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ABSTRACT

The turbulent boundary layer under a freestream velocity that
varies sinusoidally in time around a zero mean is considered. The
flow has a rich variety of behaviors including strong pressure gra-
dients. inflection points, and reversal. A theory for the velocity-
and stress profiles at high Reynolds number is formulated. Well-
resolved direct Navier-Stokes simulations are conducted over a
narrow range of Reynolds numbers and the results are compared
with the theoretical predictions. The flow is also computed over
a wider range of Reynolds numbers using a new algebraic turbu-
lence model; the results are compared with the direct simulations
and the theory.

NOMENCLATURE

fiv f2...  unknown nondimensional functions, see Eq. (3), (4)...
L = l'y/w outer length scale

Re - Uyé;/v Reynolds number

t time

u,v,u velocity components

u' = u U fluctuating velocity component

U = < u> mean velocity component

U; laminar mean velocity component, see Eq. (3)
Uy peak freestream velocity, see Eq. (1)

Us freestream velocity, see Eq. (1)

u®  peak friction velocity, see Eq. (5)

u, friction velocity (can be negative)

Ut = U/u, wall units
z,y,z streamwise, normal, spanwise coordinates
v* B ylu.l/v  wall units

§i = /2v/w . laminar boundary-layer thickness, see Eq. (3)
§  turbulent boundary-layer thickness, see Eq. (5)
x  Karman constant

A;, A, periodsin r and z directions

v kinematic viscosity

¢ = wt phase angle

#¢  phase shift, a function of Re, see Eq. (7)

w  frequency, see Eq. (1)

T = U,- <u'v'> total shear stress

< > averagein z, z and/or ensemble

INTRODUCTION

The flow under consideration is the turbulent version of a classi-
cal exact solution of the Navier-Stokes equations, known as Stokes’
second problem (). The domain is the half-space over a station-
ary flat plate and the freestream velocity is given by

Ux(t) = Uy cos(wt). 1)

The three parameters (peak velocnty Uy, frequency w and kine-
matic viscosity v) combine into a single nondimensional parame-
ter: a Reynolds number Re. The laminar solution is

Uiy, t) = Uss(t) — Use™¥/% cos(wt — y/8)) 2)

where §; is the laminar boundary-layer thickness.

This flow is attractive because of its rich time-dependent be-
havior, and because it is naturally homogeneous in the directions
parallel to the plate (this is true only because the mean value of
U(t) is zero). This justifies imposing periodic conditions in a di-
rect simulation and considerably improves the statistical sample.
In addition, the Reynolds-averaged quantities are functions only
of the normal coordinate and the time. This provides a good test
case for turbulence models, in which their ability to treat unsteady
and inflectional velocity profiles can be tested with little numerical
effort and with high numerical accuracy. It also exhibits reversal
of the velocity without the usual viscous-inviscid coupling diffi-
culties and singularities encountered in spatially-separating flows.
The fully-developed flow will most likely be close to the common
turbulent boundary layer, except that the lack of entrainment will
prevent the formation of a sharp laminar-turbulent interface.

The known results concern primarily the transition Reynolds
number, Re =~ 600, and the stability of the laminar solution
to small disturbances (2). Detailed experimental results are not
available for validation. However the only source of error is nu-
merical: an approximate treatment of the boundary-layer growth
is not needed here as it was in Ref. 3. The numerical errors can
be reliably estimated by conducting simulations with improved
resolution, enlarged domains, and so on, and by using the expe-
rience gained while simulating other flows (3, 4). The agreement
with well-established laws (e. g., the log law) also helps build
confidence in the numerical results.

