSEM data converted to amplitude and phase of the electric field in the 

line direction (roughly parallel to the transmitter dipole orientation) from the receiver nearest the 

31/2-1 well.  If the earth had a one-dimensional conductivity structure (as the inversion forward 

e east are plotted in red. 

Figure 12.  Electric field amplitude (upper row) and phase (lower row) at 0.25, 0.75, and 1.25 

Hz as a function of the source-receiver offset (m) at a CSEM receiver near the 31/2-1 well. 

Transmitter locations to the west of the receiver are plotted in black, transmitter locations to 

th
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model assumes) the response, both amplitude and phase, would be identical for transmitters on 

either side of the receiver.  We see that this is true for offsets up to about 4 km.  Beyond 4 km, 

the difference between data from transmitters on either side of the receiver increases with offset 

and frequency. The largest asymmetry occurs for the highest frequency phase data at a 5 km 

offs

e, we have 

averaged the EM data for transmitters on either side of the receiver, thus causing the centroid of 

the 

e pairs were 

generated from the 31/2-1 well and used to determine the time window for the seismic data, such 

that rvoir zone. 

g parameters, (2) the L1 norm of the differences 

between inversion and log parameters, and (3) the net, or integrated, value of the inverted and 

log

et. 

 

In general, the spatial sensitivity of the CSEM data to this dipole-dipole configuration is a 

function of source-receiver offset, earth conductivity, and frequency, with lower frequencies and 

larger offsets having sensitivity to deeper changes (Spies, 1989).  As the transmitter-receiver 

offset increases, the centroid of the sensitivity region moves downward and away from the 

receiver in the direction toward the transmitter.  To approximate a 1D respons

sensitivity region of the averaged data to be directly below the receiver location. 

 

The 3D seismic data was pre-stack time migrated and sorted into common-midpoint gathers.  

Normal move-out (NMO) and residual NMO was applied, along with multiple removal and 

filtering to a nominal zero-phase wavelet.  The offsets were converted to angles by ray-tracing a 

layered model with velocity and density taken from the 31/2-1 well.  Depth-tim

 the data covered the depth interval 100 m above and below the rese

 

Ground Truth for comparrison and conditions of inverse models 

 

No production has occurred in the area of the 31/2-1 well, where our data analysis takes 

place.  The nearest production is from the oil rim (approximately 13 m thick) several kilometers 

from our site.  It is expected that Sw has not changed by more than one or two percent since the 

logs were taken.  The high gas saturation zone extends from 1415 m to 1544.5 m.  There is a 

predominantly oil zone between 1544.5, the gas-oil contact (GOC), and 1557.5 m where original 

oil saturations were between 70 and 85%.  Between 1557.5 m depth and the bottom of the logged 

interval, at 1670 m, is a paleo-oil-zone where original oil saturations were 20 to 30%.  No gas or 

oil saturation logs are available, but time lapse seismic data has been interpreted as follows: 

Between the time of log measurements and the geophysical surveys used in this paper, 

production from the oil rim has lowered reservoir pressures enough that gas has been released 

from the oil in the oil- and paleo-oil-zones, resulting in a 5% increase in gas saturation in these 

zones.  We therefore use the logged Sw to calculate oil and gas saturation as follows; above 

1544.5m oil saturation (So) is assumed to be zero, and we assume Sg = 1-Sw, below 1544.5 m So 

= 1-Sw-0.05 and Sg = 0.05.   The logged Sw and calculated Sg and So are used for comparing the 

performance of the different inversions.  In addition to visual inspection of the results, we 

calculate three measures of agreement between the inversion predictions and the logs: (1) the 

RMS difference between inversion and lo

 parameters over the reservoir interval.  

 

 18



The starting model for all inversions of the Troll Field data have linear ramps in Sw and Sg 

such that Sw goes from zero to one and Sg goes from one to zero from the top to the base of the 

reservoir.  The initial So is set to zero.  The φ starting values came from blocking the φ log.  The 

bounds used in the quadratic programming solver of Equation (3) were set at +- 0.3 for Sw and Sg 

(subject to a minimum and maximum of 0 and 1, respectively) and +- 0.1 for φ from their initial 

values.  The upper bound on So is 0.1 above 1544.5 m where no oil was present in the original 

logs.  Below 1544.5, the So upper bound begins at 0.7 at 1544.5 and decreases linearly to 0.1 at 

the

with 

uniform layer thickness performed better than those starting with thicknesses derived from the 

AI 

ity 

overburden consisted of thirteen layers above the target zone.  In addition to fluid saturations and 

φ in the target zone, layer thicknesses were added as inversion parameters in the AVA-only and 

joint AVA-CSEM inversions to accommodate placement of the sparse reflection coefficients. 

reservoir (since the CSEM response is most sensitive to the presence of a resistor at the top of the 

 base of the reservoir to allow oil where it was originally present.  The lower bound on So is 

zero everywhere.   

