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ABSTRACT 

Large scale rearing of coral larvae during mass spawning events and subsequent direct 

introduction of competent larvae onto denuded reefs (“larval seeding”) has been proposed as a 

low-tech and affordable way of enhancing coral settlement and hence recovery of degraded 

reefs. While some studies have shown positive short-term effects on settlement, to date, none 

have examined the long-term effects of larval seeding for a broadcast spawning coral. Here 

we test whether larval seeding significantly increases coral recruitment rates both in the short 

(5 weeks) and longer (~6 mo to 1 year) term. Larvae of Acropora digitifera were reared ex 

situ and approx. 1 million larvae were introduced to 7 artificial reefs (ARs) while 7 others 

were left unseeded. Settlement tiles deployed on both seeded and control ARs were retrieved 

for examination 5 and 30 weeks after seeding. In addition, the presence of visible coral 

recruits on the AR surfaces was monitored before and for ~13 months post-seeding. Density 

of acroporid spat was significantly higher on seeded tiles than controls 5 weeks after seeding 

but this effect had vanished by 30 weeks. Comparison of the densities of new visible 

Acropora recruits between seeded and control ARs showed no significant difference ~13 

months after seeding. Larval seeding therefore had no long term effect due to high post-

settlement mortality (which appeared to be density related). Results suggest that reef 

rehabilitation methods that aim to harness coral sexual reproduction might better focus on 

rearing juveniles through early post-settlement mortality bottlenecks. 

 

KEY WORDS: Larval seeding, Coral reef rehabilitation, Larval rearing, Acropora digitifera, 

Mass spawning, Density-dependent mortality, Palau  
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INTRODUCTION 

The role that active reef rehabilitation can play in the recovery of degraded coral reefs 

systems is contentious. Measures to actively rehabilitate reef ecosystems are expensive 

(Haisfield et al. 2010) and are not practised at geographical scales relevant to the scales of 

degradation (i.e., tens to thousands of square kilometres (Wilkinson, 2008)). Proponents of 

active rehabilitation argue however that more traditional management measures have largely 

failed and therefore we must explore and research active methods (Rinkevich 2005, 2008). 

Active reef rehabilitation typically involves artificially increasing the cover of hard corals on 

denuded reefs by transplanting asexually propagated corals, usually via an intermediate 

nursery phase using techniques analogous to those of silviculture for reforestation on land 

(Epstein et al. 2003, Rinkevich 2006, Shafir et al. 2006). 

More recently, sexual propagation methods have received increasing attention (see review by 

Omori & Iwao 2014). The potential advantage of sexual over asexual propagation techniques 

is that the former should result in much greater genotypic diversity of transplanted corals. In 

most cases, sexual coral propagation involves careful nursery rearing until corals have 

attained a “refuge” or “escape” size (i.e. a few cm in diameter) at which a high proportion of 

transplants will survive to become reproductively mature adults (Omori et al. 2008, Baria et al. 

2010, Nakamura et al. 2011, Villanueva et al. 2012, Guest et al. 2014). The ability however to 

directly enhance larval settlement rates by introducing high densities of competent coral 

larvae (“larval seeding”) to targeted areas of reef (Babcock & Mundy 1996, Richmond et al. 

1997, Heyward et al. 2002, Nonaka et al. 2003, Omori et al. 2004) has led to discussion of 

whether such techniques could be effective in reef rehabilitation (Richmond 1997, Hatta et al. 

2004, Omori & Fujiwara 2004, Amar & Rinkevich 2007, Edwards & Gomez 2007, Edwards 

2010, Suzuki et al. 2012, Omori & Iwao 2014).  

Previously, Heyward et al. (2002) and Omori et al. (2004) showed that mass rearing of 

millions of coral larvae from spawning slicks was feasible without laboratory facilities and 

could be used to enhance natural coral recruitment directly onto reef habitat by 10- to 100-

fold, albeit at small spatial scales of several square metres of reef. In those studies millions of 

coral larvae were raised from embryos in floating culture ponds until competent to settle and 

then released inside mesh enclosures placed over natural areas of reef (Heyward et al. 2002) 

or concrete blocks placed on the sea bed (Omori et al. 2004). The attraction of a method that 

involves directly enhancing coral larval settlement is that it does not require the costly and 

labour intensive husbandry required to rear corals to a transplantable size (Hatta et al. 2004, 

Omori 2005, Omori et al. 2008). A potential disadvantage of this approach is that there is 

little control over the factors affecting early post-settlement mortality. Like many benthic 

invertebrates (Hunt & Scheibling 1997), broadcast spawning corals have very high mortality 

rates during the early post-settlement period (Type III survivorship, sensu Deevey 1947), 

therefore, larval seeding is likely to be successful only if variations in recruitment to the adult 

population are determined primarily by settlement density rather than the extent of early post-

settlement mortality (Hughes 1990). If, on the other hand, the extent of early post-settlement 

mortality is related to initial settlement density, then methods that aim to enhance settlement 

alone may have little effect on adult abundance. Furthermore, if only about one in 10
4
 settled 

larvae survive to reproduce (Harriott 1985), then releasing tens to hundreds of thousands of 

larvae onto patches of reef is unlikely to be either an ecologically viable or a cost-effective 

option for reef rehabilitation.  

