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ABSTRACT 
?lie turbulent boundary layer under a freestream velocity that 

vuies sinusoidally in time around a zero mean is considered. The 
flow has a rich variety of behaviors including strong pressure gra- 
dients. inflection points, and reversal. A theory for the velocity- 
and stress profiles a t  high Reynolds number is formulated. Well- 
resolved direct Navier-Stokes simulations are conducted over a 
narrow range of Reynolds numbers and the results are compared 
with the theoretical predictions. The flow is also computed over 
a wider range of Reynolds numbers using a new algebraic turbu- 
lence model: the results are compared with the direct simulations 
and the theory. 

NOMENCLATURE 

j l ,  f2... 
L 5 /'o/u) outer length scale 
Re - f ~ o & / u  Reynolds number 
t time 
u ,  v. u' velocity components 
u' u 1' fluctuating vrlority component 
1' < u > mean velocity component 
Cri 
Cro 
C', 
U. 

ur 

t, y, L 

61 f fl 
6 
s Karman constant 
A*, A, 
Y kinematic viscosity 
6 E wt p h w a n g l e  
& 
u) frequency, see Eq. (1) 
T t 17,- < u'u' > 
< > 

unknown nondimensional functions, see Eq. (3), (4) ... 

laminar mean velocitj component, see Eq. (3) 
peak freestream velocity, see Eq. (1 )  
freestream velocity, see Eq. (1) 

peak friction velocity, see Eq. ( 5 )  
friction velocity (can be negative) 

u+ 3 U/U? w d u n i t s  

y+ ylu,l/v a d  units 
stnunwise, normal, spanwise coordinates 

laminar boundary-layer thickners, see Eq. (3) 
turbulent boundary-layer thickness, see Eq. (5) 

periods in z and L directions 

phase shift, a function of Re, see Eq. (7)  

total shear stress 
average in t, z and/or ensemble 

INTRODUCTION 
The flow under consideration is the turbulent version of a clasri- 

cal exact solution of the Navier-Stokes equations. known u Stoker' 
second problem (I). The domain is the half-space Over a station- 
ary flat plate and the freestream velocity is given by 

U , ( t )  = uo cos(wt). (1) 

The three parameters (peak velornv (;o, frequency w and kine- 
matir viscosity v )  combine into a single nondimensiond parame- 
ter: a Reynolds number Re. The laminar solution is 

where 61 is the laminar boundary-layer thickness. 
This flow is attractive because of its rich time-dependent be- 

havior, and because it is naturally homogeneous in the directions 
parallel to the plate (this is true only because the mean value of 
U , ( t )  is zero). This justifies imposing periodic conditions in a di- 
rect simulation and considerably improves the statistical sample. 
In addition, the Reynolds-averaged quantities are functions only 
of the normal coordinate and the time. This provides a good test 
case for turbulence models, in which their ability to treat unsteady 
and inflectional velocity profiles can be tested with little numerical 
effort and with high numerical accuracy. It also exhibits reversal 
of the velocity without the usual viscous-inviscid coupling diffi- 
culties and singularities encountered in spatially-separating flows. 
The fully-developed flow will most likely be close to the common 
turbulent boundary layer, except that the lack of entrainment will 
prevent the formation of a sharp laminar-turbulent interface. 

The known results concern primarily the transition Reynolds 
number, Rc == 600, and the stability of the laminar solution 
to small disturbances (2). Detailed experimental results are not 
available for validation. However the only source of error is nu- 
merical: an apprarimate treatment of the boundary-layer growth 
is not needed h e n  as it  was in Ref. 9. The numerical errors can 
be reliably estimated by conducting simulations with improved 
resolution, enlarged domains, and so on, and by using the expe- 
rience gained while simulating other flows (&4).  The weement  
with well-established laws (e. g., the log law) also helps build 
confidence in the numerical results. 

