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The weak axisymmetric fountain that results from the injection of a dense fluid
upwards into a large container of homogeneous fluid of lower density is studied
numerically. Using a time-accurate finite volume code, the behaviour of fountains
with both a uniform and a parabolic profile of the discharge velocity at the source
has been investigated. The evolution of the transient fountain flow has been analysed
and two distinct stages have been identified. The time series of the passage of the
fountain front has been presented and the initial, temporary and final characteristic
fountain heights have been determined and scaled with the Froude number at the
source. At steady state, the final fountain height and the fountain width are found to
be the height and horizontal length scales which provide the full parameterization of
the flow in the fountain core. The vertical velocity and temperature on the symmetry
axis have been scaled with the height scale and an explicit correlation is also obtained
for the former. The radial distributions of both the vertical and horizontal velocities
in the zone of self-similarity in the fountain core at steady state have been scaled with
the two length scales and empirical correlations have been obtained.

1. Introduction
Negatively buoyant jets (often referred to as fountains) are common both in

industry and in nature. In any process where a dense fluid is steadily injected vertically
upward into a miscible and less dense fluid (or in the reverse case, when lighter fluid
is injected vertically downward into a denser ambient fluid) a fountain-type structure
forms. When the fountain source is strong, that is when the discharge momentum is
relatively large compared to the negative buoyancy, the flow becomes turbulent quite
close to the source and is characterized by Fr > 1.0, where Fr is the Froude number
defined as (Chen & Rodi 1980; Rodi 1982)

Fr =
V0

(R0σ0)1/2
, (1.1)

in which V0 is the mean momentum-weighted discharge velocity at the fountain source,
defined in § 2.1, R0 is the radius of the source, and σ0 is the reduced gravity between
the fountain and the ambient fluid at the source. For these turbulent fountains, the
momentum of the rising denser fluid is reduced gradually by the negative buoyancy
until the flow first comes to rest at an initial height above the source. After that,
the flow falls back as an annular plunging plume around the upward flow and this
downflow continues to mix with the ambient while also interacting turbulently with
the upflow which restricts the rise of further fluid and therefore reduces the initial
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Figure 1. A schematic of a weak fountain flow.

fountain height to a final value which is observed to be related to the momentum and
buoyancy fluxes at the source (Campbell & Turner 1989; Baines, Turner & Campbell
1990; Bloomfield & Kerr 1998). The schematic drawing in figure 1 by Baines et al.
(1990), Baines, Corriveau & Reedman (1993) is very instructive for understanding
this process.

For fountains with a weak source, the discharge momentum of the fountain is equal
to or less than the negative buoyancy and the maximum fountain height Zm is of
the order of R0. The fountain is characterized by a small Froude number (Fr 6 1.0).
It has no distinguishable upward and downward flows, as shown schematically in
figure 1. Instead, the streamlines curve and spread from the source. From dimensional
analysis, Baines et al. (1993) argued that in this specific situation,

Zm

R0

∼ Fr. (1.2)

No further information is available to determine the exact form of (1.2) and no
study has been found that investigated in depth the transient flow patterns of these
weak fountains, despite their importance from a fundamental and applied point of
view. This motivates us to conduct the current study to investigate numerically the
behaviour of weak axisymmetric fountains in a homogeneous fluid.

Weak fountains occur in many environmental and industrial flows. One example
is the replenishing of cold salt water at the bottom of solar ponds. Solar ponds are
large, shallow bodies of salt water that are arranged so that the temperature gradients
are reversed from the normal, i.e. the hottest layers are at the bottom of the ponds
(Duffie & Beckman 1991). This allows their effective use for collection and storage of
solar energy. To maximize the efficiency of solar ponds, it is crucial to maintain stable
temperature and concentration gradients and to suppress convective flows inside the
ponds. Another example is the melting of the roof of a magma chamber, which can
lead to weak positively buoyant downward jets as described by Huppert & Sparks
(1988).

There have been numerous studies carried out on the behaviour of turbulent
fountains. Although the present study considers weak laminar fountains a brief
review of studies of turbulent fountains is given below to provide the theoretical
background for the present investigation. Morton (1959a, b) made the first study of
a turbulent fountain in both homogeneous and stratified environments. He analysed
the fountain as one case of a forced plume and used the entrainment equations to
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quantify the increasing radius, the decreasing buoyancy and the velocity of dense fluid
injected upward into a lighter ambient fluid. Based on the assumption that the flow
is controlled by the fluxes of momentum and buoyancy at the source, Turner (1966)
demonstrated that dimensional consistency requires that

