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This paper reports the results of a two-dimensional finite element simulation of the 
motion of a circular particle in a Couette and a Poiseuille flow. The size of the particle 
and the Reynolds number are large enough to include fully nonlinear inertial effects and 
wall effects. Both neutrally buoyant and non-neutrally buoyant particles are studied, 
and the results are compared with pertinent experimental data and perturbation 
theories. A neutrally buoyant particle is shown to migrate to the centreline in a Couette 
flow, and exhibits the Segre-Silberberg effect in a Poiseuille flow. Non-neutrally 
buoyant particles have more complicated patterns of migration, depending upon the 
density difference between the fluid and the particle. The driving forces of the migration 
have been identified as a wall repulsion due to lubrication, an inertial lift related to 
shear slip, a lift due to particle rotation and, in the case of Poiseuille flow, a lift caused 
by the velocity profile curvature. These forces are analysed by examining the 
distributions of pressure and shear stress on the particle. The stagnation pressure on 
the particle surface are particularly important in determining the direction of 
migration. 

1. Introduction 

The problem of particle motion in shear flows has received considerable attention in 
the past thirty years. The pioneering experiments of Segre & Silberberg (1961, 1962) 
have spawned numerous research efforts, leading to the conclusion that in shear flows 
of a Newtonian fluid solid particles migrate across streamlines in the presence of walls, 
velocity profile curvature and buoyancy forces, unless the particle is so small that its 
relative motion with respect to the fluid is negligible (Goldsmith & Mason 1966). The 
'anomalous' motion observed is attributed to the nonlinear effect of inertia. 
Comprehensive reviews of experimental and theoretical works have been given by 
Brenner (1966), Cox & Mason (1971), Leal (1980) and Feuillebois (1989). 

Theoretical works for understanding lateral migrations use perturbation theory and 
direct numerical simulations. In the present paper, we report the results of a two- 
dimensional direct simulation of the motion of a single circular particle in a Couette 
and a Poiseuille flow. The numerical code is based on a finite element method using the 
POLYFLOW Navier-Stokes solver and has been used to simulate complex particle 
motions of sedimenting spheres and ellipses (Hu, Crochet & Joseph 1992; Feng, Hu & 
Joseph 1994; Huang, Feng & Joseph 1994; Liu et al. 1993). Because the fluid flow is 
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computed from the fully nonlinear Navier-Stokes equations, and the motion of the 
particles is determined by Newton’s equations for rigid bodies under the action of the 
hydrodynamic forces and torques arising from the fluid flow, we are able to simulate 
particle motion exactly up to the accuracy that our numerical method allows. 

Our numerical package is described by Hu et al. (1992) and will not be discussed 
here, except to say that we use a semi-implicit method on a triangular unstructured grid 
which is laid down anew at each time step. It will be better if simulations of this 
kind can be carried out in three dimensions. The two-dimensional simulation does not 
allow for unambiguous comparison with experiments and with perturbation theories 
that have been carried out in three dimensions. Feng et al. (1994) showed that many 
features of the results of two-dimensional simulations apply qualitatively to three- 
dimensional experiments, but the comparisons are imperfect and can lead to serious 
errors. 

In this paper, we have gone further than before in interrogating our code for the 
underlying fluid mechanics controlling the side forces, the turning couples and the 
effects of the wall on the migration and equilibrium positions of the circular particle. 
The role of ‘stagnation’ points and separation points in controlling the viscous and 
pressure forces on a body moving in a viscous fluid can be clarified by asking the right 
questions of a good simulation, and we can hope that the answer we get are not so 
dramatically different in two and three dimensions. 

In the past, all theoretical studies of particle migrations have been based on 
perturbation theories, and the ones of interest here are for spherical particles in planar 
shear flows (three-dimensional problems). The value of these perturbation studies in 
understanding migration across streamlines can scarcely be overestimated. The results 
of these studies find application in different contexts and, in particular, are used to 
model lift forces in two-phase flows. However, the perturbation theories have very 
restricted domains of applicability and because of the heavy analysis required have not 
informed us particularly well about the fundamental fluid dynamic mechanisms 
underway. It is therefore of value to see how well perturbation theories can represent 
the motion of particles in the usual conditions in which the restrictive assumptions of 
the perturbation theories do not hold. This kind of comparison is one of the tasks taken 
up here. 

Among many perturbation theories the ones by Bretherton (1962a), Saffman (1965), 
Cox & Brenner (1968), Ho & Leal (1974), Cox & Hsu (1977) and Vasseur & Cox (1976) 
need to be mentioned. The first two papers are different from the others, because they 
are zeroth-order theories and are posed in an unbounded domain in which the inertia 
of the far field cannot be ignored. This is a well-known case in which Stokes flow near 
the body is matched with Oseen flow far away. The lift forces in such theories depend 
on the viscosity and are linear in the velocity. Bretherton (1962~) is the only one to 
work strictly in two dimensions, and he finds that the lift A per unit length on the 
cylinder is given by 

/ 1 \ 2  

where v is the kinematic viscosity; U is the slip velocity of the particle (the particle 
velocity minus the undisturbed velocity at the particle centre); and Re = Ga2/v, G 

being the shear rate and a the circle radius. 
Saffman’s (1965) lift on a spherical particle of radius a in a shear flow with rate G 

is 

(1.2) A = 6.46pUa2 (Gv)lf2 = 6.46pvUa Re1I2. 
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Obviously, there is a huge difference between the lift (1.1) in two dimensions and the 
lift (1.2) in three dimensions. This difference can be traced to the fact that the effects 
of inertia in the far field are such as to make steady Stokes flow impossible in an 
unbounded region in two dimensions. Recently, Saffman’s theory has been extended to 
allow relatively strong shear (McLaughlin 199 l), quadratic velocity profiles (Schonberg 
& Hinch 1989) and bounding walls outside the Oseen region (McLaughlin 1993; 
Schonberg & Hinch 1989). 

The other theories are different in principle because they are in effectively bounded 
domains with the parameters arranged in such a way that a uniformly valid Stokes flow 
can be obtained at zeroth order. Of course, no lateral migration will occur in the Stokes 
flow, and the lift force is obtained at the next order where it is determined by inertia 
alone without any explicit dependence on viscosity. For example, Ho & Leal (1974) 
found that a neutrally buoyant particle in a shear flow experiences a lift 

(1 *3) 

where s = 6/L is the fractional distance from the wall, L being the channel width; 
K = a /L  is the dimensionless radius of the sphere; GI(.)  a function found by Ho & 
Leal ; and U,  is the wall velocity defined in figure 1. The formula (1.3) is quadratic in 
velocity and independent of viscosity. This lift arises from inertia alone at first order 
in a perturbation of a flow which is dominated by viscosity everywhere at zeroth order. 

The low-Reynolds-number formulae (1.1) and (1.2) for the lift on a particle in an 
unbounded fluid are seen to be vastly different from formulae like (1.3) given by Cox 
& Brenner (1968), Ho & Leal (1974), Cox & Hsu (1977) and Vasseur & Cox (1976) 
which hold in ‘effectively’ bounded domains, when the particle is so close to the wall 
that it is dominated by viscosity at the lowest order. The condition for this was given 
by Cox & Brenner (1968) as 

A strictly bounded domain, say a spherical shell, can be ‘effectively’ unbounded when 
(1.4) does not hold, because the inertia of the far field enters into the dynamics of the 
particle at the lowest order, as it does in the analysis of Bretherton (1962~) and 
Saffman (1965). 