 

A sparse-spike acoustic impedance (AI) inversion (Levy and Fullagar, 1981) was first done 

on the zero-offset AVA trace.  The layering from the acoustic impedance inversion was used to 

determine the minimum number of layers required in the reservoir interval.   Initial inversions 

were begun with the layer thicknesses determined from the AI inversions in time and converted 

to depth using the log acoustic velocity.  However, it was found that inversions starting 

time layers and assuming the log velocities, so the results shown in subsequent figures began 

with the number of layers determined from the AI inversion with a uniform 20 m thickness. 

 

Because the inversions begin with a large value of λ used in Equation (1) (on the order of 

1000 as determined by Equation (6)), the smoothing term dominates the initial iterations and 

produces the flattest model within the bounds on the first iteration.  The starting models shown in 

Figure 13 are the input starting models before the first iteration.  In subsequent inverse model 

plots for the AVA-only and joint AVA-CSEM inversions we show the model after the first 

iteration has smoothed the input model since this is effectively where the algorithm begins.  The 

target data RMS misfit is 1.0.  The target interval was divided into thirteen 20 m thick layers, 

with five seismic layers above and one seismic layer below the target zone.  The conductiv

 

CSEM-only inversion 

 

The inversion for the CSEM data nearest the 31/2-1 well (Figure 12) is shown in Figure 13. 

The RMS data misfit achieved was 1.05.  The CSEM data cannot distinguish between oil and gas 

since the electrical resistivity is only a function of Sw and φ, so only these parameters were used 

in the CSEM-only inversion.   The observed and calculated CSEM data is shown in Figure 14.  

Sw at the top of the reservoir is 0.04, and then increases with depth.  The inversion has decreased 

Sw from the starting model at the bottom of the reservoir and has smoothed out the blocked log 

porosity starting values to a mean porosity of 0.21 with higher porosity in the top 100 m of the 

reservoir.  The inversion reflects the relative sensitivity of the bulk resistivity to Sw and φ, as 

discussed in the rock-properties section.   The Sw standard deviations are small at the top of the 
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reservoir) and increase with depth, whereas the φ standard deviations are too large to plot on the 

scale of the figures (average standard deviation over the reservoir interval was 2.2).  A very 

small Archie’s law porosity exponent (low sensitivity to φ) translates to high variance in φ 

estimates.   

 

 
 

 

 
Figure 13.  Inversion for Sw (left panel) and φ (right panel) using only CSEM data. Red plus 

signs are log values, the green line is the starting model, and the blue line is final inversion 

model. Black dashed lines are the 1 standard deviation bounds.  Porosity bounds are too large 

to plot on the figure, with the average standard deviation equal to 2.2. 
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Figure 14.  Observed and calculated inline E amplitude (left column) and phase (right 

column) for CSEM-only inversion model shown in Figure 13. The total RMS data misfit is 

1.05. 

 

AVA-only  inversion 

 

Inversions of AVA-only and combined AVA-CSEM data were parameterized by Sw, Sg, So, φ 

and layer thickness within the reservoir zone.  Figure 15 shows the inverse model from inversion 

of the AVA-only data nearest the 31/2-1 well. The RMS data misfit achieved was 0.87.  The 

inversion has decreased Sw and increased Sg in the upper 100 m of the reservoir.  Porosity 

estimates are much closer to logged values than in the case of the CSEM-only inversion, with 

significantly smaller φ standard deviations compared to the CSEM-only inversion.  All 

inversions that include AVA data produce φ estimates with low parameter standard deviations.  

This is consistent with the high sensitivity the AVA response to changes in porosity as shown in 

Figure 1.   The inversion has estimated gas and water in the lower half of the reservoir rather 

than the oil that is present.  The depths of the top of gas, the gas-oil contact, and the top of the 

paleo-oil-zone and the base of the logged interval are marked as T1, T2, T3, and T4 respectively 

at times that have been converted using the log velocity. 
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Figure 15. Inversion estimates of water (left panel), gas (second from left), oil (second from 

right) and porosity (right panel) using only seismic AVA data. Red plus signs are log values, 

green line is parameter values after first iteration (when smoothing has flattened the starting 

model), and the blue line is the final inversion model.  Black dashed lines are one standard 

deviation of the model parameters.
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AVA-CSEM inversion 

 
Figure 16.  Observed seismic AVA gather (left panel), calculated AVA data from AVA-only 

inversion shown in Figure 15 (middle panel), and difference between observed and calculated 

AVA data (right panel).  Zero time corresponds 1300 m depth.  Times marked as T1, T2, T3, 

and T4 on right side of figure correspond to top of gas, gas-oil contact, top of paleo-oil zone 

and bottom of logged interval respectively.  The RMS data misfit is 0.87.  