TENTATIVE THEORY OF THE FLOW 
The theory is tentative in that it is based on assumptions which 

ate plausible and consistent with current thinking, but cannot be 
rigorously proven. As is often the case in turbulence, only neccJ- 
roty conditions will be obtained. Also, the evidence supporting 
the theory is encouraging, but still limited. We focus on the mean 
velocity U[y,t] and the total shear stress r(y,t].  They are linked 
by the momentum equation, Ut -Urn, = 7". For clarity we use the 
following notation: square brackets surround the arguments of a 
function, while parentheses group terms in an expression. Most 
of the derivation can be generalized to other laws than cosju)tj for 
UOO/C~O. 
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Define the phase 6 and the length scale L. Dimensional analysis 
shows that CJ and 7 must have the following form: 

for some nondimensional functions ji and f z .  Recall that the 
averages are taken over z and I with sufficiently large domains 
and by phase-averaging. The momentum equation and boundary 
condition become 

So f a r  no approximations have been made. The functions fi and 
f2 are functions of three variables; the objective is to  sepuate  the 
dependence on Re from the other two as much as possible. 

Quter remoq 
The Reynolds-number-similarity hypothesis ( 5 )  asserts that, 

away from the wall, the gross features of the turbulence (at  least 
U and 7, which do not depend strongly on the small-scale motion) 
can be independent of the Reynolds number provided that proper 
velocity- and length scales U* and 6 (different from Uo and L) are 
chosen to normalize them. In the outer region we replace Eq. (3) 

(5a) 
bY 

V[y,t] -Urn[!] = U. f 3 [ f 7 4 , R e ] ,  

This equation is just as general as Eq. (3), since u*/UO and 6 / L  
are functions of Re, but fs and j ,  are now of order 1, as is the 
range of y/6 over which most of their variation occurs. We can 
define U* as where T,,,,,. is the peak value of the shear 
stress a t  the wall during the cycle. For 6 there is no such obvious, 
quantitative definition (especially since the flow does not have a 
sharp laminar-turbulent interface). Since the time scale is l / w .  6 
must be proportional to  u * / d .  We can use this to define 6. We are 
free to  choose the value of the ratio. and we choose 1. Therefore: 

U. 
6 r  -. 

W 

Thus 6 is proportional to the thickness of the turbulent region, but 
not equal to it. Because of Eq. (6),  f3  and f, satisfy an equation 
analogous to Eq. (4(a)), simply replacing L with 6. 

We now introduce the major assumption: the only dependence 
of j 3  and f4  on Re is a phase shift &,[Re] (as we shall see, the 
theory is too limited if we assume that f3 and f4 do not depend 
on Re at  all). The idea behind this assumption is that at different 
Reynolds numbers U - Urn and 7 (scaled with U* and 6) may have 
the same behavior, but not a t  exactly the same phase relative to 
Urn. The assumption is expressed follows: 

Note that fs and fa are functions of only two variables. On the 
other hand we have introduced three new functions of Re: u'/Uo, 
6 / L  and #o (but mall that the first two are related hy Eq. (6)). 

h e r  renion 
Here we apply the usual arguments. The variation of 7 with y is 

ndec ted ,  so 7[y,!] % ~ [ o , ! ] ,  and the momentum equation is not 
considered. Define ur E where the square root is taken 
to have the sign of the argument. The velocity U is assumed to 
follow the law of the wall: 

Ckarly when the wall shear stress reverser (T@,!] vullshes). 1111s 

usumption breaks down. The theory will nad apply near the phase 
of reversal, but this may not have much effect on the rest of the 
cycle. 

QverlaD t 

to  be valid and we obtain 
In the overlap region both Eq. (;a) and Eq. (8) are assumed 

To exploit the overlap argument we can, for instance, vary Re in 
Eq. (9)  while holding y/6 and 4 + 40 fixed. We obtain 

(10) 
The only term that depends on y is the last one, which contains 
dfr/d(log[y+l). Therefore this quantity must be a constant, e.g., 
l / ~ ;  again the overlap argument predicts a log layer 
(f7 = lOg[Y+]/K c). 

The reason bo(Re)  was introduced is not apparent. Consider 
the variation of the various terms in Eq. (10) as a function of 4. 
If 40 were independent of Re, the second term would be 0. Then 
during the cycle, u,/u' (the third term) would be proportional to 
V,/UO (first term), so that the wall shear stress would have to 
have the same phase as the freestream velocity, which is physically 
not correct. The variable-& model allows the deceleration to enter 
through d(U,/Uo)/d4 (second term) and make the wall stress 
"lead" the freestream velocity and reverse earlier (if d&/dRe < 0). 