To understand the difference in the lift formulae, it is necessary to look at 
mathematical details for flows in effectively bounded domains. When (1.4) holds, one 
need consider only the inner expansion in the viscous region to calculate the first term 
in the expansion for the migration velocity in powers of Re = aV/v ,  where V is a 
characteristic velocity defined differently in different problems. Following the approach 
of Cox & Brenner (1968), one expands u, p ,  U and D as power series in Re: u and p 
are the disturbance velocity and pressure fields in a system of coordinates moving but 
not rotating with the particle; U and B are the velocity and angular velocity of the 
particle in a fixed reference frame. The disturbance flow satisfies 

(Y > l), 

A = puZ, LZ~K~G,(S) ,  

Re/K < 1 (1.4) 

(1 3) I V2v-Vp  = Re[u.Vv+u-VV+ V-Vu]  

v = D A F \ - - Y  ( r = l ) ,  

where lengths have been made dimensionless by the particle radius a ;  V = 0- U is the 
velocity of the fluid at infinity seen by an observer fixed on the particle, 0 being the 
velocity of the fluid in a fixed frame. B and U will be determined by hydrodynamic 
torques and forces alone, which sum to zero since prescribed forces are zero and 
accelerations are presumed negligible. If x is the direction of the bulk motion, U - e ,  is 
the lateral drift velocity whose behaviour is at issue. 
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Proceeding by identification as in regular perturbations, one finds that 

V%, = v p ,  (Y > l), 1 
u,=Q,  A r - V ,  ( Y =  1),J 

where V, = 0- U, and 

(1.7) I 
V%, - V p ,  = u, v v ,  + V,. vu, + u,. v v, (Y > I), 

U, = a, A r+  Ul (Y = 1). 

The velocity fields u, and u, are divergence free and vanish on bounding walls and at 
infinity. Since there is no lateral drift in Stokes flow (Bretherton 19623), U,.e,  = 0 
and Use, = Re U,-e, .  Cox (1965) found a method of computing Vl ‘ e ,  without first 
calculating u, and p , .  An auxiliary Stokes flow problem for u is defined such that 
u = ey at Y = 1 and u = 0 on bounding walls and at Y = co. This leads to a formula for 
the drifting velocity (equation (2.20) of Ho & Leal 1974): 

1 

67t 
U, . e, = -- ~ [ u o . U u ,  + V,-Vu,  + U, - V V,] . u d V. 

This formula arises from certain symmetries and from the fact that there are no 
prescribed lateral forces on the particle. This equation shows that the lateral drift in a 
viscously dominated flow satisfying (1.4) is determined by the inertia of the Stokes 
flows. 

We draw the reader’s attention to the fact that though there is a great difference 
between two and three dimensions in an unbounded domain (cf. (1.1) and (1.2)), no 
such great difference exists in effectively bounded domains. The equations following 
(1.4) make no distinction between two- and three-dimensional domains. Perturbation 
analyses like those given by Ho & Leal (1974) and by Vasseur & Cox (1976) could and 
should be carried out for two-dimensional problems. 

Various cases considered by Ho and Leal (1974) and Vasseur & Cox (1976) can be 
framed in terms of (1.8). In the neutrally buoyant case of Couette flow studied by Ho 
& Leal, both V, and u, are proportional to the wall velocity U,, leading to the 
quadratic lift (1.3). Non-neutrally buoyant flows are considered by Vasseur & Cox to 
examine the effects of ‘slip’ on the lateral migration of spheres. The velocity Vused in 
Re is the magnitude of the fall velocity of the sphere, which is positive when the sphere 
is heavier than the fluid. 

The relation between the lateral drift and the lift forces in the cases in which (1.4) 
is satisfied can be partly understood from dimensional considerations using the 
perturbation equations (1.7) in dimensional form, with ,u multiplying u, (now 
dimensional) and p multiplying the right-hand side. The dimensional lift is then 
independent of the viscosity because the stress ,u(Vu, + VuT) which gives rise to the lift 
is determined by the inertia of the flow field prescribed at zeroth order and a’ times the 
stress is proportional to lift, as in (1.3). This implies that u1 and therefore U,-e ,  is 
proportional to l/,ua times the lift, so that l/,u enters into the formula for the lateral 
drift when the lift is independent of p. 

Another restriction of the perturbation theories in bounded domains is associated 
with the methods used for solution which require that the particle should not be too 
close to the wall. Ho & Leal (1974) used the method of reflections of Lorentz, whereas 
Vasseur & Cox (1976) used a point-force approximation to solve the perturbation 
equations. Ho & Leal (1974) require Re/K2 < 1, a more restrictive condition than 
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Re/K G 1 required by Vasseur & Cox (1976). Both methods fail very near to a wall, and 
they give dramatically different results there (see figure 5 in Vasseur & Cox 1976). 

We may summarize the restrictions of the perturbation equations used by Cox & 
Brenner (1968), Ho & Leal (1974), Cox & Hsu (1977) and Vasseur & Cox (1976) as 
Re -+ 1, K = a / L  4 1, a/& < 1 and a/(L-6)  < 1, where S is the distance from the wall; 
that is, small Reynolds numbers, small particles and not too small distances from the 
wall are required. The condition Re/K -+ 1 leads to a lift independent of viscosity, 
an asymptotic result incompatible with (1. l), (1.2) and conditions usually found in 
practice. In fact, Vasseur & Cox (1977) relaxed this condition for sedimentation 
without shear and found lift forces that do depend on the viscosity. The restriction of 
perturbation theories are such as to leave open only the smallest of windows in which 
to examine the mechanics of motion. Fortunately the results of perturbation theories 
appear to hold when the assumptions for their validity do not. 

The restrictions which apply to perturbation theories do not apply to direct 
numerical simulations. We are able to compute the motions of large and small particles 
at Reynolds numbers in the hundreds. The transient motions and bifurcation scenarios 
which are neglected in perturbation theories are accommodated in the simulations. The 
effects of viscosity and inertia on lift forces and lateral drift are not compromised by the 
assumptions which are required in different perturbation theories. In fact, viscous 
contributions to the lateral force in bounded domains can be appreciable, about half 
the contribution from inertia for a sedimenting particle (see Liu et al. 1993). The lack 
of validity of perturbation theories near a wall does not apply to direct simulation. The 
effects of the wall on hydrodynamically induced rotations, the lift force, the lateral 
particle velocity and equilibrium positions for the particles (Segrb-Silberberg effect) 
can be obtained from direct simulation without compromising assumptions. A 
thoughtful interrogation of a good simulation, like that given in $42 and 3, can lead to 
understandings of the basic fluid mechanics that could never be revealed in the small 
window of parameters in which perturbation theories apply. 

The restriction of simulations to two-dimensional problems has already been relaxed 
in some recent simulations of particle-in-fluid motions (Unverdi & Tryggvason 1992). 
Undoubtedly, the formulae for lift, drag, lateral drift velocity and torque derived from 
perturbations are both useful and gratifying. Such formulae have not yet been 
produced by direct simulations. We believe that this situation is also temporary. There 
is no reason why ‘empirical’ formulae of the type used in engineering which correlate 
experimental data cannot be generated from the data produced by numerical 
simulations. We hope to generate such formulae for the lift, lateral velocity and other 
functionals of the solution given by direct simulation in the future. 

In the following sections, we will present the results of simulations on neutrally and 
non-neutrally buoyant particles migrating in Couette and Poiseuille flows. Our results 
will be compared with relevant experiments and the two kinds of perturbation theories 
just described. We will refer to theories like those of Bretherton (1962~) and Saffman 
(1965) on effectively unbounded domains as viscous theories; theories like those of Cox 
& Brenner (1 968), Ho & Leal (1 974), Cox & Hsu (1 977) and Vasseur & Cox (1 976) on 
effectively bounded domains will be called inertial theories. 