The primary aim of this study was to test whether supplying high densities of mass cultured 

coral larvae directly to denuded substrate would have any long-lasting effect on coral 

recruitment compared to control substrates with only natural supply. To achieve this aim we 



 3 

compared short-term levels of coral settlement (5 weeks after larval seeding) on tiles attached 

to artificial reefs and longer term recruitment (after ~6 months to one year) to both tiles and 

14 replicate artificial reefs, half of which received high densities of larvae and half of which 

received ambient larval supply during a mass coral spawning event.  

 

MATERIALS AND METHODS 

Experimental design 

Standardized artificial substrates (‘pallet balls’, Reef Ball Foundation, Inc.) were used as 

experimental units to mimic areas of denuded reef and avoid confounding effects of highly 

variable natural reef substrates on the settlement of corals. Pallet balls are 1.2 x 0.9 m (base 

diameter x height) concrete structures with exposed embedded limestone aggregates. Each 

pallet ball is divided into three panels, demarcated by humps produced by the mould used in 

the construction. The exposed, monitorable surface area of the pallet ball including rim was 

estimated at 2.94 m
2
 (0.98 m

2 
per panel). In January 2007, 14 pallet balls were deployed 3-5 

m apart on an area with sandy-rubbly substrate at 5-8 m depth adjacent to a natural reef at Iou 

Lukes reef, Palau (7°17.3’N 134°30.0’E). To provide a baseline against which to evaluate the 

larval seeding experiment in 2008, rates of coral recruitment to tiles and “visible” recruitment 

(Wallace 1983) to pallet ball surfaces were monitored both in the year before and after the 

experiment at approximately 6 monthly intervals. Seven of the 14 pallet balls were chosen at 

random to be treated with high densities of competent Acropora larvae in 2008, thus treated 

and control pallet balls were spatially interspersed on the study reef.  

Larval rearing 

The larval seeding experiment was carried out during the April/May mass coral spawning in 

2008 using the aquarium facilities of the Palau International Coral Reef Centre (PICRC). 

Gravid colonies (i.e. containing deeply pigmented oocytes in fractured branches) of Acropora 

digitifera with geometric mean diameters ranging from 18-35 cm were collected from reefs 

adjacent to the pallet ball site and Uchul a Chei reef (7°13.8’N 134°26.8’E) between 14 and 

21 April 2008 from depths of 1-4 m. A. digitifera was locally very common, with predictable 

spawning times, facilitating the larval rearing work. Colonies were removed from the reef by 

divers using a 2 kg hammer and cold chisel and were transported to land based aquaria in 

plastic coolers (>50 l) filled with seawater, where they were subsequently maintained in 

aerated, flow-through seawater tanks (approx. 1000 l). Several colonies were placed together 

in each tank so that gamete bundles would be immediately mixed if several colonies spawned 

synchronously. Each evening, water flow and aeration in the tanks was turned off at approx. 

17:30 h (approx. 30-40 minutes before sunset), artificial lighting in the aquarium was 

switched off and colonies were monitored for signs of spawning approximately every 30 min 

until 22:30 h or until spawning occurred.  

In situ observations and evidence from sampling indicates that a large mass spawning event 

occurred on 20 April involving a high proportion of mature A. digitifera at Iou Lukes reef, 

whereas colonies at Uchul a Chei reef spawned predominantly between 22 and 24 April (P. 

Mumby pers. comm, C. Boch unpublished data). Colonies kept in the tanks at PICRC 

spawned on 20, 22, 24, or 25 April. Bundle setting was observed between 19:00 and 19:30 h 

on nights of spawning, colonies were noted to start spawning between 20:20 and 20:50 h and 

gametes were mixed for fertilisation between 21:00 and 21:30 h. All colonies used for the 

experiment were returned to the reef post-spawning.  

Larval culture methods followed those described by Heyward & Negri (1999). When 

spawning of all colonies in the tank had finished, buoyant gamete bundles were scooped from 
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the surface of buckets using plastic cups and transferred to a 100 l polycarbonate fertilisation 

tank. Oocyte density was then estimated to establish the correct stocking density for the 

rearing tanks by counting numbers in 10 replicate 15-ml samples under a dissecting 

microscope. Samples were retained so that estimates of fertilisation success could be made 

approximately 2 h after mixing gametes. After 1 hour excess sperm were removed by gently 

scooping buoyant eggs from the water surface and transferring to clean seawater in a 50 l 

polycarbonate tank; these were immediately transferred to larger rearing tanks (one 1000 l 

fibre glass aquarium tank and three 4000 l inflatable paddling pools) at densities of not more 

than 300 larvae l
-1

. Rearing tanks were left static for at least 24 hours after which mild 

aeration was introduced and partial water changes were carried out periodically. Estimations 

of larval densities in each tank were done every day by stirring the culture to distribute 

embryos evenly while taking 10 replicate 50 ml samples and counting the number of larvae 

present under a dissecting microscope. Settlement competency of larvae was estimated by 

pipetting approx. 20 larvae into each of three 10-ml culture wells containing filtered sea water 

and a small chip of crustose coralline algae (approx. 5 x 5 mm) at 12 h and subsequently 

every 24 h after fertilisation. The number of larvae settled and/or metamorphosed in culture 

wells or on the chips was counted every 24 h post-fertilisation and the larval seeding 

experiment was started when >50% of larvae were competent to settle. Due to inadequate 

shading which led to excessive water temperatures, the first batch of larvae (20 April 

spawning) being reared in an inflatable paddling pool were lost. Thus only three rearing ponds 

were available for larval seeding. 