Zm = CM
3/4
0 F

−1/2
0 , (1.3)

where C is a constant and M0 and F0 are the momentum and buoyancy fluxes at the
source defined as

M0 = πR2
0V

2
0 (1.4)

and

F0 = πσ0R
2
0V0 (1.5)

for a uniform profile. From (1.3), Baines et al. (1990) obtained the following relation:

Zm

R0Fr
= C. (1.6)

Turner (1966) found that C = 2.46 for the final fountain height from a laboratory
experiment in which the penetration distance of a salt-water jet injected into fresh
water had been measured for 2 < Fr < 30. The theoretical analysis carried out
by Morton (1959a), which included some experimentally determined values, gave
C = 2.06 for the initial fountain height while no result was given for the final
fountain height. Therefore, both the theoretical and experimental results show that
Zm is considerably greater than R0 for a turbulent fountain. Abraham (1967) argued
that the assumption made by Morton (1959a), that the vertical flux of a tracer being
contained in the jet is constant from the source to Zm, is not realistic, and suggested
that near Zm the vertical flux of jet fluid and the vertical flux of a tracer carried by the
jet decrease with height. Abraham (1967) then proposed an analytical solution which
takes this into consideration and obtained C = 2.74 for the final fountain height
which is 111% of the value obtained experimentally by Turner (1966) for the final
fountain height, as compared to 84% obtained by Morton (1959a, b) for the initial
height.

Seban, Behnia & Abreau (1978) studied a heated turbulent air jet discharged down-
ward and found that centreline temperatures and Zm may be predicted adequately by
constant property theories for the downward flow alone and obtained C = 2.35 for the
final fountain height for Fr > 30. This same result was also obtained by Mizushina et
al. (1982) who investigated experimentally the behaviour of a vertical turbulent foun-
tain in a uniform fluid and showed that the width of the upflow depends linearly on
the distance from the source, and that the time-averaged velocities and temperatures
as well as the intensities of their fluctuations at the jet axis can be well correlated
with the same scaling law as that used for the buoyant jet. However, they found
that the radial distributions show no similarity profiles for these quantities. Detailed
information about the earlier theoretical and experimental studies on the behaviour
of turbulent fountains can be found in the reviews on turbulent jets and plumes by
Turner (1973, 1986), Fischer et al. (1979), Chen & Rodi (1980), Rodi (1982), and List
(1982).

Recently, Campbell & Turner (1989) and Baines et al. (1990) made further inves-
tigations into turbulent fountains. Baines et al. (1990) combined the experimental
results of Turner (1966) and Seban et al. (1978) with theirs and found that C is still
2.46 for the final fountain height. An experimental and numerical investigation of the
density distribution produced in a container by a turbulent fountain was conducted
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Figure 2. (a) Sketch of the system and (b) the computational domain.

by Baines et al. (1993) to evaluate the effect of the forced vertical motion of the
environment. Bloomfield & Kerr (1998) studied both axisymmetric and line turbulent
fountains in a stratified fluid using a combination of dimensional arguments and
laboratory experiments and found that after the fountain reaches the initial height
at which the flow first comes to rest the subsequent downflow may either spread
along the base of the tank or intrude at an intermediate height in the environment,
depending on the strength of the stratification and the fluxes of momentum and
buoyancy at the source.

In this study, we investigate numerically the behaviour of weak axisymmetric foun-
tains issuing vertically into a quiescent homogeneous ambient fluid. In § 2, we outline
the numerical method in which a time-accurate finite volume code is used. In § 3,
numerical results for Fr = 1.0 are presented to provide qualitative observations on the
evolution of the transient fountain flow. Quantitative observations are then presented
to show the time series of the passage of the fountain front, to determine the char-
acteristic length scales, that is the fountain height and fountain width which describe
the fountain flow at steady state, and to provide a critical value of Fr separating
weak and strong fountains. In § 4, the velocity and temperature distributions inside
the fountain core at steady state are analysed and scaled using the two length scales.
Finally, the main conclusions are summarized in § 5.

2. Numerical method
2.1. Governing equations

Under consideration is a vertical circular container of height H and diameter D
containing a Newtonian fluid initially at rest and at temperature Ta (figure 2); the
sidewall is non-slip and insulated and the top is open. In the bottom centre, an orifice
with radius R0 is used as the fountain source. The remaining bottom region is a rigid
non-slip insulated boundary. At time t = 0, a stream of fluid at T = T0 < Ta is
injected impulsively into the container from the source to initiate the fountain and this
discharge is maintained thereafter. Due to the symmetry of the system geometry and
the boundary and initial conditions, the fountain flow in the container is axisymmetric,
which ensures that only the computational domain sketched in figure 2(b) is needed.
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The weak fountain discharge enables us to assume a laminar flow. At the fountain
source, both parabolic and uniform velocity profiles have been used. The parabolic
profile is defined as

V (R, 0) = Vm

[
1−

(
R

R0

)2
]

for 0 6 R 6 R0, (2.1)

where Vm is the maximum vertical velocity at the source. The uniform velocity profile
is V (R, 0) = V0 for 0 6 R 6 R0. The uniform and parabolic profiles are considered
comparable when they have the same momentum flux, which requires that Vm =

√
3V0.