DeDendence on b and & 
We conclude the analysis by exploiting the dependence of Eq. 

(10) on + and PO. Using Eq. (1) we see that the left-hand-side is 
proportional to cos(& + 41) with 91 defined by 
tan[@]] d90/d(log[u'/Uo]). The right-hand-side is proportional 
to  u,/u* which is a function of 4 + 40. Therefore 41 - 40 is a 
constant. Sinre 60 is meaningful only up to an additive constant 
(see Eq. (7) ) ,  we can choose the constant so that do = d1. Con- 
sequently tan[&] = d4o/d(log[u'/U0]), which integrates to 

U. 
sin[&,] = A - 

vo 

where A is a constant. Also, U* was defined so that the peak value 
of u,/u* is 1. Therefore 

Finally, rearranging Eq. (10) and using Eq. (6) to  eliminate 6, 

This integrates to  

(14) 

where B is a ronstant. It turns out that 40 is small, of the order 
of 0.15 radians, so that cos[#o] 3 0.99. If it  is replaced by 1, Eq. 
(14) involves only u'/Uo and Re. 

Equations (ll), (12), and (14) provide strong predictions that 
can be checked against sufficiently accurate simulations. Such 
a check will also provide the values of A and B. The theory 
predicts that as Re + 00, u'/Clo, 6 / L .  and &O all tend to 0, 
although slowly (roughly like l/log(Re), as in other flows). Also 
note that the nondimensional shear-stress gradient ds+/dy+ is of 
order (Uo/u')2/Rez; it also tends to zero as Re + m so that the 
'almost-constant-stresJ" assumption for the inner region becomes 
more and more valid. 
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The known limitations of the theory u e  that it applia only 
at sufficiently high Reynolds number a d  that it docs not apply 
near the phase of reversal of the wall shear stress. This failure near 
reversal is obvious since Eq. (12) predicts that T has a double zero 
when it reverses, which is counterintuitive and is not indicated by 
the simulation results. It may be possible to extend the theory to  
cover the reversal region by matching asymptotic expansions, but 
this has not yet been achieved. 

DIRECT-SIMULATION RESULTS 
The numerical method used to  solve the time-dependent, three- 

dimensional, incompressible Navier-Stokes equations is described 
in detail in Ref. 6. It is fully spectral in space and second-order- 
accurate in time. The method was further tested by solving the 
linear stability equations for the laminar solution using Floquet 
theory (in that case the time integration used a fourth-order- 
accurate, implicit, reversible scheme). The results obtained by 
Hall (I) with a very different method were reproduced, which 
shows that the spectral basis functions that are used are well 
adapted to the flow. The results indicate linear stability at all of 
the Reynolds numbers and wave numbers that were investigated 
(up  to Re = 2000). For the turbulent simulations, the boundary 
condition (Eq. 1)  is most simply enforced by solving for the dif- 
ference between the flow and the laminar flow Ut; this difference 
satisfies homogeneous boundary conditions at y = 0 and y - OG. 

A, = 0.12L and A, = 0.06L (about 6061 and 
3061). The resolution is as follows. In the y-direction there are 
10 collocation points within about 10 wall units of the wall. In 
the t- and ;-directions the spacing is about 20 and 7 wall units, 
respectively. Random numbers are used as initial disturbances 
in order to break any symmetries in the flow field. Their am- 
plitude has to  be large enough; otherwise the flow remains lam- 
inar (recall that it is linearly stable). The initial transient takw 
about one cycle and is not included in the phase averages. The 
pui ty  under the transformation 6 -, & + R is used to double 
the sample (averages are of course taken over t and L u well). 

The periods 

I 

Fig. 1. Peak wall shear stress vs. Reynolds number. - laminar 
flow; - - - Eq. (14); direct simulations; o turbulence model. 