 

Figure 17 shows the inversion of the CSEM and AVA data simultaneously.  The combined 

RMS data misfit is 0.91. The joint inversion has decreased Sw and increased Sg in the top 100 m 

of the reservoir, much as the AVA-only inversion.  However, the saturation estimates are much 

closer to the logged values in the lower half of the reservoir compared to the AVA-only 

inversion.  Here, the Sg has been reduced to near zero from the starting model, and So has been 

added.  The influence of the CSEM data has been to reduce the Sw in the lower half of the 

reservoir (as the CSEM-only inversion did), so that the Sw estimates from the joint inversion fall 

between those of the CSEM-only and the AVA-only estimates.  The parameter standard 

deviations have been reduced for all parameters, most significantly for Sw and So compared to 

the AVA-only inversion results shown in Figure 15.   
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Figure 17. Inversion for water (left panel), gas (second from left), oil (second from right), and 

porosity (right panel), using both seismic AVA and CSEM data. Red plus signs are log 

values, green line is parameter values after first iteration when smoothing has flattened the 

starting model, blue line is final inversion parameters.  Black dashed lines are one standard 

deviation bounds.

We note that the Sw levels in this interval (1,550 m to 1,670 m) correspond to Sw levels 

where Vp is least sensitive to changes in Sw.  Figure 19 shows the computed Vp, Vs, and density 

from the rock-properties model used in the inversion for brine-gas and oil-gas combinations.  Vp 

has a minimum at Sw =0.8, with only small variations between Sw =0.9 and 0.6.  The Sw in the 

lower half of the reservoir interval is mostly in this range.  In addition, the Vp and Vs sensitivities 

to substitution of oil or brine are very small.  The differences in Vp, Vs and density between an 

80%-20% brine-gas mix and an oil-gas mix of the same ratio is only 1.2%, 1.0% and 2.4% 

respectively.  The insensitivity of the seismic parameters to exchange of oil or brine results in the 

AVA-only inversion, substituting brine for oil in the lower half of the reservoir.  The advantage 

introduced by adding the CSEM data in the joint inversion is that it serves to constrain Sw.  With 

this added constraint the AVA data can distinguish between oil and gas saturations in the lower 
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portion of the reservoir.  Both AVA-only and AVA-CSEM inversion produce very similar φ 

estimates, the sensitivity to φ coming mostly from the AVA data.  However, the combined 

inversion provides lower parameter standard deviations than either CSEM-only or AVA-only 

inversions.  

 

None of the inversions (CSEM-only, AVA-only, or CSEM-AVA) have resolved the correct 

location of the GOC at 1544.5 m. The CSEM data by itself does not have the spatial resolution to 

locate the GOC.  The event on the AVA gathers marked T2 in Figures 16 and 18 corresponds to 

the depth of the GOC and both the AVA-only and the CSEM-AVA inversions have matched this 

portion of the AVA data.  Examination of the velocity and resistivity logs show that there is a 

smooth transition in velocity and resistivity through the oil zone from the GOC into the paleo-

oil-zone.  Surrounding hard streaks and porosity changes produce larger variations in velocity 

(and reflection coefficients) in this portion of the reservoir than that caused by the GOC.  Based 

on the resistivity and velocity logs we believe that the transition in Sg at the GOC is not as sharp 

as indicated in the calculated Sg and So logs shown in Figures 15 and 17 and that the inversion 

results reflect this fact. 

 

The CSEM data misfit is visually identical to that shown in Figure 15 for the CSEM data 

only inversion.  The slight increase in the data misfit for the AVA-CSEM inverse compared to 

the AVA-only misfit (0.91 compared to 0.87) is due entirely to an increase in the CSEM data 

misfit in the joint inversion.  We find that as the AVA-CSEM inversion iterations progress the 

CSEM data is fit first by the relatively smooth (high λ) models.  As the iterations increase and λ 

decreases, admitting rougher models, the AVA data misfit decreases and the CSEM data misfit 

increases.  Inconsistencies between the AVA and CSEM rock-properties models and differences 

in the spatial sensitivity of the two data sets are two likely sources of decreased data fit in the 

joint inversion. 