For the parabolic profile the mean momentum-weighted discharge velocity is defined
to be V0 = Vm/

√
3, and therefore the uniform and parabolic fountains will have the

same Froude number when their momentum fluxes are equal.
The flow is described by the Navier–Stokes equations and the temperature equation,

with the Boussinesq assumption allowing their incompressible forms to be used. The
equations are written in conservative, non-dimensional form in cylindrical coordinates
as follows:

1

r

∂

∂r
(ru) +

∂v

∂z
= 0, (2.2)

∂u

∂τ
+
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{
∂
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}
, (2.3)
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∂θ
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(ruθ) +

∂

∂z
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r
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)
+
∂2θ

∂z2

]
. (2.5)

In these equations r and z are the dimensionless horizontal and vertical distances
from the left bottom corner of the domain, u and v the dimensionless r-velocity and
z-velocity components, p the dimensionless pressure, τ the dimensionless time, θ the
dimensionless temperature, Re and Pr the Reynolds number and the Prandtl number.
Re and Pr are defined respectively as follows:

Re =
V0R0

ν
, (2.6)

and

Pr =
ν

κ
, (2.7)

where κ and ν are the conductivity and kinematic viscosity of the fluid respectively.
Non-dimensional quantities are obtained as follows:

r =
R

R0

, z =
Z

R0

, u =
U

V0

, v =
V

V0

,

τ =
t

(R0/V0)
, p =

P

ρV 2
0

, θ =
T − Ta
T0 − Ta ,

 (2.8)

where R and Z are the dimensional horizontal and vertical distances from the left
bottom corner of the domain, U and V the dimensional R-velocity and Z-velocity
components, P the dimensional pressure, t the dimensional time, T the dimensional
temperature, and ρ the fluid density.
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The appropriate initial and boundary conditions are

u = v = 0, θ = 0 at all r, z and τ < 0; (2.9)

and

u = 0,
∂v

∂r
= 0,

∂θ

∂r
= 0 on r = 0, 0 6 z 6

H

R0

;

u = v = 0,
∂θ

∂r
= 0 on r =

D

2R0

, 0 6 z 6
H

R0

;

u = 0, v = v(r, 0), θ = −1 on 0 6 r 6 1, z = 0;

u = v = 0,
∂θ

∂z
= 0 on 1 < r 6

D

2R0

, z = 0;

∂u

∂z
=
∂v

∂z
=
∂θ

∂z
= 0 on 0 6 r 6

D

2R0

, z =
H

R0

, τ > 0.


(2.10)

In this study, H has been chosen to be large enough with respect to R0 so that the
upper (z = H/R0) boundary has little influence on the fountain flow and that the
assumption of parallel flow conditions at the upper boundary in (2.10) is appropriate.

2.2. Discretization

Because of the large variations in length scales it is necessary to use a mesh that
concentrates points in the fountain region and in the boundary layers and is relatively
coarse in other regions. To construct this, a uniform, fine mesh is employed in the
fountain region in the r-direction and a stretched mesh is distributed in the remaining
region both in the r- and z-direction. In this study, H/R0 = D/(2R0) = 10 and
∆rw = ∆zw = 1.25 × 10−2 are used, where ∆rw and ∆zw , non-dimensionalized by R0,
are the first grid sizes nearest the symmetry axis in the r-direction and nearest the
bottom floor in the z-direction respectively, which results in 80 uniform grid points in
the fountain region in the r-direction. In the non-fountain region in the r-direction,
the grid points are distributed symmetrically with respect to 0.5(D/(2R0)− 1). In the
z-direction, the grid points are distributed symmetrically with respect to 0.5H/R0. The
grid point just beyond the fountain region or nearest the wall or floor is located at a
half of ∆rw or ∆zw away from the boundary. Subsequently, the mesh expands at a rate
of 7.6% up to r = 0.1(D/(2R0)− 1) or z = 0.1H/R0. Beyond r = 0.1(D/(2R0)− 1) or
z = 0.1H/R0, the mesh size expansion rate decreases at a rate of 10% until it reaches
zero, resulting in a constant coarse mesh in the interior of the non-fountain region.
This mesh construction generates 187 × 115 volumes in the computational domain
shown in figure 2(b).