2. Particle migration in a planar Couette flow 

We now consider the lateral migration of a circular particle in a simple shear flow. 
The particle’s radius is a and the width of the channel is L = 8a so that K = a/L  = 

0.125. It will be easier to discuss the results in a coordinate system in which both walls 
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t x  

FIGURE 1. Migration of a particle in a simple shear flow between walls. K = 0.125, R, = 0.625. 

FIGURE 2. Lateral migration of neutrally buoyant particles released at yo  = 0.25L and 0.75L in 
the Couette flow shown in figure 1. 8yndt is the initial slip velocity. The dimensionless time is 
t* = U,t /L.  

are moving in opposite directions at iU ,  (figure 1). If we use [L, U,, L/U,,p, V,] as 
scales for length, velocity, time and pressure, the following parameters appear in the 
equations governing fluid and particle motions: bulk Reynolds number R, = U,  L/v, 
Froude number Fr = gL/V,, the solid-fluid density ratio p = p,/p, and the geometric 
ratio K .  Fr and p are relevant only when the particle is non-neutrally buoyant. For most 
of the calculations in this section, we use W, = 40. A particle Reynolds number can be 
defined as R, = U,a2/(vL) = 0.625. Our simulation does not satisfy the small-R, 
condition required for validity of perturbation theories of the viscous type or inertial 
type. The condition W, < K of Cox & Brenner (1968) or R, < K~ of Ho & Leal (1974) 
is also not satisfied. The results of our simulation and comparison with other works will 
be presented separately for neutrally buoyant and non-neutrally buoyant particles. 
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FIGURE 3. Relaxation of the slip velocity SV of particles migrating in a plane Couette flow. SV > 0 
when the particle is leading the fluid in the left half ( y  < BL). The sign of SV has been changed for 
curve 2.  The small wiggles are a numerical effect. 

2.1. Neutrally buoyant particles 

Our simulation shows that a neutrally buoyant particle always migrates to the centre 
of the channel, regardless of initial position and velocity (figure 2). In other words, the 
centre of the channel is a global attractor of trajectories of a neutrally buoyant particle 
just as in the case of a heavy particle settling under gravity (Feng et al. 1994). The slight 
asymmetry of the trajectories starting at yo = $/4 and $L (curves 1 and 4 in figure 2) 
is due to the asymmetry in the mesh. The perturbation solutions of Ho & Leal (1974) 
and Vasseur & Cox (1976) also predict that the centre is a stable equilibrium, but the 
mechanisms driving lateral migration are more readily identified in the simulation and 
are not entirely inertial (see (1.3) and (1.4)). 

We have found that after an initial transient the particle is forced to lead the local 
undisturbed velocity for all cases. The difference between the particle velocity and the 
undisturbed velocity at the centre of the particle is the slip velocity 6V, In figure 3 we 
have plotted the slip velocity 6V normalized by the wall velocity U,. Since x increases 
downward, positive slip is indicated by 6V > 0 on the left side of the channel and 
SV < 0 on the right side ( y  > $5). The sign of 6V has been changed for curve 2. In 
principle, curve 1 should be the same as curve 2; the difference between them is a 
measure of the inaccuracy of our numerical solution. In the cases computed, the 
angular velocity rapidly relaxes from zero to the same final value, which is about 47 YO 
of the constant shear rate of the undisturbed flow field. In other words, the particle 
rotates with the local angular velocity of the flow field to within a small correction. This 
is a well-known result in Stokes flow (Cox, Zia & Mason 1968). Ho & Leal (1974) 
obtained a similar result for a small sphere in a slow Poiseuille flow. 

The migration velocity of the particle depends slightly on initial conditions at the 
early stage of migration (figure 4). The analytical result of Vasseur & Cox (1976) for 
an effectively bounded domain is also shown for comparison. Their three-dimensional 
results are for small spheres in a slow flow, and their analysis does not address 
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FIGURE 4. Comparison of the migration velocity predicted by our simulation and the theoretical result 
of Vasseur & Cox (1976) for small spheres. The centreline of the channel is at y = O X .  The sign of 
V ,  for curve 2 has been changed for comparison. The particle Reynolds number is 1.25 for curve 4 
and is 0.625 for the other three curves. 

transients. Despite these differences, the trends are alike. Curve 4 is for a larger shear 
rate with R, = 1.25. It shows that the difference between the simulation and the 
perturbation theory becomes larger when the inertial effect gets stronger. We also note 
that immediately after the release, the particle actually acquires a negative transverse 
velocity and moves a little toward the nearer wall before migrating to the centre. This 
will be understood as related to the basic mechanisms of the migration discussed later. 

As far as we know, the only experiment which can be compared to our simulation 
is the one by Halow & Wills (1970b) in a concentric cylindrical Couette device. They 
observed that when the inner cylinder rotates, a particle migrates from any initial 
position to an equilibrium at a small distance inside the centreline of the gap. Their 
migration curves for particles in three dimensions agree qualitatively with our 
simulations in two dimensions (figure 5). Because of the difference in geometry, we are 
unable to construct a characteristic time to compare the speed of migration in both 
studies. The reader should not interpret figure 5 to mean that the migration speeds 
agree. 

Halow & Wills (1970~)  then established a semi-empirical model in which the particle 
lags the fluid in the outer half of the gap and leads the fluid in the inner half. This 
antisymmetric slip velocity implies that the Saffman lift (see (1.2)) makes the centre line 
a stable equilibrium position. They calculated the slip velocity by the Lorentz reflection 
method, which is applicable only to Stokes flows (Happel & Brenner 1965). The 
particle size and Reynolds number in their experiment ( K  = 0.179, bulk Reynolds 
number W, = U, L / v  = 50) are rather close to the values adopted in our calculation 
(K = 0.125, R, = 40). Again we see qualitatively valid predictions by a linear theory 
in nonlinear flow situations. Besides, they assumed that wall effects act only on the 
longitudinal velocity and neglected any transverse force due to the wall. The observed 
systematic off-centre deviation was attributed to either experimental error or the 
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curvature of the velocity profile. Ho & Leal (1974) later managed to incorporate the 
curvature of the velocity profile in their theory and claimed to have successfully 
predicted the off-centre equilibrium position, although the parameters in the 
experiment are much larger than the K 4 1 and W, 4 K' assumed by their perturbation 
theory. 

Despite the general agreement among experiments, theories and direct simulations, 
the physical mechanisms of the lateral migration are unknown till this point. Three 
factors are possibly responsible for the migration. The first is the wall repulsion, which 
is a lubrication effect known to force a sedimenting particle away from a nearby wall 
to the centre of the channel (Feng et al. 1994). In the present case, the relative motion 
of the particle to the nearby wall induces this repulsion that makes the centre an 
equilibrium. Another possible mechanism is proposed based on a perturbation result. 
Bretherton (1962~) and Saffman (1965) showed that a particle will move into the 
slower stream of a shear flow if the slip velocity is such that the particle leads the fluid 
and will move into the faster stream if the particle lags the fluid. In our simulation, a 
lead velocity is obtained for all runs, which suggests a lift force similar to the 
Bretherton-Saffman lift (see (1.1) and (1.2)) towards the centre. We emphasize that the 
fluid mechanics of this lift (termed inertial lift hereafter) may be vastly different from 
the viscous perturbation lift. The last possible cause of the migration is a Magnus type 
of lift associated with the rotation of the particle. The counterclockwise rotation of the 
particle, together with the lead velocity, may produce a lift force that points from both 
walls to the centre of the channel (Rubinow & Keller 1961). Next, we will verify or 
dismiss the three mechanisms proposed by examining the distribution of the pressure 
and shear stress on the surface of the particle. We note that the viscous normal stress 
CT = 2,uau,/ar is identically zero on the surface. 