 

Table 1. Numbers of Acropora digitifera larvae seeded and mean density of acroporid spat on 

3-mo conditioned tiles 5 weeks after seeding. 

Pallet ball# Rearing pond Date seeded 

Approx. 

# larvae 

Spat per 

0.1 m² 

Enhanced 1 2 29/04/2008 200,000 459.8 

Enhanced 2 2 29/04/2008 200,000 305.8 

Enhanced 3 1 27/04/2008 40,000 119.8 

Enhanced 4 1 28/04/2008 40,000 54.6 

Enhanced 5 1 28/04/2008 40,000 160.7 

Enhanced 6 3 29/04/2008 260,000 158.5 

Enhanced 7 3 29/04/2008 260,000 175.4 

 

Larval seeding 

Competent larvae were introduced to the pallet balls on 27, 28 and 29 April (Table 1). Larvae 

were transferred from rearing tanks to a 50 l plastic cooler just prior to being transported to 

the study site. To contain larvae around the pallet balls, a hole was cut in the plastic ground-

sheets of generic camping tents and the inner mesh tent (polyester NoSeeUm mesh, nominal 

pore size 250 μm x 250 μm) was placed over each of the 7 treatment pallet balls (Fig. 1). The 

mesh, similar in size to the 200 μm mesh of a WP2 smaller mesozooplankton sampling net 

(Anonymous 1968), while possibly not an absolute barrier to coral larvae, particularly older 

more plastic forms, was expected to largely contain the introduced cohort. The tent base was 

reinforced and weighted down with a metal ‘re-bar’ base and lengths of rubber hose pipe were 

placed over the tent frame to make it flexible but durable. The tents were anchored to the 

substrate using the guy ropes attached to re-bar stakes hammered into the surrounding 

substrate. Competent larvae of Acropora digitifera that had been reared in tanks (see Table 1 

for numbers and dates) were transported in the plastic coolers and poured directly into the 

mesh tents from the deck of a boat by connecting a length of flexible plastic hose to a valve 
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on the top of each (Heyward et al. 2002). Mesh tents were left over each pallet ball for 24 h 

before being carefully removed. Seven of the 14 pallet balls were seeded and 7 controls were 

left untouched. For logistical reasons, no procedural control was done to test the effects of 

placing the mesh tents over the pallet balls for 24 h but not seeding with larvae.  

 
Fig. 1. Diver inspects inner mesh tent used to contain coral 

larvae around a pallet ball on Iou Lukes Reef, Palau on 28 April 

2008. Flexible plastic hose used to introduce high densities of 

competent Acropora digitifera larvae can be seen running to 

surface. 

 

Settlement on recruitment tiles 

To examine differences in coral settlement between treatments, 10 × 10 × 0.6 cm fibre cement 

tiles (Flexboard™) were attached with wing-nuts to stainless steel base plates which were 

attached to the pallet balls with Panduit™ masonry push plugs (Mundy 2000). On each pallet 

ball, there were twelve base plates arranged in 3 rows, c. 5, 25, and 45 cm below the pallet 

ball rim, with 4 plates equally spaced in each row. In mid-January each year from 2007-2009, 

at least 3 mo prior to expected peak in spawning (week following April full moon: Penland et 

al. 2004) recruitment tiles were attached to base plates on each pallet ball (Table 2). This 

allowed tiles to biologically condition (Baird et al. 2003, Webster et al. 2004, Segal et al. 

2012) for three months before peak spawning. Six recruitment tiles were attached to base 

plates on each pallet ball in 2007 and 4 per ball in 2008 and 2009 in the top and middle rows 

of each pallet ball. These tiles were retrieved 5-6 wk after the annual peak of coral spawning 

(Table 2). In 2008, a further 4 tiles were attached to base plates on the top and middle rows of 

each pallet ball 3 mo prior to larval seeding and retrieved 30 wk after seeding. In addition in 

2008, to investigate the effect of biological conditioning on coral larval settlement rates, four 

tiles were attached to base plates on the bottom row in each pallet ball only one week prior to 
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larval seeding. In three treated and three control pallet balls, these tiles were retrieved one 

week after treatment, while those on the remaining pallet balls were retrieved 5 wk after 

treatment. The recruitment of corals to these tiles conditioned for 1 wk was compared to those 

that had been conditioned for 3 mo in order to discover whether conditioning duration had a 

significant effect on the number of coral spat that settled. Retrieved tiles were bleached in a 

0.5% sodium hypochlorite solution for at least 48 h and then air-dried. Tiles were examined 

under a stereomicroscope for coral recruits, which were classified as either acroporid or non-

acroporid (pocilloporid, poritid, others) using family-specific morphological features of the 

skeleton as specified in Babcock et al. (2003). 

 

Table 2. Numbers of recruitment tiles deployed on 14 pallet balls (7 of which were seeded 

with Acropora digitifera larvae in April 2008). 