The equations are discretized on a non-staggered mesh in which all variables are
stored at the same grid locations. The method of obtaining the pressure and satisfying
continuity is similar to the simple schemes used with the conventional staggered mesh
(Patankar 1980). To enable this approach to be used with a non-staggered mesh,
regularizing terms are included in the Poisson equation for the pressure. Without the
inclusion of these regularizing terms the scheme would lead to an odd-even splitting
of the pressure, with a resulting degradation and ultimate collapse of the solution. The
regularizing terms have the effect of ensuring the discrete scheme is strongly elliptic,
while without them the scheme is non-elliptic. Comparisons between staggered and
non-staggered solutions indicate both schemes have an equivalent accuracy (Armfield
1991). The advantage of using the non-staggered scheme is that all variables have
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the same discrete operators. With a staggered non-uniform mesh a different operator
must be used for each of the velocities and the scalar variables. Hence the use of the
non-staggered approach leads to a considerable saving in programming and computer
time.

Finite volumes are used to convert differential terms in the governing equations to
differences as follows. All second derivatives and linear derivatives are approximated
by second-order central differences. The convective terms are approximated by a
quick scheme (Leonard 1979). The discretization produces the usual fringed block
tridiagonal matrix operator, one for each of the momentum, temperature and pressure
equations. These are solved using an alternating-direction-implicit iterative method.
The scheme is described in detail by Armfield (1991, 1994) and has been previously
used for the simulation of buoyancy-dominated and stratified flows (Patterson &
Armfield 1990; Armfield & Patterson 1992; Armfield & Debler 1993; Armfield
1994).

2.3. Time integration

A second-order Crank–Nicholson predictor–corrector scheme is used for the time
integration of the transport equations in the following way. First, all variables are
known at time τ = n∆τ, where ∆τ is the time step non-dimensionalized by R0/V0.
Secondly, the temperature equation (2.5) is inverted to obtain an initial approximation
to θn+1, and using this value the two momentum equations (2.3) and (2.4) are inverted,
using an estimated pressure field, to obtain a first approximation to un+1 and vn+1.
A pressure correction equation derived from equation (2.2) is then solved to enforce
continuity. Finally new estimates of un+1 and vn+1 are obtained. This procedure is
repeated until a preset divergence convergence criterion of 1× 10−4 is met.

2.4. Grid independence

To test the grid independence of the scheme the solutions have been obtained on the
basic mesh of 187 × 115 defined above and on two additional fine meshes, with the
following parameters. In the first fine mesh, ∆rw = ∆zw = 6.25 × 10−3 but the grid
expansion factor and the time step are not changed, which gives a mesh of 248× 155.
In the second fine mesh, ∆rw = 6.25× 10−3, ∆zw = 3.125× 10−3 and ∆τ = 0.5× 10−4

which is half of that used in the basic mesh of 187× 115 but the same grid expansion
factor is still used. This gives a mesh of 248 × 178. Figure 3 shows the numerically
simulated temperature and velocity profiles for the three mesh sizes. It is clear from
this figure that the variation between the three representations is very small, indicating
that the basic mesh of 187× 115 is free of grid- and time-step-dependent errors.
Pr = 7, Re = 200, ∆τ = 1 × 10−4, H = 10R0 and D = 20R0 are used in all the

numerical simulations in this study.

3. Evolution of transient fountain flow
3.1. Qualitative observations

In figure 4, a visualization of a typical time evolution of the numerically simulated
transient temperature contours is presented for Fr = 1.0 with the uniform profile,
providing an overview of the evolution of the weak fountain flow. After the discharge
is initiated, it is observed that the momentum of the rising fluid is gradually reduced
by the negative buoyancy force until the front of the flow first comes to rest at
an initial characteristic fountain height, zmi which is non-dimensionalized by R0,
approximately at τ = 3.8. At the same time, the rising flow begins to spread outwards
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Figure 3. Comparison of the numerical results with the 187 × 115 basic mesh, 248 × 155 and
248× 178 finer meshes: (a) temperature, (b) horizontal velocity and (c) vertical velocity profiles at
z = 0.2; (d ) temperature, (e) horizontal velocity and ( f ) vertical velocity profiles at r = 0.2 when
τ = 1.0, respectively.