 

 

 

Table 2 shows the numerical measures for the agreement between the inversion estimates of 

fluid saturations and φ compared to the logs.  The lowest values (best) are highlighted in bold 

type.  The joint inversion produces the lowest RMS and L1 norm fit to the Sg, So and φ logs as 

well as net Sg, So and φ closest to the log over the reservoir interval.  The CSEM inversion

Table 2.  Numerical measures of fit between the inversion estimates of fluid saturations (Sw, 

Sg and So) and φ compared to the 31/2-1 well logs.  Log net Sw = 632, Sg = 831, So =262, 

φ =369.  The difference between the estimated and logged net values in the reservoir are 

annotated as ∆. 
 

  
Sw 

RMS 

Sw 

L1 
∆Sw Sg 

RMS

Sg 

L1 
∆Sg 

So 

RMS

So 

L1 
∆So 

φ 
RMS φ L1 ∆φ 

CSEM 0.15 192 104 na na na na na na 0.045 60 18 

AVA 0.27 356 86 0.38 459 131 0.23 459 218 0.049 67 13 

Joint 0.21 292 97 0.25 271 42 0.2 271 50 0.044 57 5 
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produces the lowest RMS and L1 norm fit to Sw.  The AVA-only inversion produces the lowest 

net Sw over the reservoir interval, slightly better than the CSEM-only inversion. 

 

 

 
Figure 18. Observed seismic AVA gather (left panel), AVA data calculated from joint seismic 

and EM inversion model shown in Figure 17 (middle panel), and difference between observed 

and calculated AVA data (right panel).  Zero time corresponds 1300 m depth.  Times marked 

as T1, T2, T3, and T4 on right side of figure correspond to top of gas, gas-oil contact, top of 

paleo-oil zone and bottom of logged interval respectively. The RMS data misfit is 0.91. 
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Figure 19. Reservoir bulk acoustic (blue), shear (red) velocity and density (black) calculated 

as a function of water or oil saturation using the rock properties model derived from logs and 

used in the inversions shown in Figures 15 and 17. 

 

Discussion and Conclusions 

 

We have developed an algorithm for joint AVA and CSEM inversion.  Tests on synthetic 1D 

models representing gas and petroleum reservoir scenarios show that combining AVA and 

CSEM data in an inversion for reservoir parameters produces better estimates, with lower 

variance, compared to either CSEM or AVA inversions done separately.  Analysis of error 

propagation through the rock-properties model shows that errors in the rock-properties model 

parameters introduce errors of comparable size (in terms of percent) in the joint-inversion 

reservoir parameter estimates.  Errors introduced by the rock-properties model can be reduced if 

laboratory-derived values for the dry-frame bulk modulus can be used (as opposed to computing 

the dry-frame bulk modulus from the nonlinear relations of the Hertz-Mindlin model).  Field data 

inversion results from the North Sea Troll Field are consistent with synthetic model results.  

Estimated gas and oil saturation and porosity from joint inversion are closer to the logged values 

by all numerical measures, than either CSEM or AVA inversion done separately.  The CSEM-

only inversion produces a better comparison to logged values for water saturation. 

 

The benefits of combining CSEM data with AVA are more striking in synthetic tests than in 

the field-data example presented here, although the joint inversion of field data does produce 
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closer agreement with logged values of Sg, So, and porosity with lower parameter standard 

deviations, than does inversion of either type of data done in isolation.  Part of the difference 

between the performance of the joint inversion on synthetic and field data is certainly a result of 

the large number of unknown noise sources inherent in the field data.  These include noise in the 

estimated angle-dependent wavelets and the possible presence of correlated (non-Gaussian) noise 

in both CSEM and AVA data sets.  The saturation and porosity logs themselves, assumed as 

ground truth, can be in error.  In addition, the 1D model may not accurately represent the actual 

earth.  This is more likely to be a problem for the CSEM data (which has a larger spatial 

footprint) than it is for the AVA modeling, although the assumption that all multiples have been 

removed and that true relative amplitudes have been recovered in the seismic data may also not 

be strictly valid.   

 

Many of the assumptions inherent in the algorithms presented here can be overcome by 

increasing the complexity of both the seismic and CSEM models.  The next improvement to be 

investigated would be the use of a 1D elastic seismic calculation that would include all multiples, 

mode-conversions, and waveform spreading.  The CSEM calculation will move from 1D to 3D.  

Both of these require significantly more computer time, with the 3D CSEM calculations 

dominating the computing budget and requiring implementation for parallel cluster computing.  

This work is currently under way.  It is also worth considering different types of seismic data for 

combination with CSEM.  In particular, seismic travel-time tomography may provide a better 

(certainly different) companion for CSEM data, in that the spatial scale of resolution would be 

more comparable. 

 

The limitations described above notwithstanding, there is benefit to be derived from 

combining CSEM with seismic data through joint inversion.  We hope that this work will 

stimulate others to pick up the investigation. 
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