Year Total tiles Tiles/pallet ball Time after spawning retrieved 

2007 84 (3-mo conditioning) 6 6 wk 

2008 56 (3-mo conditioning) 4 5 wk 

 56 (1-wk conditioning) 4 1 wk (24 tiles); 5 wk (32 tiles) 

 56 (3-mo conditioning) 4 30 wk 

2009 56 (3-mo conditioning) 4 6 wk 

 

Coral recruitment to pallet balls 

In addition to examining settlement on tiles, “visible” coral recruitment on the exposed, 

monitorable surface of two randomly selected panels (total area 1.96 m²) of 7 treated and 7 

control pallet balls was censused during four occasions – before (November 2007) and after 

(June, November 2008 and May 2009) larval seeding. The coordinates (angle and distance 

from a fixed point at the centre of the panel rim) of each recruit were determined using a 

protractor and tape. This allowed new recruits to be distinguished from ones previously 

recorded at each monitoring survey and growth and mortality of individual recruits to be 

followed through time. The identity of each new recruit was determined to the lowest possible 

taxon, but is reported here as either Acropora spp. or non-Acropora recruit. The greatest and 

least diameter of each recruit (and where feasible height) was also measured at each survey. 

Statistical analysis 

Recruitment to tiles 

To avoid pseudo-replication (Hurlbert, 1984), counts from the 4-6 tiles retrieved from each 

pallet ball were combined to provide a single estimate of density of acroporid and non-

acroporid coral spat settling on tiles on each of 7 control and 7 treatment pallet balls. Since 

the total area available for settlement on tiles on each ball was approx. 0.1 m² (0.09 m² for 4 

and 0.13 m² for 6 tiles), densities of recruits are expressed per this unit of area. A few of the 

fibre-cement tiles were damaged by parrotfish grazing and using counts per unit area allowed 

data from such tiles to be included. Data were normalised by a logarithmic transformation, 

which also achieved reasonable homoscedasticity (Levene’s test, P > 0.15), prior to 

parametric analyses (e.g. ANOVA) in Minitab v.16.  

Recruitment to pallet ball surfaces 

Although recruit numbers are expressed per unit area to allow comparison to other studies, 

analysis was carried out on counts as the same surface area (1.96 m²) was surveyed on each 

pallet ball. Count data were normalised using a square root transformation, which also 

achieved homoscedasticity (Levene’s test, P = 0.947), prior to parametric analyses (e.g. 

ANOVA) in Minitab v.16. 
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RESULTS 

Settlement on tiles 

The primary question being addressed by the recruitment tile study was whether the seeding 

with Acropora digitifera larvae in 2008 was effective in terms of initially increasing acroporid 

settlement. However, since some of the 1-week conditioned tiles were retrieved one week and 

some five weeks after larval seeding, we first checked to see if the 4-week difference in 

retrieval time had affected acroporid spat densities recorded on these tiles. An analysis of 

variance using a general linear model with treatment and retrieval time as factors showed no 

significant effect of the 4-week difference in retrieval time (F1,11 = 2.08, P=0.177) so we were 

able to pool data from the 1-wk conditioned tiles in the subsequent analysis. Comparison 

between treated and control pallet balls of the densities of acroporid coral spat on both 1-wk 

and 3-mo conditioned tiles (Fig. 2) showed significantly increased settlement on seeded tiles 

in both cases (P=0.017 and P=0.002 respectively; two-sample t-test on log-transformed data, 

variances not assumed to be equal). Mean density of acroporids was 7.7 times higher on 1-wk 

conditioned tiles from seeded pallet balls compared to those retrieved from controls (mean = 

28.6 vs. 3.7 spat per 0.1 m
2
, respectively), whereas it was 4.1 times higher on 3-mo 

conditioned tiles (mean = 204.9 vs. 50.4 spat per 0.1 m
2
, respectively). A two-way analysis of 

variance showed that both conditioning (3-mo vs. 1-wk) and treatment (larval seeding) had a 

significant effect on acroporid settlement (conditioning: F1,24 = 68.20, P<0.001; treatment: 

F1,24 = 25.02, P<0.001) but that there was no significant interaction (F1,24 = 0.44, P=0.515). 

Tiles conditioned for 3 months had on average from 7.2 times (seeded tiles) to 13.6 times 

(controls) the density of acroporid spat as those conditioned for only one week. 
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Fig. 2. Effect of larval seeding and conditioning time on mean density 

(95% CI) of acroporid coral larvae settling on tiles deployed on 7 control 

pallet balls and 7 pallet balls treated with high densities of mass cultured 

Acropora digitifera larvae in 2008. 4 tiles were deployed on each pallet ball 

for each level of conditioning.  

 

To allow assessment of the 2008 experiment in the context of the natural variability of coral 

recruitment after mass-spawning events at the Palau study site, settlement on tiles was also 

monitored in 2007 and 2009 (Fig. 3). The preliminary study in 2007 established that there was 
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substantial natural settlement of acroporid larvae (mean density on tiles = 71 spat per 0.1 m
2
 

or ~16 spat per tile) on 3-mo conditioned tiles with the mean density of all coral spat being 

118 per 0.1 m
2
. This latter figure compares to an average of 175 coral spat 0.1 m

-2
 yr

-1
 (range 

15-459 coral spat 0.1 m
-2 

yr
-1

) from several studies using settlement plates on the Great 

Barrier Reef compiled by Glassom et al. (2004: see their Table 6). 78.5% of acroporid spat 

were found on cryptic lower surfaces of the tiles, 11.9% on the edges and only 9.6% on the 

exposed outer surfaces. Over the three year study, on control pallet balls (with only natural 

larval supply), the density of acroporid spat on 3-mo conditioned tiles collected 5-6 wk after 

peak spawning varied significantly among years (ANOVA, F2,18 = 29.38, P<0.001), with 

Tukey pairwise comparisons showing that settlement in 2007 > 2008 > 2009. Among years 

densities ranged from a mean of 23.1 to 76.6 spat per 0.1 m
2
.  
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Fig. 3. Mean density (95% CI) of acroporid and non-acroporid coral spat 

on 3-mo conditioned tiles deployed on 7 control pallet balls and 7 pallet balls 

treated with high densities of mass cultured Acropora digitifera larvae in 

2008. 6 tiles were examined per pallet ball in 2007 and 4 tiles per ball in 

2008 and 2009. Tiles were retrieved 5-6 wk after peak spawning in each year. 