TENTATIVE THEORY OF THE FLOW

The theory is tentative in that it is based on assumptions which
are plausible and consistent with current thinking, but cannot be
rigorously proven. As is often the case in turbulence, only neces-
sary conditions will be obtained. Also, the evidence supporting
the theory is encouraging, but still limited. We focus on the mean
velocity Uly,t] and the total shear stress r{y,t]. They are linked
by the momentum equation, U, — Uy, = 7,. For clarity we use the
following notation: square brackets surround the arguments of a
function, while parentheses group terms in an expression. Most
of the derivation can be generalized to other laws than cos{wt] for

Uso/Us.



Define the phase ¢ and the length scale L. Dimensional analysis
shows that I/ and 7 must have the following form:

Ulyt] - Uaslt] = U fi [ 4,0, Re] (38)

vt = U fa[3.6,Re| (3b)

for some nondimensional functions f; and f;. Recall that the
averages are taken over z and z with sufficiently large domains
and by phase-averaging. The momentum equation and boundary
condition become

8f, of: . U

—— = 0,¢,Re| = ——— ¢} 4

So far no approximations have been made. The functions f; and

f» are functions of three variables; the objective is to separate the
dependence on Re from the other two as much as possible.

Quter region
The Reynolds-number-similarity hypothesis (5) asserts that,

away from the wall, the gross features of the turbulence (at least
U and 7, which do not depend strongly on the small-scale motion)
can be independent of the Reynolds number provided that proper
velocity- and length scales u* and é (different from Uy and L) are
chosen to normalize them. In the outer region we replace Eq. (3)
by

Ut - Ualt] = w £o[2.0.Re], (53)

Tiy,t] = u*? j.[%,¢,Re]. (5b)

This equation is just as general as Eq. (3), since v* /Uy and §/L
are functions of Re, but f; and f; are now of order 1, as is the
range of y/§ over which most of their variation occurs. We can
define u* as \/Tma; where 7., is the peak value of the shear
stress at the wall during the cycle. For § there is no such obvious,
quantitative definition (especially since the flow does not have a
sharp laminar-turbulent interface). Since the time scale is 1/w. §
must be proportional to u*/w. We can use this to define §. We are
free to choose the value of the ratio, and we choose 1. Therefore:

[~

]

€]

(6)

Thus § is proportional to the thickness of the turbulent region, but
not equal to it. Because of Eq. (6), f; and f, satisfy an equation
analogous to Eq. (4(a)), simply replacing L with §.

We now introduce the major assumption: the only dependence
of f3 and fq on Re is a phase shift ¢o[Re| (as we shall see, the
theory is too limited if we assume that fy and fq do not depend
on Re at all). The idea behind this assumption is that at different
Reynolds numbers U — Uy, and 7 (scaled with u* and §) may have
the same behavior, but not at exactly the same phase relative to
Us. The assumption is expressed as follows:

£s[3.8,Re] = £i[ 3,6 + dulRe]], (Ta)

12[%.0,Re] = 1[5 + 4aiRe]. (7b)

Note that fs and fq are functions of only two variables. On the
other hand we have introduced three new functions of Re: u*/U,,
§/L and ¢y (but recall that the first two are related by Eq. (6)).

on
Here we apply the usual arguments. The variation of = with y is
neglected, so Ty, | =~ 7[0,t], and the momentum equation is not
considered. Define u, = ,/7(0,t| where the square root is taken
to have the sign of the argument. The velocity U is assumed to
follow the law of the wall:

U=u, f,[y_':—"]. (8)

Clearly when the wall shear stress reverses (1[0,11 vanishes). tius
assumption breaks down. The theory will not apply near the phase
of reversal, but this may not have much effect on the rest of the
cycle.

Overlap argument

In the overlap region both Eq. (7a) and Eq. (8) are assumed
to be valid and we obtain

ﬂ Uso y _ Urg y|ur| u®é

u* Uy (o] + f5[3’¢+¢°] T owe &+ 4] f’[éTT]' 9
To exploit the overlap argument we can, for instance, vary Re in
Eq. (9) while holding y/é and ¢ + ¢ fixed. We obtain

Us d (Us) Us d U_w) dge _u. dfy  d(log[u"$/vi)
U, dRe ( u )'?Faw( Us /dRe = u* d(logly*])  dRe

(10
The only term that depends on y is the last one, which contains
dfr/d(log(y*]). Therefore this quantity must be a constant, e.g.,
1/x; again the overlap argument predicts a log layer
(fr = logly*]/x + C).