immediately after discharge due to its reduced velocity and interaction with the
ambient fluid. The downflow which is formed after the fountain front reaches zmi

continues to interact with the environment while also interacting with the upflow.
This interaction restricts the rise of further fluid and therefore reduces zmi to a
smaller value, zmt , which we refer to as the temporary characteristic fountain height.
As the downflow fluid always remains denser than the ambient fluid, it must spread
along the bottom floor of the container, resulting in the formation of an eddy in
the region bounded by the upflow, downflow and the floor and an intrusion moving
outwards along the floor. Initially this eddy contains ambient fluid which is gradually
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Figure 4. A typical time evolution of the transient temperature contours for Fr = 1.0 with the
uniform profile.

dissipated as the flow develops. The fountain front stays at zmt for a short time before
it rises again. The second rise brings the fountain front to a height zmf , which is less
than zmi , at τ = 8.8 and it stays at this height thereafter. After the fountain front
reaches zmf the upflow and downflow are steady and the only unsteady flow is the
spreading of the intrusion along the bottom floor of the container. Therefore, zmf is
the final characteristic fountain height. This flow evolution is similar to that observed
for turbulent fountains (Turner 1966; Campbell & Turner 1989; Baines et al. 1990;
and Bloomfield & Kerr 1998). Qualitatively similar flow patterns are also observed
in the weak fountains when the discharge velocity at the source has the parabolic
profile represented by (2.1), although there are quantitative differences for the two
profiles.
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and (b) the parabolic profile.

3.2. Quantitative observations

3.2.1. Time series of the passage of the fountain front

In figure 5, the time series of the passage of the fountain front are presented for a
series of Fr in the range 0.1 6 Fr 6 1.0, where the fountain front is determined as the
lowest z-location at which the temperature is that of the ambient fluid. The qualitative
observations from figure 4 are confirmed by the results shown in this figure.

The dimensional times for the fountain front to reach the initial, temporary and
final heights are denoted subsequently as tmi , tmt and tmf while their corresponding
dimensionless times are denoted as τmi , τmt and τmf respectively.

3.2.2. Characteristic fountain heights

As argued by Baines et al. (1993), dimensional analysis requires that equation (1.2)
is valid for weak fountains. To provide detailed information and determine an explicit
form of (1.2) for weak fountains, we present in figure 6 the numerically simulated
initial, temporary and final heights plotted against Fr in the range 0.1 6 Fr 6 1.0 for
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Figure 6. Initial, temporary and final heights plotted against Fr with (a) the uniform profile and (b)
the parabolic profile: e, 4, 5, numerically simulated initial, temporary and final heights; ———,
· · · · · ·, – – – –, linear-fit initial, temporary and final heights respectively.

Uniform Parabolic

zm a0 a1 RC a0 a1 RC

zmi 0.201± 0.014 1.258± 0.023 0.9987 0.122± 0.008 1.178± 0.013 0.9995
zmt 0.173± 0.011 1.137± 0.018 0.9989 0.119± 0.011 1.096± 0.017 0.9991
zmf 0.198± 0.015 1.165± 0.024 0.9983 0.119± 0.005 1.155± 0.011 0.9997

Table 1. Regression results of (3.1) for both the uniform and parabolic profiles

both the uniform and parabolic profiles. A linear fit of the form

zm = a0 + a1Fr (3.1)

has been obtained for each set of data, where zm represents zmi , zmt and zmf respectively
and the values of the constants a0 and a1, obtained by regression from the numerical
results, are listed in table 1. In the table, RC represents the regression coefficient of
the correlation.

As can be seen in figure 6 the linear fit provides a good representation of the data
for 0.2 6 Fr 6 1.0 although some departure is observed at Fr = 0.1. As Fr goes to
zero the linear fit does not go to zero, which is clearly not physical.

When Fr > 1.0, numerical results show that the characteristic fountain height
increases rapidly, not in accordance with (3.1), as shown in figure 7. In this case, the
effect of the fountain discharge momentum at the source dominates the buoyancy and
the entrainment between the fountain and the surrounding ambient fluid becomes
important. Fountains with Fr > 1 are regarded as strong fountains and have different
scaling relations and are beyond the scope of this study.

3.2.3. Time scales for the fountain front

The fountain flow is governed by the momentum flux M0 and the buoyancy flux
F0 at the source. Therefore, tm can be scaled in terms of combinations of these two
fluxes, that is

tm = CMm
0 F

n
0 , (3.2)

where C , m and n are constants and tm denotes tmi , tmt and tmf respectively.
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Inserting (1.4) and (1.5) into (3.2) gives

tm ∼ M0

F0

∼ R0

V0

Fr2. (3.3)

Hence, τm is expected to scale in terms of Fr as

τm =
tm

(R0/V0)
∼ Fr2. (3.4)

Figure 8 shows the numerically simulated τm plotted against Fr2 for 0.1 6 Fr 6 1.0.
It is clearly seen that the numerical results confirm the scaling, which is well predicted
by the following explicit form:

τm = a0 + a1Fr
2, (3.5)
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Uniform Parabolic

τm a0 a1 RC a0 a1 RC

τmi 0.232 ± 0.025 3.592 ± 0.049 0.9993 0.242 ± 0.019 2.077 ± 0.039 0.9986
τmt 0.435 ± 0.033 6.506 ± 0.066 0.9996 0.316 ± 0.022 4.055 ± 0.043 0.9995
τmf 0.669 ± 0.039 8.146 ± 0.078 0.9996 0.392 ± 0.028 5.678 ± 0.058 0.9995

Table 2. Regression results of (3.5) for both the uniform and parabolic profiles.
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Figure 9. Radial distribution of v(r, z) at different heights for (a) the uniform profile and (b) the
parabolic profile, where Fr = 1.0.
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Figure 10. Fountain width rw plotted against Fr.

where τm represents τmi , τmt and τmf respectively and the constants a0 and a1 obtained
by regression from the numerical results are listed in table 2.

The reason for a0 6= 0 is the same as that for zm as discussed in § 3.2.2.

3.3. Fountain width

When τ > τmf , the fountain flow is steady and a characteristic fountain width can
be determined for each Fr. Figure 9 presents the radial distribution of v(r, z), the
dimensionless vertical velocity, at different heights for both the uniform and parabolic
profiles for Fr = 1.0. At each height, v(r, z) decreases gradually as r increases until
a specific r where v(r, z) becomes zero for each z, which is the location where the
upflow terminates and the downflow begins. Beyond this location v(r, z) continues
to reduce until a clearly defined minimum is reached, then increasing until it again
crosses the zero line. The envelope of the minima for each height has itself a clearly
defined minimum, corresponding to the z = 0.4zmf minimum, which occurs at r ≈ 1.9
and r ≈ 1.45 for Fr = 1.0 with the uniform and parabolic profiles respectively.
The minimum of the envelope is clearly defined for all Fr, and always corresponds
to the z = 0.4zmf profile minimum. This width is defined to be the horizontal
length scale rw which characterizes the fountain width at steady state and is non-
dimensionalized by R0. This definition of rw corresponds very closely to the location
of the fountain boundary temperature contours at the origin of the intrusion flow
at z = 0.4zmf . However, obtaining a consistent fountain width directly from the
temperature contours is difficult owing to the smooth transformation from fountain
to intrusion, whereas the very well-defined minimum in the envelope of the minima
of the vertical velocity profiles makes the procedure straightforward.

Dimensional considerations show that rw , like zm, should be of the form rw ∼ Fr.
Figure 10 presents rw plotted against Fr for both the uniform and parabolic profiles
with 0.2 6 Fr 6 1.0. It is clear that a linear relation exists between rw and Fr, that is,

rw = a0 + a1Fr, (3.6)
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Profile a0 a1 RC

Uniform 1.1228± 0.0058 0.7308± 0.0088 0.9995
Parabolic 1.1833± 0.0024 0.2864± 0.0037 0.9994

Table 3. Regression results of (3.6) for both the uniform and parabolic profiles
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Figure 11. v(0, z) plotted against z/zmf for a series of Fr with (a) the uniform profile and
(b) the parabolic profile at τ = 10.0.

with the values of a0 and a1 listed in table 3, together with the regression
coefficients.

The fountain core is the region bounded by r = rw and z = zmf and it is expected
that these length scales can be used to parameterize the core flow. Further discussion
of the core region is presented in § 4.

4. Steady flow patterns in the fountain core
4.1. Axial distribution

4.1.1. Axial velocity

As discussed above, the vertical velocity of the fountain front on the symmetry
axis, v(0, z), reduces to zero when its position is at z = zmf at the steady state. Hence,
zmf should provide the appropriate scaling for v(0, z) in the z-direction, that is

v(0, z) = f

(
z

zmf

)
. (4.1)

The numerical results presented in figure 11 show the relation between v(0, z) and
z/zmf for Fr = 0.2, 0.6 and 1.0 for both the uniform and parabolic profiles. Although
only three sets of data are shown in the figure, all sets including those for other Fr
in the range 0.2 6 Fr 6 1.0 are found to collapse onto a single curve. It is therefore
clear that zmf does provide the appropriate length scale for the vertical velocity at the
axis. Empirical tests showed that a cubic was the lowest-order polynomial to provide
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Figure 12. θ(0, z) plotted against z/zmf for a series of Fr with (a) the uniform profile and (b) the
parabolic profile at τ = 10.0.
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Figure 13. Axial distribution of (a) θ(0, z) and (b) v(0, z) for different Pr for Fr = 0.6 with the
parabolic profile.