 

For tiles on those pallet balls that received an enhanced supply of A. digitifera recruits in 2008, 

mean acroporid spat density per 0.1 m
2 

was 66.6 in 2007 and 16.6 in 2009, compared to a 

mean of 204.9 spat per 0.1 m
2
 when seeded in 2008. Thus seeding led to 3.1-12.3 times more 

settlement than in years with only natural settlement. There was similar inter-annual 

variability in the density of non-acroporid coral spat with mean density ranging from 12.3 to 

53.0 spat per 0.1 m
2
 for control and treatment pallet balls among years. Settlement again 

varied significantly among years (ANOVA, F2,39 = 25.85, P<0.001) and Tukey pairwise 
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comparisons showed that non-acroporid settlement in 2007 was also significantly higher than 

in the other two years (which were not significantly different).  

To rule out the possibility of bias in settlement on control or treatment pallet balls due to 

hydrological or other confounding factors, spat densities on tiles on control and treated pallet 

balls were compared for acroporids in 2007 and 2009 (when there was no larval seeding) and 

for non-acroporids in all years (as their settlement should not have been affected by the A. 

digitifera seeding). Because of the significant inter-annual variability in natural settlement 

shown above (Fig. 3), comparisons between tiles from treated and control pallet balls were 

conducted using nested ANOVA (treatment nested within years). This indicated no significant 

difference in coral spat densities on tiles between treated and control group pallet balls within 

years (acroporids: F2,24 = 3.10, P>0.05; non-acroporids, F3,36 = 2.03, P>0.05). That is, only for 

acroporid settlement in 2008 was any treatment effect observed, ruling out any settlement bias 

due to confounding factors.  

Tiles (conditioned for 3 mo) were retrieved from pallet balls 5 weeks and 30 weeks after 

larval seeding in 2008. From mean acroporid spat densities of 204.9 spat per 0.1 m
2
 (treated) 

and 50.4 spat 0.1 per m
2
 (controls) on tiles retrieved 5 weeks after enhancement, spat densities 

fell to 59.7 and 32.9 spat per 0.1 m
2
 respectively by 30 weeks (Fig. 4). By this time, acroporid 

spat densities on treated and control tiles were no longer significantly different (two-sample t-

test, P=0.137). The decline in acroporid spat density over ~6 months was highly significant on 

tiles from the treated pallet balls (two-sample t-test, P=0.006), but that on the controls was not 

(P=0.127). Non-acroporid spat densities also showed no significant change over the same 

period (two-sample t-test, P=0.497 controls; P=0.614 treated; P=0.874 for all tiles), averaging 

16.0 and 16.7 spat per 0.1 m
2
 at 5 wk and 30 wk respectively. The inferred mean “survival” 

rate (persistence of 5-week acroporid corallites assuming negligible additional settlement) on 

tiles from control pallet balls was 71% whereas that on the tiles from treated pallet balls was 

only 31%. Comparison of numbers of acroporid spat on lower cryptic and exposed outer 

surfaces of tiles at 5 wk and 30 wk, using a two-way contingency table, showed no significant 

difference in ‘survival’ rate between the two surfaces for tiles from both seeded (Χ²=0.548, 

P=0.459) and control (X²=0.087, P=0.768) pallet balls.  
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Fig. 4. Mean density (95% CI) of acroporid and non-acroporid coral larval spat on 3-mo conditioned 

tiles between 5 wk and 30 wk post-seeding in April 2008. Densities of acroporid recruits on tiles 

deployed on 7 pallet balls seeded with high densities of mass cultured Acropora digitifera larvae in 

2008 (enhanced) are compared with those on 7 pallet balls with only natural larval supply (controls). 

In addition, densities of non-acroporid recruits on tiles from all 14 pallet balls are shown. 4 tiles were 

retrieved off each pallet ball 5 wk and 30 wk after larval seeding.  
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To investigate further the relationship between acroporid density at 30 weeks post-seeding 

and that at 5 weeks, acroporid spat densities on tiles (n=4 per pallet ball) on each of 7 control 

and 7 treatment pallet balls are compared in Figure 5. The dashed line shows the 30 week 

densities that would be expected if “survival” was density-independent and equal to the mean 

acroporid “survival” rate (71%) on control tiles with natural levels of settlement (H1). The 

divergence from this model and significant fit (P<0.05) to a quadratic model (H2 - based on 

linear “density-dependent” mortality: sensu Holm 1990) suggests that “mortality” had a 

density-related – see discussion of terminology in Sale and Tolimieri (2000) – component at 

the higher settlement densities achieved on tiles attached to the pallet balls subject to larval 

seeding. 
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Fig. 5. Comparison of mean densities of acroporid spat on tiles (n=4 per pallet ball at each time) 

retrieved 5 wk and 30 wk post-seeding on each of 14 pallet balls. The dashed line (H1) shows the 

expected densities at 30 wk if net losses are density-independent and equal to 1 – the inferred mean 

“survival” rate of acroporid spat which settled at natural densities on the 7 control pallet balls (71% 

over 25 wk). The black curve is the line of best fit based on a quadratic model (H2) under the 

assumption of linear density-related mortality (Holm 1990). (Black circles – controls; white circles – 

treated pallet balls; R = recruits at 30 weeks; S = settlers at 5 weeks.) 