The reason ¢o(Re) was introduced is not apparent. Consider
the variation of the various terms in Eq. (10) as a function of ¢.
If 9 were independent of Re, the second term would be 0. Then
during the cycle, u,/u® (the third term) would be proportional to
U /Us (first term), so that the wall shear stress would have to
have the same phase as the freestream velocity, which is physically
not corract. The variable-¢y model allows the deceleration to enter
through d(Un/Uy)/d¢ (second term) and make the wall stress
“lead” the freestream velocity and reverse earlier (if dg¢o/dRe < 0).

Dependence on ¢ and 0
We conclude the analysis by exploiting the dependence of Eq.

(10) on ¢ and @,. Using Eq. (1) we see that the left-hand-side is
proportional to cos(¢ + ¢1) with ¢, defined by
tan{g;] = dog/d(log[u"/Us]). The right-hand-side is proportional
to u,/u* which is a function of ¢ + ¢¢. Therefore ¢, — ¢y is a
constant. Since &, is meaningful only up to an additive constant
(see Eq. (7)), we can choose the constant so that ¢y = ¢,. Con-
sequently tan[¢y] = dog/d(log[u”/Up|), which integrates to

o u®

sin{¢o] = A Us ‘(11)
where A is a constant. Also, u* was defined so that the peak value
of u,/u® is 1. Therefore

:—:— = cos[¢ + o). (12)

Finally, rearranging Eq. (10) and using Eq. (6) to eliminate §,

Ax doy _ d_Rc_
—(2sin[¢o] +cos[¢°]) sin{¢g] Re’ (13)
This integrates to
-'25% cos(dg] + log[%] =log(Re] - B (14)

where B is a constant. It turns out that ¢ is small, of the order
of 0.15 radians, so that cos{¢p] = 0.99. If it is replaced by 1, Eq.
(14) involves only u*/U, and Re.

Equations (11), (12), and (14) provide strong predictions that
can be checked against sufficiently accurate simulations. Such
a check will also provide the values of A and B. The theory
predicts that as Re — oo, u* /Uy, §/L, and ¢, all tend to 0,
although slowly (roughly like 1/log(Re), as in other flows). Also
note that the nondimensional shear-stress gradient dv* /dy™ is of
order (Up/u*)?/Re?; it also tends to zero as Re — ~ so that the
“almost-constant-stress” assumption for the inner region becomes
more and more valid.




The known limitations of the theory are that it applies only
at sufficiently high Reynolds number amd that it does not apply
near the phase of reversal of the wall shear stress. This failure near
reversal is obvious since Eq. (12) predicts that 7 has a double zero
when it reverses, which is counterintuitive and is not indicated by
the simulation results. It may be possible to extend the theory to
cover the reversal region by matching asymptotic expansions, but
this has not yet been achieved.

DIRECT-SIMULATION RESULTS

The numerical method used to solve the time-dependent, three-
dimensional, incompressible Navier-Stokes equations is described
in detail in Ref. §. It is fully spectral in space and second-order-
accurate in time. The method was further tested by solving the
linear stability equations for the laminar solution using Floquet
theory (in that case the time integration used a fourth-order-
accurate, implicit, reversible scheme). The results obtained by
Hall (7) with a very different method were reproduced, which
shows that the spectral basis functions that are used are well
adapted to the flow. The results indicate linear stability at all of
the Reynolds numbers and wave numbers that were investigated
(up to Re = 2000). For the turbulent simulations, the boundary
condition (Eq. 1) is most simply enforced by solving for the dif-
ference between the flow and the laminar flow U); this difference
satisfies homogeneous boundary conditions at y = 0 and y — oc.