Figures 6 and 7 show the distribution of the pressure and the shear stress on the 
surface of the circular particle at an early time when the lateral drift is substantial and 
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FIGURE 6. Distribution of pressure and viscous stresses on the surface of the particle at an early time 
of migration (curve 1 in figure 2). t* = 1.479, (x ,y)  = (0.2895L, 0.25275L). (a) Pressure and shear 
stress; (b)  horizontal projections. Because of the definition of the angle 8, negative projection 
corresponds to lateral lift in the positive y-direction (to the right). The resultant lateral thrusts per unit 
length (scaled by the inertial force pVz,a) are: F, = 7.842 x F, = 5.238 x 

at a later time when the particle migration has stopped on the centreline of the channel. 
Because pressure usually plays the most important role in determining the particle 
motion (Huang et al. 1994; Liu et al. 1993), we will study the pressure distributions 
first. 

We first notice that for both times the pressure distribution has two maxima and two 
minima on the surface. This is because the relative flow seen by the particle comes onto 
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FIGURE 7. Distribution of pressure and viscous stresses on the surface of the particle at a late time 
of migration (curve 1 in figure 2). t* = 176.5, (x ,y )  = (8.53L, 0.49825L). (a) Pressure and shear stress; 
(b) horizontal projections. Because of the definition of the angle 0, negative projection corresponds 
to a lateral lift in the positive y-direction (to the right). The dimensionless resultant lateral thrusts are: 
F, = - 1.558 x F, = 9.446 x 

its left and right sides in opposite directions. We call attention to the fact, already noted 
by Huang et al. (1994) and Liu et al. (1993), that the pressure extrema correspond more 
or less to the zeros of the shear stress. This correspondence would be even stronger if 
the negative shear stress due to the slow rotation of the particle were taken away (see 
Liu et al. 1993). Because the particle is rotating in a viscous fluid with closed 
streamlines around it (Cox et al. 1968), stagnation points cannot be strictly defined on 
the surface of the body. But we will still call points with maximum or minimum 
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pressure 'viscous stagnation points'. It is probable that the stagnation points with 
negative pressures evolve into points of separation. 

In figure 7 (a),  the pressure distribution has a symmetric pattern and the lateral thrust 
cancels out between the first and the second quadrant, and between the third and the 
fourth (figure 7b) .  This is of course understandable as the particle has reached the 
centreline at this stage. In contrast, the pressure distribution in figure 6 ( a )  displays 
apparent asymmetry. On the left side of the particle, the maximum pressure (at 
I3 = 3 11" is higher than its counterpart on the right side (at 0 = 13 1 "), and the minimum 
pressure (at 19 = 221") is lower than its counterpart (at I3 = 41"). Considering the 
position of the particle, this asymmetry can be evidently attributed to the wall effect. 
The highest pressure in the fourth quadrant arises as the wall, which is moving down 
faster than the particle, forces fluid through the gap (see figure 1). This effect is known 
as lubrication if the gap is very narrow, and as geometric blocking otherwise. We will 
loosely call this a lubrication effect for any gap size. 

The average high pressure in the second quadrant nearly balances the average low 
pressure in the first quadrant, but the average high pressure in the fourth is not 
compensated by the negative pressure in the third quadrant. This leads to a net lateral 
thrust to the right toward the centre of the channel. The horizontal projection of the 
pressure in figure 6(b) ,  which gives the lateral thrust directly, shows this imbalance 
more clearly. We also note that because of the lubrication effect on the left side of the 
particle, the average pressure on the top of the particle is larger than the average 
pressure on the bottom, producing a positive slip velocity with which the particle leads 
the fluid. The same argument holds for a particle initially on the right side of the 
channel. The above analysis establishes the wall lubrication as the dominant mechanism 
for the migration of a neutrally buoyant particle in a Couette flow. 

We now turn our attention to the inertial lift related to shear and slip. The 
downward lead velocity of the particle in the left half of the channel tends to enhance 
the upward flow on the right side of the particle and suppress the downward flow on 
its left. However this mechanism affects the pressure distribution and the transverse 
force, it is small in magnitude and is overshadowed by the strong wall effect in figure 
6. An indication of its existence can be found, however, in the initial transient of curve 
4 in figure 4. For a brief moment after the release, the particle has a large negative slip. 
This produces a short-lived migration toward the wall. After the slip velocity relaxes 
to a small positive value, this mechanism becomes much smaller and, because it is now 
in the same direction as the wall repulsion, no longer distinguishable. In the next 
section, the inertial lift will be fully revealed for non-neutrally buoyant particles that 
have large slip velocities. 

The rotation of the particle may be the reason for the shift of the pressure 
distribution in figure 7(a). Because the slip velocity is very small, the contribution of 
rotation to the lateral lift is conceivably minimal. For non-neutrally buoyant particles, 
however, rotation will be a considerable element in the lateral migration (see $2.2). 

Pressure differences do not only move the particle, they also move the fluid from 
high-pressure regions to low-pressure regions. The high pressure in the fourth 
quadrant, caused by lubrication, pushes the fluid from the fourth to the first quadrant. 
This flow gives rise to a shear stress on the top of the particle that drags it to the centre. 
An opposing and stronger shear appears on the bottom, and the net effect of the shear 
stress is to generate a small thrust to the left. As the particle approaches the centreline, 
the asymmetry in the stresses, produced mainly by lubrication, is relieved and the 
resultants due to pressure and shear stress tend to vanish (figure 7b). 

Finally, it is impossible to identify the physical picture constructed above with either 
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FIGURE 8. Migration of a buoyant particle in an upward Couette flow between walls. 
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FIGURE 9. The migration of buoyant particles released at yo = 4L in a Couette flow field. The moving 
wall is at y = L. The slip Reynolds number is defined by W s l l p  = 2ISVla/v, so ISVlU, = 0.1 R,,,,. Since 
the heaviest particle is falling down, positive x has been used for all cases. 

the Bretherton-Saffman viscous perturbation theory or the inertial perturbation 
theories of Ho & Leal (1974) and Vasseur & Cox (1976). These theories are only weakly 
nonlinear and they leave out important physical mechanisms like lubrication effects 
which arise when a particle of finite size approaches a wall. 

2.2. Non-neutrally buoyant particles 

The buoyant weight of the particle defines a slip velocity that can be either upward 
or downward, depending on the density of the particle. To be definite about the flow 
directions, we now consider the upward Couette flow shown in figure 8, in which 
K = 0.125, W, = 40 and Fr = 392. 
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FIGURE 10. The angular velocity (made dimensionless by the shear-rate w* = wL/U,)  of a slightly 
buoyant particle decreases as it approaches the wall. p = 0.998, final lead W,,,, = 0.057. 

Numerical simulations of the motion of particles of various densities have been 
carried out. Some of the results are shown in figure 9. If the particle is only slightly 
buoyant (p = 0.998 or 1.002), it stabilizes at a position close to either of the walls, 
depending on whether it leads or lags the fluid; a light particle ends up close to the 
stationary left wall and a heavier one close to the moving right wall. For larger 
buoyancy (p = 0.95, 1.01 and l.05), however, the final position of equilibrium moves 
back toward the centreline. These results can be interpreted in the light of the mutual 
action of the three fluid mechanical agents proposed in the last section, namely the wall 
repulsion, the inertial lift and the rotation-related lift. 