 

Visible recruitment to pallet balls 

The primary question being addressed by the study of “visible” recruitment (i.e. monitoring of 

later-stage recruits visible to the naked eye in the field: see Wallace 1983) to the pallet balls 

was whether the larval seeding had a longer term effect. The mean density of live coral 

recruits (both Acropora and non-Acropora) on pallet ball surfaces rose from 11.2 m
-2

 in 

November 2007 (~10 mo after deployment of the pallet balls) to 42.7 m
-2

 in May 2009 (~28 

mo after deployment). The smallest visible recruits recorded had a greatest diameter of 2 mm 

and over 95% were <25 mm in geometric mean diameter (GMD) when first recorded in the 

approximately half-yearly surveys. The average GMD of recruits when first recorded was 

11.2 mm (SD ±7.6 mm, median 9.5 mm, interquartile range 6.5-13.4 mm, n=1638). The 

proportion of recruits on the pallet ball surfaces that were Acropora spp. ranged from 18-30% 

among surveys and mean densities of live Acropora on the 14 pallet balls rose from 1.9 m
-2

 to 

12.0 m
-2

 from November 2007 until May 2009. Approximately 44% of Acropora recruits 

recorded at the first survey in November 2007 were still alive 1.5 years later.  

For the purposes of this study, what we were interested in was whether recruitment was 

enhanced on those pallet balls seeded with large numbers of A. digitifera larvae in April 2008. 
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That is, would there be significantly more new Acropora recruits on treated pallet balls 

surveyed in November 2008 or May 2009 (~7 mo and ~12.7 mo after seeding) than on control 

pallet balls? (The June 2008 survey would be too early to see ‘visible’ recruits from the April 

seeding.)  

Between Acropora mass-spawning in April 2007 and the survey in June 2008, visible 

Acropora recruits reached a median GMD of 14.8 mm (interquartile range 9.9-18.7 mm), 

whereas between the mass-spawning in April 2008 and the survey in May 2009, new (first 

recorded after June 2008) visible Acropora recruits reached a median GMD of 15.5 mm 

(interquartile range 9.5-26.2 mm). Although a total of 53 live Acropora recruits from the 

April 2007 mass-spawning were visible by November 2007 (~7 mo later), the November 

2008 survey (~7 mo after seeding) might have been too early to detect effects of enhancement 

but by May 2009 (~12.7 mo after seeding) any significant effect should have been clearly 

detectable.  
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Fig. 6. Comparison of mean density (95% CI) of new Acropora spp. and non-Acropora coral recruits 

visible on surfaces of 7 control pallet balls and 7 pallet balls seeded with high densities of mass 

cultured Acropora digitifera larvae in 2008. 

 

The mean density of new “visible” Acropora recruits on pallet balls ranged from 1.9 m
-2

 to 

7.4 m
-2

 for the four ~6 monthly surveys (Fig. 6). Combining data on new Acropora recruits 

(n=320) from the two post-seeding surveys (within 13 mo of seeding), the mean density of 

new Acropora recruits was 12.5 m
-2

 (95% CI ± 5.59) on treated vs 10.8 m
-2

 (95% CI ± 3.11) 

on control pallet balls, with no evidence for significantly greater densities of new Acropora 

recruits on treated pallet balls (one-tailed two-sample t-test: P=0.273). At the final survey in 

May 2009 (Fig. 6) the mean density of new Acropora recruits (n=117) was 5.4 m
-2

 (95% CI ± 



 12 

4.06) on treated vs 3.1 m
-2

 (95% CI ± 1.50) on control pallet balls, and differences were again 

not significant (one-tailed two-sample t-test: P=0.119).  

Although there was no significant increase in visible recruitment to pallet ball surfaces as a 

result of the larval seeding, analysis of all surveys using a one-way ANOVA showed 

significant differences among surveys in recruitment of both Acropora and non-Acropora 

juveniles (F3,52 = 12.77, P<0.001; F3,52 = 21.78, P<0.001, respectively) with Tukey pairwise 

comparisons showing significantly greater densities of both new Acropora and new non-

Acropora recruits in November 2008 than at other surveys (Fig. 6).  