The periods are A; = 0.12L and A, = 0.06L (about 60§; and
306;). The resolution is as follows. In the y-direction there are
10 collocation points within about 10 wall units of the wall. In
the z- and :z-directions the spacing is about 20 and 7 wall units,
respectively. Random numbers are used as initial disturbances
in order to break any symmetries in the flow field. Their am-
plitude has to be large enough; otherwise the flow remains lam-
inar (recall that it is linearly stable). The initial transient takes
about one cycle and is not included in the phase averages. The
parity under the transformation ¢ — ¢ + 7 is used to double
the sample (averages are of course taken over z and z as well).

3
400 1000 10000
Re
Fig. 1. Peak wall shear stress vs. Reynolds number. — laminar
flow; - - . Eq. (14); e direct simulations; o turbulence model.

Figure 1 shows 7,,,,/U'3 as a function of Re. The laminar so-
lution and the curves corresponding o several values of B in Eq.
(14) are shown. Dircct simulations were conducted at
Re = 600, 800, 1000, and 1200. The trend from 300 to 1200
is steeper than predicted by the theory. The range of Reynolds
number is too narrow for one to conclude whether the theory is
invalidated by the results, or whether the disagreement is simply
a low-Reynolds-number effect. The results obtained with the tur-
bulence model are included in the figure, but will be discussed
later.
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Fig. 2. Freestream velocity and wall shear stress vs. phase
angle. — Uy /Upg; -+ 7 in laminar flow; - - - 7 in turbulent flow.
a) Re = 600; b) Re = 800.

At Re = 600, the peak wall stress is close to the laminar value,
but the flow is not laminar. Figure 2(a) compares the turbulent
wall stress to the laminar solution; they differ significantly dur-
ing the deceleration phase. Reversal occurs much later in the
turbulent flow. The average power consumption per unit area,
normalized by U, is about 0.98 x 10~? in the turbulent flow com-
pared with 0.83 x 10~% in the laminar flow. The fiow is clearly
not laminar, but is also far from being well-developed turbulence.
The velocity profile never displays a log layer and the anisotropy
of the Reynolds-stress tensor is abnormal. Monkewitz and Bun-
ster (8) visually observed finite-amplitude disturbances, also near
the phase of reversal, starting between Re — 554 and 647.

Between Reynglds nuruber §00 and 800 a second transition oc-
curs. Figure 2(b) shows that the wall stress is now high dur-



ing the high-freestream-velocity phase. It now has a sharp peak
with a value much larger than in the laminar flow, and the power
comsumption is 6% larger than in laninar flow. Strong tur-
bulence develops around ¢ = 2.8; a log layer forms in the ve-
locity profile near @ = 0 and is maintained well into the de-
celeration phase, around ¢ = 0.7. Reversal now occurs near

¢ = 1.25. The results at Re = 1000 are similar, but the peak in
the wall stress is much wider. Turbulence during the peak-velocity
phase was observed in experiments by Merkli and Thomann (9)
but their Reynolds number was much lower, about 300. See
also Hino, Sawamoto and Takasu’s experiments in a pipe (10).

Fig. 3. Wall shear stress vs. phase angle. Re = 1000.
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Fig. 4. Mean velocity vs. distance from the wall. Re = 1000.
——p=0;---¢=244;--- log[y*]/0.41 + 5.