Figure 1 shows T,,,.~/C'; as a function of Re. The laminar so- 
lution and the curves correspoiidiug LO several values of B in Eq. 
(14) are shown. Dirm 1 s i ide t iu i l s  were (.,blldurted at 
Re = 600, 800, 1000, and 1200. The trend from 800 to 1200 
is steeper than predicted by the theory. The range of Reynolds 
number is too narrow for one to  conclude whether the theory is 
invalidated by the results, or whether the disagreement is simply 
a low-Reynolds-number effect. The results obtained with the tur- 
bulence model are included in the figure. but will be discussed 
later. 

W 

19 '0 

a 

b 19 '0 

Fig. 2. Freestream velocity and wall shear stress vs. p h w  
angle. - U m / l J 0 ;  ... z in laminar flow; - - - I in turbulent flow. 
a )  Re = 600; b)  Re = 800. 

At Re = 600, the peak wall stress is close to the laminar value, 
but the flow is not laminar. Figure 2(a) compares the turbulent 
wall stress to the laminar solution: they differ significantly dur- 
ing the deceleration p h w .  Reversal occurs much later in the 
turbulent flow. The average power consumption per unit area, 
normalized by Ut, is about 0.98 x IO-' in the turbulent flow com- 
pared with 0.83 x lo-' in the laminar flow. The flow is clearly 
not laminar, but is also far from being well-developed turbulence. 
The velocity profile never displays a log layer and the anisotropy 
of the Reynolds-stress tensor is abnormal. Monkewitr and Bun- 
ster (8 )  visually observed finite-amplitude disturbances, also near 
the phase of reversal, starting between Re - 554 and 647. 

Between Reynolds number 600 and 800 a second transition oc- 
curs. Figure 2(b) shows that the wall stress is now high dur. 
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ing the hgh-frestream-doci ty  phase. It now has a sharp p e d  
with a value murh larger than in the laminar flow. and the power 
cornsumption is 86% larger than in lanlinar flow. Strong tur- 
bulence develops around @ = 2.8; a log layer forms in the ve- 
lority profile near 9 = 0 and is maintained well into the de- 
celeration phase, around 9 = 0. i .  Reversal now occurs near 
q5 = 1.25. The results a t  Re = 1000 are similar, but the peak in 
the wall stress is much wider. Turbulence during the peak-velocity 
phase was observed in experiments by Merkli and Thornann ( 9 )  
but their Reynolds number was much lower, about 300. See 
also Hino, Sawamoto and Takasu’s experiments I U  a pipe (La). 

Fig. 3. Wall shear stress vs. phase angle. Re = 1OOO. - T/T,,..,=; - - - cos($)I cos(q5)l. 

‘i .e------- 

I ...... 
,,’ 
, 

, 
I 

I 

Fig. 4. Mean velocity VI. distance from the wall. Re = 1000. - q5 = 0; - - - 4 = 2.44; . . . 10g[y+]/0.41 + 5. 
The agreement with Eq. (12) is tested in Fig. 3. One expecta 

T/T,,, to have the same shape as C O S ( ~ ) ~ C O S ( ~ ) ~ ,  only shifted to 
the left. This is observed only for @ between about -0.3 and 1. This 
ia also the range of phases in which a log layer is observed. Figure 
4 ahows a log layer at $ = 0, but not at 4 = 2.44. The profile at 
4 = 2.44 is laminar-like: U+[y+) is far above the usual log layer. 
During the acceleration phase, the favorable pressure gradient de- 
lays the development of the turbulence considerably. Transition 
docs not occur until the pressuregradient fdls below about 0.02, in 
w d l  units based on the current wall shear rtress, even though the 
near-wall layer is subjected to strong disturbances from the tur- 
bulence remaining farther from the wall. Thus one can attribute 
the lack of agreement with Eq. (12) during that phase to low- 
Reynolds-number effects. This I.& of agreement and, the narrow 

range of Reynolds numbers make an accurate check of Eq. I 11 im- 
p s s b l r :  one can just note that the value of A is of the order r d  :3. 

a 

’. 

a 
‘0 9 

b 

01 LI I 

1 

C 

0 ’  . . . . , . . 
V . . i . . i . . I  

0 3 6 0 12 18 18 21 

Y/d, 
Fig. 5. Profiles in Re = lo00 flow, 4 = 0. a) Velocity U/U,; - 

turbulent, - - - laminar. b )  Shear stress r/Cri;- total stress, 
- - - Reynolds stress. c)  turbulence intensities u’/U,, etc.: - u’, 
- - - . . . W I .  