 

DISCUSSION 

Despite its potential as a method for elucidating the role of larval recruitment in coral 

population dynamics (Heyward et al. 2002) and as a means of enhancing recovery of coral 

cover on degraded reefs (Amar & Rinkevich 2007), few attempts have been made to 

artificially manipulate natural larval settlement rates on coral reefs (Suzuki et al. 2012, Omori 

& Iwao 2014). The paucity of such studies may in part have been due to the lack, until 

recently, of reliable methods for rearing large numbers of broadcast spawned larvae ex situ 

and delivering competent larvae to areas of reef. In this study we reared approximately one 

million coral larvae using low tech methods (i.e. coral larvae reared in plastic paddling pools) 

and successfully delivered these to replicate artificial reefs in situ. Heyward et al. (2002) 

found great variability in initial settlement on tiles retrieved 6 weeks after seeding with larvae 

reared in situ in floating ponds utilising natural Acropora spawning slicks. Six weeks after 

seeding they achieved coral spat densities on treated tiles that ranged from 100-1000 times the 

low natural background levels of settlement (only ~1 spat per 0.1m²) at their study site at 

Coral Bay in Western Australia but did not report the long term effects of the larval seeding. 

The background levels of coral larval settlement at our site in Palau were within the range 

recorded from sites on the Great Barrier Reef (Glassom et al. 2004) but approximately 500 

times those at the Coral Bay, Ningaloo Reef site of Heyward et al. (2002). Thus scope for 

enhanced settlement was greatly reduced. Indeed, we achieved only about a fourfold increase 

in settlement compared to controls with only natural larval supply on the 3-mo conditioned 

tiles, despite achieving similar settlement rates to them on seeded tiles. 

Webster et al. (2004) using biofilms of different ages developed on glass slides and larvae of 

Acropora microphthalma showed that 2-week-old biofilms induced metamorphosis in less 

than 10% of coral larvae but that 41% were induced to metamorphose when exposed to 8-

week-old microbial films. As part of our study, we compared settlement of acroporid larvae 

on tiles with 1-week-old and 3-month-old biofilms. This showed an even larger relative 

difference with ~14 times greater settlement on the 3-mo biofilms at natural larval densities 

(tiles on control pallet balls), reducing to ~7 times greater settlement on 3-mo biofilms on tiles 

with an enhanced larval supply. The halving of the conditioning effect on the seeded tiles 

suggests that the limited biofilm development on the 1-week conditioned tiles was partially 

mitigated at high larval densities. This study reinforces the importance of controlling the 

biological conditioning of settlement tiles or other artificial substrates used in recruitment 

studies (Heyward et al. 2002, Baird et al. 2003, Webster et al. 2004, Segal et al. 2012).  

In our study, the larval seeding appeared initially successful with acroporid settlement 

densities ~4 times higher (3-mo conditioning) to ~8 times higher (1-wk conditioning) on tiles 

from seeded pallet balls compared to those from controls with only natural larval supply. 

However, after 30 weeks there was no significant difference in acroporid spat densities 

between tiles from seeded and control pallet balls. Furthermore, monitoring of new visible 

Acropora recruits on the pallet ball surfaces showed no significant augmentation of numbers 



 13 

on seeded ones compared to controls in the 13 months after larval seeding. One possible 

explanation for the lack of any detectable difference in the number of visible recruits on 

control versus seeded pallet balls is that early post-settlement mortality is related to initial 

settlement density.  

Newly settled corals are known to be extremely vulnerable and corals, like many marine 

invertebrates (Hunt & Scheibling 1997), have typical Type III survivorship curves (sensu 

Deevey, 1947), with high early mortality and a greater probability of survival with increasing 

age and size (Vermeij & Sandin 2008). Several factors are involved in early post-settlement 

mortality including competitive interactions with macroalgae (McCook et al. 2001, Birrell et 

al. 2008, Tebben et al. 2014), sedimentation (Fabricius et al. 2003), and accidental removal by 

grazing fish or direct predation (Sammarco & Carleton 1981, Rylaarsdam 1983, Vermeij 2006, 

Ritson-Williams et al. 2009, Baria et al. 2010, Trapon et al. 2013). Less is known about the 

role of initial spat density in later survival (Vermeij & Sandin 2008) although Suzuki et al. 

(2012) found that larval survival rates were significantly lower on specially designed plates 

seeded with high densities of Acropora larvae than those seeded with low or medium 

densities. 

The decline in spat densities on tiles between 5 weeks and 30 weeks after larval seeding 

shows that early stage corallites were not a permanent record of settlement. On the one hand, 

if a coral recruit died soon after laying down skeleton then the skeleton may have dissolved or 

been eroded (e.g. by sponges) over the ~6 months between surveys. On the other hand grazing 

by fish or echinoids may have removed corallites among the 21.5% of spat on tiles that were 

accessible to such grazers (Hutchings 1986). The relationship between recruits present at 30 

weeks and settlers at 5 weeks can be expressed as follows: 

# Recruits (30 wk) = # Settlers (5 wk) – # Losses (Predation|Erosion|Dissolution)  

+ # New settlers 

From this equation, it can be seen that interpretation of the decline in acroporid coral skeleton 

densities (Figs. 4 and 5) between tiles collected at 5 weeks and 30 weeks requires caution. We 

do not know whether coral spat are definitely alive or dead when tiles are retrieved. However, 

if we make the reasonable assumptions that (1) the processes of loss of spat via predation, 

erosion or dissolution, and (2) the rate of increase by new settlement are unbiased among tiles 

on enhanced and control pallet balls, then any differences in relative persistence of coral 

skeletons should be proportional to survival. Thus, the data may be treated as a proxy for 

post-settlement mortality processes. For broadcast spawning acroporids, additional settlement 

between May and November was expected to be relatively low (Penland et al. 2004) and thus 

processes leading to losses of coral skeletons were expected to dominate. For non-acroporids, 

one might expect monthly contributions of new spat from planulating pocilloporids (~15% 

settlers), which may explain the absence of any net decline in non-acroporid spat numbers 

between 5 and 30 weeks. Although the study was not designed specifically to look at density-

related mortality, the inferred “survival” of 30-wk recruits as a function of 5-wk settlers (Fig. 