a good fit to this relation, with the following explicit form for the uniform profile:

v(0, z) = 1.0000− 0.0097

(
z

zmf

)
− 1.3341

(
z

zmf

)2

+ 0.3448

(
z

zmf

)3

, (4.2)

and for the parabolic profile,

v(0, z) = 1.7321− 0.0724

(
z

zmf

)
− 1.8402

(
z

zmf

)2

+ 0.1741

(
z

zmf

)3

. (4.3)

The squares of the regression coefficients of these two correlations are 0.9984 and
0.9977 respectively. There is no apparent physical basis for the use of a cubic for this
relation; however it is clear that the cubic provides an excellent fit to the data.

4.1.2. Axial temperature variation

As shown in figure 4, numerical results reveal that the temperature variation occurs
mainly in a very thin layer nearest the fountain front for both the unsteady and steady
state when Pr = 7, indicating that there is little entrainment between the upflow and
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Figure 14. v(r, z)/v(0, z) plotted against rz/zmf for (a) Fr = 0.3; (b) Fr = 0.5; (c) Fr = 0.7; and (d)
Fr = 0.9 with the uniform profile: ———, z/zmf = 0.6; · · · · · ·, z/zmf = 0.65; – – – –, z/zmf = 0.7;
— ·—, z/zmf = 0.75.

the surrounding ambient fluid. Figure 12 contains θ(0, z) plotted against z/zmf for
Fr = 0.2, 0.6 and 1.0 showing that, as expected, zmf is the appropriate length scale for
θ(0, z), that is

θ(0, z) = f

(
z

zmf

)
. (4.4)

4.1.3. Influence of Pr

All the results presented so far have been for Pr = 7, which is the typical value
for water at room temperature. When Pr becomes smaller, it is expected that the
temperature variation should occur in a thicker layer nearest the fountain front.
Figure 13 provides the evidence for this argument, presenting the temperature and
velocity variations along the symmetry axis for Fr = 0.6 with the parabolic profile. It
is also observed that the influence of Pr on the velocity profile is very small.

4.2. Radial distribution

4.2.1. Zones for establishment and self-similarity

The results in figure 9 show that above z/zmf ≈ 0.55 the fountain flow is fully
established and for 0.55 6 z/zmf 6 0.8 a zone exists in which the vertical velocity is
self-similar. For z/zmf > 0.8 the self-similarity gradually collapses until z/zmf reaches
its maximum value of 1.0.
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Figure 15. v(r, z)/v(0, z) plotted against r/rw for (a) z/zmf = 0.6; (b) z/zmf = 0.65; (c) z/zmf = 0.7;
and (d) z/zmf = 0.75 with the uniform profile: ———, Fr = 0.3; · · · · · ·, Fr = 0.5; – – – –, Fr = 0.7;
— ·—, Fr = 0.9.

4.2.2. Radial distribution of vertical velocity in the zone of self-similarity

In the zone of self-similarity, the height scale for the vertical velocity v(r, z) should
be zmf , while the appropriate width scale is expected to be rw . Hence, it is expected
that a relation will exist between v(r, z)/v(0, z), r/rw and z/zmf ,

v(r, z)

v(0, z)
= f

(
r

rw
,
z

zmf

)
. (4.5)

To obtain an explicit form for (4.5), numerical simulations have been conducted
for a series of Fr. In figure 14 v(r, z)/v(0, z) is plotted against rz/zmf for several z/zmf

and Fr with the uniform profile to determine the relation between v(r, z)/v(0, z) and
z/zmf . Each set of results is collapsed onto a single curve by the z/zmf scaling. In
figure 15, v(r, z)/v(0, z) is plotted against r/rw at fixed z/zmf for a range of Fr, which
shows that the rw scaling collapses the Fr variation in v(r, z) onto a single curve at
each z. Similar results are also obtained for the parabolic profile.

Figure 14 shows that z/zmf is the appropriate scaling for varying z and fixed Fr
while figure 15 shows that r/rw is the appropriate scaling for varying Fr and fixed z.
To collapse all the Fr and z results onto a single curve will require a combination of
the zmf and rw length scales and therefore a general correlation should exist between
v(r, z)/v(0, z) and r/rwz/zmf . Figure 16 contains v(r, z)/v(0, z) plotted against r/rwz/zmf

for a range of Fr and zmf values for both the uniform and parabolic profiles. The
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Figure 16. v(r, z)/v(0, z) plotted against (r/rw)(z/zmf ) with (a) the uniform profile and (b) the
parabolic profile: ———, Fr = 0.3 and z/zmf = 0.6; · · · · · ·, Fr = 0.5 and z/zmf = 0.65; – – – –,
Fr = 0.7 and z/zmf = 0.7; — ·—, Fr = 0.9 and z/zmf = 0.75.