The agreement with Eq. (12) is tested in Fig. 3. One expects
T/Tmaz to have the same shape as cos(¢)| cos(4})|, only shifted to
the left. This is observed only for ¢ between about -0.3 and 1. This
is also the range of phases in which a log layer is observed. Figure
4 shows a log layer at ¢ = 0, but not at ¢ = 2.44. The profile at
¢ = 2.44 is laminar-like: U*{y*] is far above the usual log layer.
During the acceleration phase, the favorable pressure gradient de-
lays the development of the turbulence considerably. Transition
does not occur until the pressure gradient falls below about 0.02, in
wall units based on the current wall shear stress, even though the
near-wall layer is subjected to strong disturbances from the tur-
bulence remaining farther from the wall. Thus one can attribute
the lack of agreement with Eq. (12) during that phase to low-
Revnolds-number effects. This lack of agreement and, the narrow

range of Reynolds numbers inake an accurate check of Eq. (11)im-
pessible; one can just note that the value of A is of the order of 3.
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0 3 (] 9 12 18 18 21
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Fig. 5. Profiles in Re = 1000 flow, ¢ = 0. a) Velocity U/Uy; —
turbulent, - - - laminar. b) Shear stress v/U2;—— total stress,
- - - Reynolds stress. c) turbulence intensities u'/Uy, etc.; —— u’,
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Other aspects of the flow will now be described using the
Re = 1000 case, for which the best sample (four half-cycles) hap-
pens to be available. Figure 5 shows at ¢ = 0 the mean velocity,
the shear stress, and the turbulence intensity in each component.
The near-wall behavior is very similar to that of the usual bound-
ary layers, but away from the wall the shear stress crosses 0 and
returns to it only slowly, and the intensities have very long “tails”.
They extend far heyond the region with significant mean shear U,.
This is caused bv the lack of entgainment. Notice also how a local




minimum in the turbulence intensity, a zero crossing of the shear
stress, and a zero crossing of the mean shear [’y all coincide near
y & = 8. As a rule, the zero crossings of the stress and the shear
tend to follow each other. Since they imply that the turbulent-
energy production is 0, they explain the minimum in the energy.
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Fig. 7. Peak value of various quantities over a cycle, vs. y.
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Normalized by U,.

The results further show that the structure of the turbulence
(for instance the anisotropy of the Reynolds-stress tensor) at dif-
ferent values of y/6 is quite similar. The zero crossings of the stress
7, of the mean shear Uy, and of the deviation from freestream
U - Uy all propagate away from the wall at roughly constant ve-
locity, except close to the wall. Figure 6 shows that the U = Uy
point starts from the wall at ¢ = 7/2 with a slope of 1 (the
laminar value), and that near ¢ = 2.5 its velocity abruptly in-
creases to about 6. The peak values of 7, the turbulent energy,
and U - U, over a cycle also decay exponentially as functions
of y/6 (Fig. 7). The decay rate is about T times smaller than
in laminar flow. Thus there is a strong analogy with the laminar

flow (Eq. 2): the “eddy viscosity” would be uniform at about 40
times the molecular viscosity (at Re = 1000).

These findings were somewhat surprising. It was expected that
the propagation velocity of the waves would scale with the local
velocity scale, and therefore decrease rapidly away from the wall.
For the peak values of U — U, and 7, an algebraic decay seemed
more likely. Note that a constant viscosity scale and an expo-
nential decay of the velocity scale imply an exponential growth
of the length scale. On the other hand, it was found that in the
Reynolds-stress budgets, the role of the various terms did change
with y: near the wall the usual terms dominate but away from
it, the turbulent-diffusion term becomes much stronger. Thus the
similarity is not complete. Even so, the behavior in Figs. 6 and 7
ought to be explained.

To further document the behavior of the turbulence the k — ¢
model was applied to the flow. The high-Reynolds number version
of the model was used with standard values for the constants
(C, =009, Cy =145, Cy = 1.9, 00 = 1, 0, = 1.3) (11).
Only the region y > 26; was considered: boundary conditions for
U, k and € at y = 2§; were taken from the direct simulations (Re =
1000). Thus near-wall corrections were not needed. For large y
trivial conditions were used (U = Uco, k = € = 0). The k—¢results
were in very good agreement with the direct simulations, including
the uniformity of the eddy viscosity. The agreement was further
improved by a slight adjustment of C,, to 0.085. The direct-
simulation results also suggested lower values for o, around 0.8,
but such values did not alter the results noticeably. This exercise
shows that, excluding the wall region, the oscillating boundary
layer is within the reach of the high-Reynolds-number k — ¢ model.
Thus, near-wall corrections to the model could be tested with
confidence that the outer region is treated properly.