Note that even the smallest buoyancy tested here causes a slip velocity much larger 
than that of a neutrally buoyant particle (figure 3). For instance, at x = 2a, the particle 
with p = 0.998 has a lead velocity of 0.018Uw. This will boost the inertial lift and the 
lift caused by particle rotation, which force leading particles to the stationary wall and 
lagging ones to the moving wall. Later in this section we will illustrate the physical 
mechanism of the inertial lift by studying the distributions of pressure and shear stress 
on the particle surface. The particle cannot go all the way onto the wall because of the 
wall repulsion, and it will stabilize at a stand-off distance from one of the walls where 
the lubrication force from the wall cancels the inertial lift and the lift due to rotation. 
Another effect of the wall is to suppress the rotation of the circular particle (figure 10). 

If the difference in density is increased, the slip velocity gets even larger. The motion 
of the particle becomes dominated by the slip velocity as in sedimentation. The wall 
lubrication force will be greatly increased. The inertial lift, however, will be increased 
much less than the wall repulsion. This can be understood by realizing that the 
difference in velocity across the particle caused by shear is less important when the slip 
is large (cf. figure 12c). We note that McLaughlin (1991), by extending the Saffman 
perturbation to allow strong slip, proved that the Saffman lift force even decreases 
when the slip velocity is large enough. This seems to be consistent with our argument 
although a decrease in inertial lift has not been shown in our simulations. Finally, our 
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FIGURE 11. The horizontal component of pressure and shear stress at an early stage of migration of 
a lighter particle (p = 0.95). (x,y) = (0.3427L, 0.4865L). Because of the definition of 8, a positive 
lateral thrust corresponds to a lift in the negative y-direction. The dimensionless resultant forces are 
Fp = -0.2586, 4 = 0.1001. 

results show that the rotation is much suppressed by the strong slip. The final angular 
velocity of particles of density p = (0.95, 0.998, 1.0, 1.002, 1.01, 1.05) is w* = (0.21, 
0.265, 0.472, 0.476, 0.229, 0.184). The above arguments explain why particles of great 
buoyancy, whether lighter or heavier, assume equilibrium trajectories closer to the 
centre of the channel. 

The driving forces of the migration have their origins in the pressure and the shear 
stress on the surface. As indicated in $2.1, the pressure distribution determines the 
qualitative pattern of migration and the viscous shear stress only has relatively minor 
influences. This is further illustrated by a typical case shown in figure 1 I. The following 
analysis focuses on the mechanisms by which the flow field around the particle dictates 
a particular pressure distribution which gives rise to the inertial lift and wall repulsion. 
The effect of rotation will be examined separately. Without losing generality, we will 
consider lighter particles only. Early and final stages of migration are investigated, 
when the particle is on the centreline or closer to a wall. This allows us to study the 
inertial lift and wail repulsion separately. 

When the density difference is small, the particle sees flow coming to its left and right 
sides in opposite directions (figure 12a, b). This gives rise to a pair of pressure extrema 
on each side of the particle (figure 13a, b). We again note that the location of the 
extrema of pressure p corresponds roughly to points of vanishing shear stress 7. Since 
the particle leads the local fluid in this particular example, the flow is stronger on its 
left flank where the maximum pressure is larger and minimum smaller. At the 
beginning of the migration, when the particle is near the centreline (figures 12a and 
13a), careful comparison shows that the mean pressure is actually lower on the left, 
which is reminiscent of potential flow around a rotating cylinder. It is not the front 
stagnation pressure around 0 = 320" that determines the migration. Instead, it is the 
negative rear stagnation pressure at 0 = 225" that gives rise to the dominant inertial lift 

10 F L M  2 7 7  
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FIGURE 12. Streamlines around a buoyant particle as seen in a coordinate system fixed on the particle. 
The four cases represent the early and final stages of migration of a particle with small and large slip 
velocities. The sketch shows the undisturbed relative velocity for each case. (a) p = 0.998, (x,y) = 

(0.8078L, 0.4995L); (b) p = 0.998, (x,Y) = (35.851;, 0.16L); (c) p = 0.95, (x,Y) = (0.3427L, 0.4865L); 
(d) p = 0.95, (x,y) = (46.80L, 0.4655L). 
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that moves the body toward the left wall. At the final stage of migration (figure 12b), 
the proximity of the wall has two effects on the pressure distribution. First, the 
magnitude of both pressure extrema is increased, and they are closer together. The 
other effect is that the mean pressure on the left is increased to balance the inertial lift 
(figure 13 b). This wall repulsion reflects the lubrication effect between the wall and the 
particle, and is basically the same mechanism that forces a neutrally buoyant particle 
to the centreline as demonstrated in the last subsection. 

If the density difference is large, the flow field resembles that caused by a sedimenting 
particle, and the effect of shear and particle rotation is not conspicuous in the 
streamlines (figure 12c, d) .  The pressure distribution is similar to that on a sedimenting 
particle as well, only the difference in the ‘intensity’ of the flow on both sides distorting 
the symmetry to produce a higher average pressure on the right side of the particle 
(figure 13c). We note again that the negative pressure at the back of the particle 
determines the direction of migration. It is interesting that in low-Reynolds-number 
sedimentation near a wall, it is the front stagnation pressure that makes the major 
contribution to lateral motions (Liu et al. 1993). At the later stage of migration, the 
wall effect negates the inertial lift and forces the particle back to an equilibrium 
position near the centreline (figure 13 d) .  

If one ignores the details of pressure distribution, the inertial lift described above can 
be likened to the lift on an airfoil, where faster flow induces lower pressure on one side 
of the body than on the other side. But here the asymmetry in flow intensity arises 
mainly as a result of shear and slip velocity. The effect of particle rotation, which 
corresponds to the circulation around an airfoil, will be addressed next in this section. 
If there is no slip velocity, the shear flow will be skew-symmetric between the two sides 
of the body. If there is no shear, the flow induced by a settling particle is symmetric. 
In both cases, there is no difference in the intensity of flow on both sides of the particle, 
and no inertial lift could exist. This reveals the mechanism of the inertial lift. This 
argument also suggests that very large slip velocity will suppress the inertial lift as 
already mentioned. 

To study the effect of rotation, we computed the migration of buoyant particles 
prevented from rotation, and the trajectories are shown in figure 14. Non-rotating 
particles always assume an equilibrium position somewhat closer to the centreline of 
the channel, so they experience a smaller transverse force toward the wall although the 
slip velocity is slightly larger. This suggests that the lift due to rotation plays a small 
but definite role in the lateral migration, and it is in the same direction as the lift caused 
by shear slip. This is a nonlinear effect, and has not been included in the lift forces of 
Bretherton (1962a) and Saffman (1965). The rotation effect has other implications for 
the migration behaviour. In particular, a particle with large slip velocity has small 
rotation, and this helps to explain the reversal in the shift of equilibrium position as the 
slip velocity increases (figure 9). Microscopically, rotation influences the layer of fluid 
that adheres to the surface, and alters the distribution of shear stress and pressure. 

In summary, we may say that the inertial lift is mainly caused by the difference in the 
intensity of flow between the two sides of the particle due to shear slip. Particle rotation 
contributes to the migration by inducing a lift of relatively small magnitude. The wall 
repulsion is a lubrication effect. Another effect of the wall is that it tends to suppress 
the rotation and thus diminish the lift due to rotation. 