Other aspects of the flow will now be described using the 
Re = 1000 case, for which the best sample (four half-cycles) hap- 
pens to be available. Figure 5 show at 9 = 0 the mean velocity, 
the shear stress, and the turbulence intensity in each component. 
The near-wall behavior is very similar to that of the usual bound- 
ary layers, but away from the wall the shear stress crosses 0 and 
returns to it  only slowly, and the intensities have very long “tails”. 
They extend far hryonA the region with significant mean shear UY. 
This is caused bv the lack of entodnment. Notice also how a local 
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i ‘  

minimum in the turbulence intensity, a zero crossing of the shear 
stress. and a zero crossing of the mean shear l‘,  all coincidr near 
y, ’br  = 8. As a rule, the zero crossings of the stress and thr shear 
trrid to follow each other. Since they imply that the turbulent- 
energp production is 0, they explain the minimum in the energy. 

. . . . 
i . 
1 .  

. . . . . 
0 . . . . . . . 

0 . . 0 . . . . . . . . . . . 
0 .  . . . . . . . .... . . e -  

0 I . . . I . .:: , . . . I . . . I . , ; a I  . , . , , 
0 I 2 3 4 5 6 

‘p 

Fig. 6. Zero crossings of U - U ,  vs. phase angle. Re = 1000. 

1 I 

0 e 12 I8 24 

Yb, 
Fig. 7. Peak value of various quantities over a cycle, vs. y. 

R C =  1 0 0 o . - ( ~ - c r , ) ; . - - i 0 0 x T ; . . .  10x(u’Z+v’z+w’z). 
Normalized by U o .  

The results further show that the structure of the turbulence 
(for instance the anisotropy of the Reynolds-stress tensor) at  dif- 
ferent values of y/6 is quite similar. The zero crossingsof the stress 
7,  of the mean shear U,, and of the deviation from freestream 
u - U ,  all propagate away from the wall at roughly constant v t  
locity, except close to  the wall. Figure 6 shows that the U = Um 
point s t a r t s  from the wall at 6 = n / 2  with a slope of 1 (the 
laminar value), and that near 6 = 2.5 its velocity abruptly in- 
creases to about 6. The peak values of T, the turbulent energy, 
and Ir - 0, over a cycle also decay exponentially as functions 
of y/S (Fig. 7). The decay rate is about i times smaller than 
in hminar  flow. Thus there is a strong analogy with the laminar 

flow (Eq. 2) ;  the “eddy viscosity” would be uniform at about 40 
times the niolecular viscosity (at  Re = 1000). 

These findings were somewhat surprising. It was expected that 
the propagation velocity of the waves would scale with the local 
velocity scale, and therefore decrease rapidly away from the wall. 
For the peak values of U - U, and 7, an algebraic decay seemed 
more likely. Note that a constant viscosity scale and an expo- 
nential decay of the velocity scale imply an exponential growth 
of the length scale. On the other hand, it was found that in the 
Reynolds-stress budgets, the role of the various terms did change 
with y: near the wall the usual terms dominate but away from 
it,  the turbulent-diffusion term becomes much stronger. Thus the 
similarity is not complete. Even so, the behavior in Figs. 6 and i 
ought to be explained. 

To further document the behavior of the turbulence the k - z 
model was applied to the flow. The high-Reynolds number version 
of the model was used with standard values for the constants 

Only the region y > 261 was considered: boundary conditions for 
U, Is  and c at y = were taken from the direct simulations (Re  = 
1000). Thus near-wall corrections were not needed. For large y 
trivial conditions were used ( U  = ZI,, k = t = 0). The k - c  results 
were in very good agreement with the direct simulations, including 
the uniformity of the eddy viscosity. The agreement was further 
improved by L slight adjustment of C,, to 0.085. The direct- 
simulation results also suggested lower values for Uk, around 0.8. 
but such values did not alter the results noticeably. This exe rax  
shows that, excluding the wall region, the oscillating boundary 
layer is within the reach of the high-Reynolds-number k - - t  model. 
Thus, near-wall corrections to  the model could be tested with 
confidence that the outer region is treated properly. 