combined zmf and rw scalings bring all the results very close to single curves. Again,
a sixth-degree polynomial is the lowest-order polynomial which provides a good fit
for each of the uniform and parabolic profiles, with the explicit form

v(r, z)

v(0, z)
= 1.017− 1.269

(
r

rw

z

zmf

)
+ 23.108

(
r

rw

z

zmf

)2

−220.711

(
r

rw

z

zmf

)3

+ 841.077

(
r

rw

z

zmf

)4

−1525.763

(
r

rw

z

zmf

)5

+ 1026.721

(
r

rw

z

zmf

)6

(4.6)

for the uniform profile and

v(r, z)

v(0, z)
= 1.010− 0.502

(
r

rw

z

zmf

)
+ 9.434

(
r

rw

z

zmf

)2

−231.568

(
r

rw

z

zmf

)3

+ 1239.703

(
r

rw

z

zmf

)4

−2962.975

(
r

rw

z

zmf

)5

+ 2588.980

(
r

rw

z

zmf

)6

(4.7)

for the parabolic profile. The square of the regression coefficients of these two
correlations is 0.9949 and 0.9978 respectively. These two correlations, combined with
(4.2) and (4.3), give a full description of the vertical velocity in the self-similar region
of the weak fountain core at steady state.

4.2.3. Radial distribution of horizontal velocity in the self-similar zone

In the zone of self-similarity, the horizontal velocity u(r, z) has a maximum value
um(z) for each height z. Similarly to v(r, z) in the zone of self-similarity, the radial
distribution of u(r, z)/um(z) should be fully characterized by the two length scales rw
and zmf . Figure 17 shows u(r, z)/um(z) plotted against r/rwz/zmf for a range of Fr with
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Figure 17. u(r, z)/um(z) plotted against (r/rw)(z/zmf ) with the uniform profile profile: ———,
Fr = 0.3 and z/zmf = 0.6; · · · · · ·, Fr = 0.5 and z/zmf = 0.65; – – – –, Fr = 0.7 and z/zmf = 0.7;
— ·—, Fr = 0.9 and z/zmf = 0.75.

the uniform profile. It is apparent that rw and zmf do provide a good parameterization,
collapsing all the results close to a single curve for each of the inlet profiles.

5. Conclusions
We have presented a numerical study on the behaviour of weak axisymmetric

fountains discharged upwards into a homogeneous environment. The numerical sim-
ulations have employed a time-accurate finite volume code which has been previously
used for buoyancy-dominated and stratified flows. The behaviour of fountains with
both uniform and parabolic discharge velocity profiles at the source has been inves-
tigated.

Qualitative information has been obtained from visualization of a typical time
evolution of the transient temperature contours. Two distinct stages of evolution,
that is the unsteady and steady stages respectively, have been identified at which the
fountain flow has significantly different patterns.

The time series of the passage of the fountain front has been presented and the
initial, temporary and final characteristic fountain heights have been determined quan-
titatively. With the dimensional and numerical results, explicit correlations between
these maximum heights and Fr, the Froude number defined at the source, have been
determined. This confirms the results of the dimensional analysis and shows that
the Froude number is the appropriate control parameter for this flow, and that the
vertical length scale is a linear function of the Froude number. It has also been shown
that the time scale for the development of the fountain flow is quadratic function of
the Froude number and the Fr relation for the achievement of steady state has been
obtained.

The final fountain height zmf , which is non-dimensionalized by R0, has been shown
to be the appropriate length scale for the vertical velocity on the symmetry axis and,
in combination with the fountain width rw , which is also non-dimensionalized by R0,
to provide a complete parameterization of both the vertical and horizontal velocities
in the fountain core in the region 0.55 6 z 6 0.8, showing that in this region the flow
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is self-similar. Below the region of self-similarity is a zone of establishment, while
above the region the self-similarity gradually collapses. The horizontal length scale,
rw , has been shown to be a linear function of the Froude number, again confirming
the dimensional arguments.

Results presented in this paper were all obtained with Re = 200; however additional
results have been obtained with 200 6 Re 6 800 to determine any Re dependence. It
has been found that there is very little Re variation in the results, indicating that the
weak fountain flow in this range of Re is governed by a balance between buoyancy
and advection as predicted by the dimensional analysis which indicates that Fr is the
scale control parameter.
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important points and improve the quality of the paper significantly. The financial
support of an AusAID scholarship and from the National Natural Science Foundation
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