As far as we know, Vasseur & Cox (1976) is the only study, theoretical or 
experimental, that addresses the migration of buoyant particles. In the limit of small 
particles and vanishing Reynolds numbers, their analysis shows that in a Couette flow, 
if the particle leads the fluid (a lighter particle in upward flow or a heavier particle in 
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FIGURE 13. The pressure and shear stress distributions on a buoyant particle in a Couette flow. 
The four cases (a, b, c, d )  are the same as shown in figure 12. 
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FIGURE 14. The migration of freely rotating and non-rotating buoyant particles. 

downward flow), it migrates to the stationary wall; a lagging particle goes to the 
moving wall. The direction of migration agrees with our two-dimensional simulations 
for small buoyancy. However, the perturbation theory does not predict the stand-off 
distance from the wall in the final trajectory and the migration of particles with large 
buoyancy. 

3. Particle migration in a planar Poiseuille flow 

Particle motion in a Poiseuille flow is of more engineering interest than that in a 
Couette flow. On the theoretical side, the problem has been studied by perturbations, 
Under the small-particle and low-Reynolds-number restrictions, Ho & Leal (1974) 
predicted a SegrbSilberberg effect for neutrally buoyant particles. Vasseur & Cox 
(1976) later obtained similar results using an alternative approach, and further studied 
the case of non-neutrally buoyant particles. Their major conclusion is that a particle 
leading the fluid will migrate to the wall while one lagging migrates to the centreline. 
We have relaxed the restrictions to small particles and low Reynolds number in our 
simulations, as for the Couette flow, and find that leading particles are repelled near 
the wall at an equilibrium stand-away distance and that lagging particles never get to 
the centreline at any finite fluid speed but attain an equilibrium close to the centreline, 
whose exact position also involves the effects of the wall. We shall present and interpret 
the results of our simulations for neutrally buoyant and non-neutrally buoyant 
particles and compare them with previously published theoretical and experimental 
data. 

3.1. Neutrally buoyant particles 

The channel and the particle are the same as used in the Couette flow, except that the 
characteristic velocity of the undisturbed flow is now the maximum velocity at the 
centre of the channel Urn (figure 15). Shown in figure 16 are the migration curves for 
neutrally buoyant particles released at different initial positions. The SegrbSilberberg 
effect is realized, with the equilibrium position a little outside the midpoint between the 
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FIGURE 15. Geometry for the migration of a particle in a plane Poiseuille flow. 
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FIGURE 16. The Segre-Silberberg effect in a plane Poiseuille flow field. Particle Reynolds number 
Rp = 0.625; bulk Reynolds number R, = 40. 

wall and the centre at y = 0.252L when the particle Reynolds number W, = 0.625. If 
we increase the velocity at the centre of the channel, the particle migrates faster and the 
final equilibrium position is closer to the wall (figure 17). 

The symmetry of the Poiseuille flow field makes the centreline of the channel an 
equilibrium position for a circular particle; but it is not a stable one. If the particle is 
displaced slightly to the left, hydrodynamic forces will develop which push the particle 
further to the left (the same argument works on the right side). The destabilizing 
mechanism is associated with the curvature in the undisturbed velocity profile, as we 
will proceed to show next. 

First we note that the particle always lags the local velocity of the undisturbed flow. 
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FIGURE 17. The effect of the flow rate on the SegrbSilberberg migration. The circle on curve 3 
marks the position at which the flow around the particle is analysed in figures 19 and 20. 

FIGURE 18. The slip velocity of particles released from different positions in the flow at different 
apparent Reynolds numbers. 

This is a well-known effect in the limit of small particles in slow flows (Brenner 1966) 
and is here shown to be general. In figure 18, we compare the lagging velocities for 
different flower rates. For a fixed Urn, the slip velocity rapidly relaxes to a constant 
value independent of the initial conditions, although the rate of relaxation may be 
different. At higher Urn, the slip velocity 6V is larger. 

If the curvature of the velocity profile were zero, the negative slip velocity would 
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FIGURE 19. Cartoon showing the relative flow and pressure extrema around a neutrally buoyant 
particle in a Poiseuille flow. The particle is in a position marked in figure 17. R, = 3.125. 

cause a stronger relative flow on the right of a particle which is in the left side of the 
channel. Then the average pressure would be lower on the right and the particle would 
be pushed to the centre of the channel. The curvature reverses this trend as shown in 
figure 19. At this particular time step, the velocity of the particle is 0.903Um, and the 
undisturbed fluid velocity is 0.925Um at the centre of the particle, O.725Um at its left 
tip and 0.999Um its right tip. It is clear that the curvature creates a higher velocity of 
the fluid relative to the particle on the left side. The effect overwhelms the asymmetry 
caused by the lag velocity. By the same argument given for a non-neutrally buoyant 
particle in a Couette flow, the stronger flow causes low pressure on the left side of the 
particle and sucks it away from the centreline. This mechanism can be further 
illustrated by the distributions of pressure and shear stress on the surface of the particle 
(figure 20). 

As in the case of a neutrally buoyant particle in a Couette flow, there are four 
distinguished points on the boundary of the circular particle corresponding to zeros of 
the shear stress (figure 20). The two extrema on the right side of the particle are 
relatively weak. The highest pressure occurs at the 'stagnation point' in the fourth 
quadrant (0 = 308") on the left, and is marked by a thick plus symbol in figure 19. But 
the negative pressure at 19 = 236" is even larger in magnitude and is marked by a thicker 
minus. This negative pressure gives rise to a lateral thrust that points toward the left 
wall (figure 20b). It can also be seen that the stronger relative flow on the left of the 
particle is reflected by larger shear stress there (figure 20a). 

Owing to the small magnitude of the slip velocity, the inertial lift caused by shear slip 
and the lift related to particle rotation are believed to be small. The lateral drift of the 
particle stops when the lubrication effects arising from the wall force equilibration of 
all the lateral thrust forces. 

The effect of curvature in the Poiseuille velocity profile was first pointed out by Ho 
& Leal (1974) in their perturbation theory. The physical picture given here, however, 
could not possibly be constructed by the asymptotic analysis. Our numerical simulation 
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FIGURE 20. Distributions of pressure and viscous stresses on the surface of a neutrally buoyant 
particle in a Poiseuille flow. R, = 3.125. The position of the particle is (x,y) = (19.82, 0.3628) L, 
which is marked by a circle in figure 17. (a) Pressure and shear stress; (b) horizontal projections. 
Because of the definition of 8, positive projection corresponds to lateral thrust toward the left wall. 
The resultant lateral forces (scaled by the inertial force pU2,a) are: F, = - 3 . 6 7 ~  low3, F, = 

-6.725 x 
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FIGURE 21. The migration of buoyant particles in a plane Poiseuille flow. W, = 120, R, = 1.875, 
F, = 43.56. Initial position yo = +L except for the neutrally buoyant case shown here for 
comparison. 

for large particles ( K  = 0.125) at moderate Reynolds numbers ( R p  - 1) agrees 
qualitatively with the perturbation theories, although the equilibrium position 
predicted here ( - 0.25L) is closer to the centreline than in the theories ( - 0.2L). 

3.2. Non-neutrally buoyant particles 

Particles of various densities, either larger or smaller than that of the carrying fluid, are 
released halfway between the wall and the centre. The migration curves are shown in 
figure 21. A neutrally buoyant particle released at the centreline is also shown for 
comparison. 