ALGEBRAIC-TURBULENCE-MODEL RESULTS

The eddy-viscosity model used in this paper is algebraic in the
sense that the eddy viscosity in a given profile is a specified funec-
tion. However, one of the parameters depends on the phase angle
(in other problems it could depend on time or on the streamwise
coordinate) and is determined from solution of an ordinary differ-
ential equation. The development of the model follows the proce-
dure originated by Johnson and King (12), but differs in detail.
The structure parameter is used to convert the turbulent-energy
equation to an equation for 7, which is integrated over the profile
to obtain an ordinary differential equation. Models of this type
can exhibit transition and relaminarization properties in contrast
to conventional algebraic models. A complete description will be
given elsewhere.

The peak wall stress obtained with the model between Re = 800
and 10,000 was shown in Fig. 1. Where the direct-simulation and
turbulence-model results overlap, the agreement is acceptable. In
that range both sets of results disagree with Eq. (14) since they do
not follow a B = constant curve. When Re exceeds about 4.000,
the agreement between the model and Eq. (14) is seen to improve.
This suggests that the discrepancy for Re of the order of 1000 is
indeed due to low-Reynolds-number effects, for which the theory
is not expected to account. The value of B would then be between
0.3 and 0.5. On the other hand the Reynolds-number-similarity
bypothesis and the law-of-the-wall hypothesis, which are central
to the theory, are also “built into” the turbulence model. In that
sense, the model does not provide a truly independent check of
the theory. It is still very useful in assessing the low-Reynolds-
number effects, which the direct simulations will be unable to do
in the near future because of their excessive cost. Note also that
the model predicted relaminarization, between Re = 800 and 600.



-3.0 -2.0

Fig. 8. Wall shear stress vs. phase angle. Re = 1000. — direct
simulation; - - - turbulence model.

Figure 8 compares the evolution of the wall stress at
Re = 1000, computed by direct simulation and with the model.
The agreement is very good; the model even predicts the quiescent
phase around ¢ = 2 and the surge after ¢ = 2.5 (although the surge
occurs slightly earlier with the model). The agreement away from
the wall (velocity profiles, etc.) is also good. Finally, Fig. 9 shows
T/Tmaz versus ¢ at Re = 10,000. The curve follows Eq. (12) well
for a much longer part of the cycle than at Re = 1000 (roughly,
from ¢ = —1 to ¢ = 1). The phase shift ¢, is also smaller.
The predictions of the model are quite consistent with the theory.
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Fig. 9. Wall shear stress vs. phase angle. Re = 10,000.
= T/Tmaz; - - - cos(d)|cos(e)|.

CONCLUSIONS

The oscillating boundary layer displays a complex behavior,
both as a function of phase angle and of Reynolds number. Al-
though it is believed to be linearly stable, it exhibits a first tran-
sition to a “pre-turbulent” state just below a Reynolds number
of 600. A second transition, between 600 and 800, allows it to
generate well-developed turbulence during at least part of the cy-
cle. During that part of the cycle, it contains a log layer and
agrees with other aspects of a high-Reynolds-number theory that
was also presented. Thus the theory is confirmed to some extent
by the direct-simulation results. These results even suggest that
the theory could be simplified further, which does not seem to be
justified by traditional arguments but is also supported by pre-
dictions of the k — ¢ model. A new algebraic turbulence model,
designed and calibrated on the present flow, yielded satisfactory
agreement with the direct simulations and with the theory in spite
of the complexity of the flow.
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