(c, = 0.09, c,l = 1.45, c.2 = 1.9, Uk = 1, U, = 1.3) (1). 

ALGEBRAIC-TURBULENCE-MODEL RESULTS 

The eddy-viscosity model used in this paper is alKebraic in the 
sense that the eddy viscosity in a given profile is a specified func- 
tion. However, one of the parameters depends on the phase angle 
(in other problems it could depend on time or on the streamwix 
coordinate) and is determined from solution of an ordinary differ- 
ential equation. The development of the model follows the proce- 
dure originated by Johnson and King (s), but differs in detail. 
The structure parameter is used to  convert the turbulent-energJ 
equation to an equation for T, which is integrated over the profile 
to  obtain an ordinary differential equation. Models of this type 
can exhibit transition and relaminarization properties in contrast 
to conventional algebraic models. A complete description will be 
given elsewhere. 

The peak wall stress obtained with the model between Re = 800 
and 10,000 was shown in Fig. 1. Where the direct-simulation and 
turbulence-model results overlap, the agreement is acceptable. In 
that range both sets of results disagree with Eq. (14) since they do 
not follow a B = constant curve. When Re exceeds about 4.000, 
th r  agreement between the model and Eq. (14) is seen to imprwe. 
This suggests that the discrepancy for Re of the order of 1000 is 
indeed due to low-Reynolds-number effects, for which the theory 
is not expected to  account. The value of B would then be between 
0.3 and 0.5. On the other hand the Reynolds-number-similarity 
hypothesis and the law-of-the-wdl hypothesis, which are central 
to the theory, are also “built into” the turbulence model. In that 
sense, the model does not provide a truly independent check of 
the theory. It is still very useful in assessing the low-Reynolds- 
number effects, which the direct simulations will be unable to do 
in the near future because of their excessive cost. Note also that 
the model predicted relaminarizotion. between Re = 800 and 600. 
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Fig. 8. Wall shear stress vs. phase angle. Re = 1000. -direct 
simulation; - - - turbulence model. 

Figure 8 compares the evolution of the wall stress at 
Re = 1000, computed by direct simulation and with the model. 
The agreement is very good; the model even predicts the quiescent 
phase around 4 = 2 and the surge after Q = 2.5 (although the surge 
occurs slightly earlier with the model). The agreement away from 
the wall (velocity profiles, etc.) is also good. Finally, Fig. 9 shows 
r/r,, ,  versus 6 at Re = 10,000. The curve follows Eq. (12)  well 
for a much longer part of the cycle than at Re = 1000 (roughly, 
from 4 = - 1  to  @ = 1) .  The phase shift 4 0  is also smaller. 
The predictions of the model are quite consistent with the theory. 

// I 

Fig. 9. Wall shear stress vs. phase angle. Re = 10,000. - r/rmo.; - - - cos(4)lcos(~)l .  

CONCLUSIONS 
The oscillating boundary layer displays a complex behavior, 

both as a function of phase angle and of Reynolds number. Al- 
though it is believed to be linearly stable, it exhibits a first tran- 
sition to a "pre-turbi;!c;it" state jiist below a Reyndds number 
of 600. A second transition, bet.ween 600 and 800, allows it to 
generate well-developed turbulence during at least part of the cy- 
cle. During that part of the cycle, it contains a log layer and 
y e e s  with other aspects of a high-Reynolds-number theory that 
'Iu also presented. Thus the theory is confirmed to some extent 
by the direct-simulation results. These results even suggest that 
the theory could be simplified further, which does not seem to be 
bStified by traditional arguments but is also supported by pre- 
dictions of the k - t model. A new algebraic turbulence model, 
daigned and calibrated on the present flow, yielded satisfactory 
agr=ment with the direct simulations and with the theory in spite 
Of the complexity of the ROW. 
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