These trajectories can be interpreted based on the understanding of the migration of 
a buoyant particle in a Couette flow and the effect of velocity profile curvature. As 
discussed previously, a neutrally buoyant particle in a Poiseuille flow lags the fluid 
slightly, and the wall effect balances the effect of the curvature of the velocity profile, 
giving rise to an equilibrium position about halfway between the centre and the wall. 
If the particle is slightly heavier than the fluid, the lagging velocity is larger, resulting 
in a larger inertial lift that moves the particle closer to the centre @ = 1.01). At even 
larger density difference and larger lag velocity, the inertial lift and the wall effect are 
dominant so that the particle is pushed to the centre rapidly, overshooting and finally 
stabilizing at a position very close to the centreline (p = 1.1). Because of the curvature 
in the undisturbed velocity profile, the particle cannot stabilize exactly on the 
centreline. 

If the particle density is only slightly smaller than that of the fluid, the slip velocity 
will be moderately leading. The inertial lift will point to the nearer wall and help the 
curvature effect to move the particle outward against the wall repulsion. The 
equilibrium position will then be closer to the wall (p = 0.99). If the density difference 
is sufficiently large, however, a reversal similar to the Couette case occurs. The slip 
velocity overshadows the effect of the Poiseuille velocity profile, and the motion of the 
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particle resembles sedimentation. Then the wall lubrication force overwhelms the 
inertial lift and the curvature effect, and the particle starts to move back to the centre. 
There should be a critical density difference for each flow rate that puts the particle 
closest to the wall. But in principle, the particle can never really get to the wall. 

The perturbation theory of Vasseur & Cox (1976) has some interesting results for 
non-neutrally buoyant spherical particles that can be compared to our two-dimensional 
simulations. They first obtained solutions for three limiting cases : 

(i) A buoyant particle in a quiescent or slow-moving fluid with I V / U J  % 1 ,  where 
V is the terminal velocity of the particle when settling in an unbounded domain, and 
Urn is the maximum velocity in the undisturbed flow. The particle is found to move 
away from the walls to an equilibrium position on the centreline of the channel. 

(ii) A non-neutrally buoyant particle with K~ < I V/  U,l 6 1 .  The particle moves to 
either the wall or the centreline depending on whether it leads or lags the fluid. 

(iii) A neutrally buoyant particle with IV/U,l 4 K’. The particle stabilizes at an 
equilibrium position between the centreline and the wall (SegrbSilberberg effect). 

Case (i) involves the sedimentation of a particle, which was studied in Part I of this 
series (Feng et a/. 1994). In the present case of sedimentation in Poiseuille flow, we find 
that the equilibrium tends to the centreline only asymptotically as V / U ,  -+ co. Case 
(iii) was discussed in $3.1 as associated with the result of Ho & Leal (1974). For case 
(ii), the conclusion drawn by Vasseur & Cox is apparently different from ours. Two 
intermediate cases that Vasseur & Cox studied as representing the conditions between 
the three limits are particularly relevant to our simulation : 

(iv) The case intermediate between (ii) and (iii) with I V/  U,l - K ~ ,  when the particle 
is slightly buoyant (case e in their original paper). They found that the particle attains 
an equilibrium position between the centreline and the wall, and is close to the 
centreline if the particle lags but close to a wall if the particle leads, but never reaches 
the wall. This result is similar to our simulations of the migration of slightly buoyant 
particles (p = 1.01, and probably also p = 0.99). 

(v) The case intermediate between (i) and (ii) with I V/  U,l - 1, when the particle has 
a large slip velocity (case d in their original paper). Vasseur & Cox showed that the 
equilibrium position of the particle always approaches the centreline as the slip velocity 
increases, whether leading or lagging. This can be compared to our runs with p = 0.85, 
0.90, 0.95 and perhaps 0.99. The reversal in the position of equilibrium of a leading 
particle as the slip velocity increases has not been reported elsewhere. 

It should be emphasized that the Vasseur-Cox theory applies only under conditions 
Re < 1, K 4 1 and Re < K.  Therefore, the qualitative agreement between intermediate 
caves (iv) and (v) and our simulations may be fortuitous. For example, the non- 
neutrally buoyant particles in case (ii) are in fact very slightly buoyant particles in our 
case, and their results are different from ours. But their case (iv), which is for even less 
buoyant particles, does seem to agree with our simulation. The intermediate cases have 
not received much attention in the literature and the conclusions of the perturbation 
theory for case (ii) have long been taken as universally true for buoyant particles. The 
confusion related to the behaviour of a buoyant particle will be further addressed in 
the next subsection. 

3.3.  Comparison with experiments 

Let us first discuss the motion of neutrally buoyant particles. Following Segre & 
Silberberg’s (1961) observation, voluminous experimental work on the same kind of 
problem has verified their principal conclusions. For example, neutrally buoyant 
particles stabilize midway between the centreline and the wall, closer to the wall for 
larger flow rates and closer to the centre for larger particles (Karnis, Goldsmith & 



0.6 

\ I  

Karnis et al. : RSlip = 1.4 x loT3, R, = 26.4, a /R  = 0.305; our simulation: RSlip = 0.54, R, = 40, 
a / R  = 0.25. 

LA, 

! '? 0 
\ 

_ _  .......... 1 ..................... n .... i ............................................ i .. i 1.. ................................. 

Mason 1966). Because of the numerous parameters involved, however, attempts to 
establish a universal correlation have not been successful. This fact makes quantitative 
comparison among different studies difficult and less convincing. In our case, we also 
suffer from the geometric differences because most of the experiments used spherical 
particles in circular pipe flow. Nevertheless, it is interesting in a qualitative sense to see 
how the numerical prediction compares to the experimental data. 

Karnis et al. (1966) presented extensive results on small particles, including spheres, 
rods and disks, migrating in a capillary tube. Because of the difference in particle 
Reynolds number R,, characteristic length and viscosity, the migration time differs 
from that of our simulation. We note that there are three major factors influencing the 
migration rate: the size of the particle, the inertia of the fluid and viscosity. The first 
effect was given as (a/R)' in their paper, where a and R are the radius of the sphere and 
the tube, respectively. To formulate the competition between the inertial and viscous 
effects, we simply use the ratio of the two: 

where Urn is the maximum velocity on the centreline. After this treatment, the typical 
inward and outward migration curves are compared in figure 22. Despite the difference 
in geometry, the behaviour of their sphere is very similar to that of our cylinder. The 
equilibrium position differs a little, but is closer to the centre than the wall in both 
studies. We remind the reader that owing to the complex nature of the problem, the 
timescale given above should not be expected to hold universally. 

Tachibana (1973) conducted an experiment under conditions much more similar to 
our simulation in terms of dimension and geometry. His duct has a 3 cm x 3 cm square 
cross-section, producing two-dimensional Poiseuille flow fields at bulk Reynolds 
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FIGURE 23. Comparison of the simulated migration trajectory of a neutrally buoyant particle with the 
experiment of Tachibana (1973). The width of the column is 2B, and the centreline is at y = 0. The 
bulk Reynolds number is defined as R, = 2U, Blv. 

number R, (based on the size of the duct) up to 200. A typical inward migration 
trajectory is compared to our computation with the closest initial position in figure 23. 
Again, the simulation predicts qualitatively the same behaviour as observed in 
experiments. 

As shown in figure 17, we have correctly simulated the effect of flow rate on the final 
equilibrium position. The influence of particle size is not systematically investigated in 
the computation. Based on the idea of competition among various lift forces, it is 
possible that larger particles induce larger lag velocities and therefore are pushed 
inward by stronger inertial lift and wall repulsion. In summary, our simulation of a 
neutrally buoyant two-dimensional particle migrating in a plane Poiseuille flow field 
does reproduce the major characteristics observed in three-dimensional experiments. 
Next, we will turn to the somewhat controversial non-neutrally buoyant case. 