5) appears more consistent with linear density-related mortality (Holm 1990), than density-

independent mortality at the rate observed on tiles subject to natural levels of larval supply. 

Holm (1990) shows that if mortality is linearly related to settler density then one might expect 

a parabolic curve (Fig. 5) to describe the relationship between recruits surviving and initial 

settlers. We have no clues as to the cause of this mortality, but the lack of any difference in 

inferred “survival” rates between exposed outer surfaces and cryptic lower surfaces of tiles 

suggests that it was not grazing. 

In their study in the Ryukyus, Suzuki et al. (2012) showed that only one month after 

settlement Acropora larval survival rates at high densities were already significantly lower 
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than those at medium and low densities whereas our inferred poor “survival” was not apparent 

until 30 weeks post-enhancement. In their study they collected L-shaped pieces of their grid 

plates which were transferred to the laboratory submerged in seawater. Only live corals were 

then counted whereas we were counting coral skeletons. If the time course of post-settlement 

mortality in Palau was similar to that recorded by Suzuki et al. (2012), at 5 weeks many (or 

even the majority) of our acroporid spat may already have been dead but the skeletal record of 

their settlement was still intact. By 30 weeks however, these corallites were lost due to 

erosion or dissolution with the first to die (smallest) presumably being the most vulnerable to 

loss. This again illustrates the caution that is needed in interpreting settlement tile data where 

tiles are bleached and dried before examination. Also, while we infer that there was density-

related mortality of Acropora spat on the tiles and that the same process could account for the 

lack of any detectable increase in recruitment to the pallet ball surfaces in the ~13 months 

post-seeding, we do not know that post-settlement mortality processes on the pallet ball 

surfaces mirrored those on the tiles.  

Without true replication of the different larval densities we were unable to make a valid 

analysis of the relationship between density of spat settled and number of larvae supplied 

(Table 1), however, the data appear to be in accord with the findings of Suzuki et al. (2012) 

that intermediate larval densities are optimal for larval seeding.  

For reef rehabilitation to have impacts at meaningful scales, it needs to be low-tech and 

affordable. Here we show that with care large numbers of larvae can be reared through to 

competency and directly released onto areas of reef (in this study, artificial reefs). The method 

was successful in significantly enhancing settlement in the short term; however, there was no 

detectable effect on recruitment after 13 months. While the idea of directly seeding areas of 

reef with competent larvae is appealing because of the relatively low investment required, 

very high levels of post-settlement mortality represent a formidable challenge. Survival rates 

might have been higher using different species or more complex substrate types (Suzuki et al. 

2011), but low cost, high volume methods to remove the early post-settlement, high mortality 

bottleneck on reef substrates are yet to be demonstrated. In the present study, natural 

interannual variation in recruitment of Acropora and non-Acropora juveniles to pallet ball 

surfaces exceeded the insignificant differences in recruitment between seeded and control 

pallet balls. For seeding to justify the costs involved and be a practical proposition for reef 

rehabilitation it would need not only to have a significant long-term effect but also compete 

with alternative techniques such as sexual (Omori et al. 2008, Baria et al. 2010, Nakamura et 

al. 2011, Villanueva et al. 2012, Guest et al. 2014) and asexual nursery rearing (Epstein et al. 

2003, Rinkevich 2006, Shafir et al. 2006). At present, we find no evidence that larval seeding 

succeeds on either count but accept that it could possibly still have a role at sites with very 

low background recruitment such as the Ningaloo study site of Heyward et al. (2002). Even at 

such sites, where the reef is actually degraded and with high seaweed cover (like many reefs 

in need of rehabilitation) settlement may be inhibited by certain species of turf and 

macroalgae (e.g. Birrell et al. 2005, Kuffner et al. 2006). Further, Dixson et al. (2014) have 

recently shown that on such reefs coral larvae may be deterred, possibly by chemical cues, 

from even attempting to settle, thus simply supplying larvae may be futile. 

If larval rearing methods are going to be used to rehabilitate ecologically significant areas of 

reef then it will require more investment in husbandry during the early life stages to overcome 

the bottleneck of post-settlement mortality. These methods should allow large numbers (at 

least 10,000s) of spat to be reared from millions of larvae to a “refuge size” (size beyond 

which survival dramatically improves) before being transplanted to degraded reefs. Working 

with planulae from the brooding coral Pocillopora damicornis, Raymundo & Maypa (2004) 

showed markedly better one-year survival (47.5%) of 10.1-29 mm juveniles compared to 6.1-
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10.0 mm juveniles (16.3%) outplanted from aquaria to the reef, with no survivors found from 

a cohort of ≤3 mm colonies. Similarly, Guest et al (2014) found that rearing Acropora 

millepora from settlement for 19 months before transplanting to the reef led to overall greater 

survival and significantly lower costs compared to rearing corals for just 7 and 14 months. 

Determining the optimal economic size at which to outplant reared corals of different species 

remains a key challenge for rehabilitation research. 
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