Review papers summarize the experimental findings by saying that leading particles 
migrate to the wall in a Poiseuille flow and lagging particles migrate to the centreline. 
This does not agree with our simulations. By investigating original experimental data, 
we will try to answer the following two questions: 

(i) Does a lagging particle migrate to the centreline? Our computation suggests that 
the equilibrium position will be closer to the centreline as the density difference 
increases; at Rslip = 24.6, the particle stabilizes almost on the centreline (figure 21). In 
the experimental literature, most authors claim that a lagging particle goes to the 
centreline. This is true when the difference in density is large enough, which is the case 
in most of the experimental studies. However, the careful and comprehensive 
experiment of Repetti & Leonard (1966) in a plane Poiseuille flow does show that if the 
density difference is not large, the particle will stabilize at a small distance from the 
centreline. A similar conclusion was drawn by Aoki, Kurosaki & Anzai (1979) for a 
pipe flow. A detailed comparison will be given later in the section (figure 24). Based on 
our simulation and the experiments, as well as on the low-Reynolds-number asymptotic 
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FIGURE 24. Migration of buoyant particles in a planar Poiseuille flow: comparison of our simulation 
with the experiment of Repetti & Leonard (1966). The centre is at y = 0 and the two walls are 
at y = ++L. Repetti & Leonard (downward flow): I .  W, = 412.3, K = 0.0951, Sp = 0.380%; 2. 
R,=211.2, ~=0 .0473 ,  Sp= -0.091%; 3. R,=408.5, ~=0.0948,  Sp=-0.113%; 4. W=811.7, 
K = 0.0951, Sp = -0.322%. Our simulation (upward flow) at R, = 120, K = 0.125: (a) Sp = - 1 %, 
(b)  Sp = 1 %, (c) Sp = 10%. 

analysis of Vasseur & Cox (case v in $3.2), we believe that the particle always assumes 
an equilibrium position between the centre and the wall. If the density difference is 
large enough, the particle will be very close to the centreline. 

(ii) Does a leading particle migrate to the wall? In the literature we have found no 
experimental evidence of a particle going all the way to the wall. The earliest 
observations on density effects (Oliver 1962; Repetti & Leonard 1964; Karnis et al. 
1966) indicated that particles leading the flow exhibit a two-way migration behaviour, 
depending upon their initial positions and/or density differences, very much in the 
same fashion that a neutrally buoyant particle migrates. The equilibrium position is 
near the wall, but a particle released next to the wall always drifts away due to wall 
repulsion. This is in perfect agreement with the results of our simulation (53.2). The 
wall repulsion seems to have been overlooked by some later researchers, who, 
attempting to analyse the migration, have either considered the shear-related Saffman 
type of lift forces only (Denson, Christiansen & Salt 1966; Jeffery & Pearson 1965), or 
employed approximations that restricted the proximity of walls (Vasseur & Cox 1976). 
These analyses, claiming that leading particles go to the wall, were aggravated by 
improper extrapolations of experimental data which show that in a certain range of 
density difference, particles with larger lead velocity indeed attain equilibrium positions 
closer to the wall (Repetti & Leonard 1966). It is unfortunate that three widely cited 
review articles (Brenner 1966; Cox & Mason 1971 ; Leal 1980) have not given enough 
attention to the important two-way migration behaviour due to the complex 
competition among lateral forces. 

A comparison between Repetti & Leonard’s (1966) experimental data and our 
simulation will help to answer both of the above questions (figure 24). Working with 
a 2.54 cm x 10.16 cm rectangular cross-section duct, Repetti & Leonard created an 
essentially two-dimensional Poiseuille flow. In this figure, y = 0 is the centreline of the 
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channel and y = iL  is one of the two walls 2.54 cm apart. As our computation involves 
an upward flow while their flow is downward, opposite density differences correspond 
to the same particlefluid slip condition in both studies. The density difference is 
represented by 

in the figure. For leading particles, their data (curve 1) agree qualitatively well with 
ours (curve a). It is clear that the particle is not able to travel all the way to the wall 
before being stopped by the wall repulsive lift (see also Karnis et al. 1966). For particles 
only slightly lagging the fluid, curve 2 verifies our conclusion that the particle does not 
go all the way to the centreline. Instead, it stops somewhere close to the centreline 
where the inward lift is balanced by the outward force related to the velocity profile 
curvature (b). At larger lagging velocity, the particle is even closer to the centreline (3). 
If the large velocity is still larger, inertia of both the particle and the fluid becomes so 
important that the particle oscillates a few times before stabilizing at its final position 
(4 and c). This behaviour resembles the sedimentation of a particle in a stagnant fluid 
at medium Reynolds numbers (Feng et al. 1994), and is further evidence of the strong 
wall effect at large slip velocities. It has been reported that stronger oscillatory 
behaviour (even undamped) occurs at large density differences (Denson et al. 1966; 
Brenner 1966). 

The reversal predicted by our simulation, i.e. the equilibrium position of particles 
with large lead velocities moves back toward the centreline, has not been corroborated 
experimentally. The lack of experimental support may be related to the fact that this 
situation involves particle motion superposed onto fluid motion, and cannot be 
observed unless the test section is extremely long. 

It should be pointed out that although the scenario of particle migration in shear 
flow fields is more or less clear now, we are unable to take quantitative account of the 
effects of all the parameters in terms of, say, a few dimensionless groups. In this sense, 
direct comparisons between numerical, experimental and analytical results will require 
further work. 

' P  = @particle - P f l u i d ) / P f l u i d  

4. Conclusions 

Based on the results and discussions presented in this paper, the following 
conclusions can be drawn for the parameter ranges covered in this study: 

1. For the lateral migration of a neutrally buoyant circular particle in a planar 
Couette shear flow, the centreline of the channel is a stable equilibrium position. 

2. The motion of a non-neutrally buoyant particle in a Couette flow depends on the 
magnitude of the buoyancy force. When the density difference is small, the equilibrium 
position is near the stationary wall if the particle leads the local fluid, and near the 
moving wall if the particle lags. When the density difference is large enough, the 
equilibrium position shifts toward the centreline, irrespective of whether the particle is 
lighter or heavier than the fluid. 

3.  The SegrbSilberberg effect for a neutrally buoyant particle in a planar Poiseuille 
flow is simulated. The equilibrium position is closer to the wall for higher flow speed. 

4. The motion of a non-neutrally buoyant particle in a Poiseuille flow depends on 
the magnitude of the buoyancy force. When the density difference is small, the 
equilibrium position is either near the wall or near the centreline, depending on 
whether the particle leads or lags the local fluid. When the density difference is large 
enough, the equilibrium position shifts toward the centreline, irrespective of whether 
the particle is lighter or heavier than the fluid. 
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5.  Three mechanisms are identified as responsible for the lateral migration in a 
Couette flow: wall repulsion due to lubrication, inertial lift related to shear slip and a 
lift due to particle rotation. For a Poiseuille flow, an additional mechanism is a lift 
force due to the curvature of the undisturbed velocity profile. All the cases of lateral 
migration listed above can be explained in terms of these mechanisms. 

6. These lateral forces are shown to be related to the flow field around the particle. 
Stagnation pressure on the surface of the particle is particularly important in 
determining the direction of migration. 

7. The conclusions of perturbation theories agree qualitatively with our simulations 
for the motion of neutrally buoyant particles in Couette and Poiseuille flows. For non- 
neutrally buoyant particles, the reversal observed in our simulation is different from the 
predictions of the perturbation theory of Vasseur & Cox (1976). 

8. Comparison with experimental data is qualitatively satisfactory in all cases except 
the reversal behaviour, which has not been experimentally observed. The comparison 
also reveals some misunderstanding and mis-interpretation in the literature. 
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