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Abstract 

A direct simulation methodology for solid spheres moving through viscoelastic (FENE-CR) fluids has 

been developed. It is based on a lattice-Boltzmann scheme coupled with a finite volume solver for the 

transport equation of the conformation tensor, which directly relates to the elastic stress tensor. An 

immersed boundary method imposes no-slip conditions on the spheres moving over the fixed grid. The 

proposed method has been verified by comparison with computational data from the literature on the 

viscoelastic flow past a stationary cylinder. Elastic effects manifest themselves in terms of drag reduction 

and for-aft asymmetry around the cylinder. Single sphere sedimentation in viscoelastic fluids shows 

velocity overshoots and subsequent damping before a steady settling state is reached. In multi-sphere 

simulations, the interaction between spheres depends strongly on the (elastic) properties of the liquid. 

Simulations of sedimentation of multiple spheres illustrate the potential of the method for application in 

dense solid-liquid suspensions. The sedimentation simulations have Reynolds numbers of order 0.1 and 

Deborah numbers ranging from 0 to 1.0. 

Keywords 
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Introduction 

Solid particles settling in liquid under the influence of gravity is a topic of research with a long and rich 

tradition [1-3], continuing interest [4,5], and significant practical relevance. Where the research cited 

above deals with Newtonian liquids, practical relevance also demands considering solid particles in liquid 

with more complex rheological behavior. Applications of this sort can be found in such diverse fields as 

oil sands mining, foods, pharmaceuticals, and personal care products. In the latter examples one can think 

of solid particles that need to stay dispersed (i.e. not settle) in a gel-type continuous liquid phase. In oil 

sands mining, surface active clays in water-rich environments form soft networks that behave as yield-

stress and/or elastic liquids. Coarser (sand) particles suspended in such liquids only settle very slowly (or 

not at all) making e.g. gravity-based separations a lengthy and inefficient process. 

Numerical simulations are a way to gain understanding of the behavior of solid-liquid suspensions, 

including those with non-Newtonian liquid rheology. Such numerical simulations come in a great variety. 

What distinguishes them is their level of detail on one side, and the size of the systems they are capable of 

handling on the other. The numerical approaches proposed here deal with fully resolved simulations. In 

such simulations the flow structures are resolved down to scales smaller than the particles size. This allows 

for the direct determination of the hydrodynamic forces and torques on the particles that – in turn – 

determine their (linear and rotational) motions. The latter are fed back to the liquid flow as moving, no-slip 

boundary conditions. The price for solving that much detail is that it is only possible to simulate a limited 

number of particles (up to order 10
4
, as in [6,7]) in a small sample, and we cannot capture overall behavior 

of macro-scale processes. 

Our ambition is to develop a method for performing highly resolved simulations of dense (i.e. high 

solids volume fraction) suspensions of solid particles in viscoelastic liquids. In such suspensions, solids 

and liquid interact in multiple ways: solids directly interact through collisions, and they interact through 

the interstitial liquid. The solids motion also drives liquid flow, and vice versa. It is expected that the 

viscoelastic rheology of the liquid has profound impact on the dynamics of the suspension as a whole. The 
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numerical procedure is based on the lattice-Boltzmann method for solving the flow of interstitial liquid, 

and an immersed boundary method for imposing the no-slip condition at the moving solid-liquid 

interfaces. This fixed-grid approach makes it possible to computationally efficiently simulate many-

particle systems. Previous work on suspensions with Newtonian liquids has shown favorable agreement 

with experimental data [7,8] and has demonstrated the usefulness of understanding interactions in dense 

suspensions e.g. under turbulent conditions [9], during erosion of granular beds [10], and with systems in 

which the solids have a tendency to aggregate [11]. The specific lattice-Boltzmann scheme applied in this 

study [12] explicitly deals with (among more) stresses as part of the solution vector which facilitates 

incorporation of an additional elastic stress in the scheme. Although particle-based Reynolds numbers in 

most non-Newtonian applications are (very) small, the numerical method is able to also deal with 

suspensions showing inertial effects.   

The purpose of this paper is to establish the numerical approach by performing a number of 

benchmark simulations involving flow of viscoelastic liquids around objects in two and in three 

dimensions and comparing results with what is known from the literature, thereby assessing accuracy  

including the effects of grid resolution. In addition, by performing simulations with multiple, spherical 

particles (up to eight in this paper) we provide a “proof of concept” before moving on to bigger and denser 

systems in the near future. The liquids used in this work are all based on the Chilcott and Rallison's finite 

extension (FENE-CR) model [13]. 

Pioneering experimental work on hydrodynamic interaction between spherical particles in 

viscoelastic liquids is due to Riddle et al [14], Joseph et al [15], and Bot et al [16]. Simulations in two 

dimensions involving multiple particles settling through viscoelastic liquid date back to the work by Feng 

et al in 1996 [17], showing interesting phenomena such as velocity overshoot, and preferential 

orientations. More recent two-dimensional work with (many) more circular particles has been reported by 

Hao et al [18], Yu et al [19], and Singh et al [20]. Simulations of spherical particle motion through 

viscoelastic liquids are restricted to one or two spheres: Bodart & Crochet [21] (one sphere, two-



 4 

dimensional, axisymmetric simulations), Binous & Phillips [22] (up to two spheres, three-dimensional), 

and (more recently) Villone et al [23] (one sphere, three-dimensional).  

This paper is organized in the following manner: first the FENE-CR model is outlined with a focus 

on the equations that need to be solved numerically to provide the temporal and spatial evolution of the 

elastic stress tensor. With the four liquid parameters associated with the FENE-CR model, along with flow 

conditions we establish a set of dimensionless numbers. Then we show how the lattice-Boltzmann method 

has been coupled to a finite volume method with the latter solving for the elastic stress tensor. This section 

includes a discussion of the boundary conditions. As a first benchmark the two-dimensional flow of 

FENE-CR liquid past a cylinder placed in a channel has been considered. Then we move to three-

dimensional simulations; first with a single spherical particle, then with two spherical particles with a 

focus on their hydrodynamic interaction. Finally we demonstrate the feasibility of performing multiple-

particle simulations. At the end we summarize and reiterate the main conclusions.    

 
 

Physical and numerical formulation 

Viscoelasticity model 

In this study the Chilcott and Rallison's finite extension (FENE-CR) model [13] was used. Based on 

molecular theory, the FENE-CR model represents the fluid elasticity by an ensemble average of dumbbells 

immersed in a Newtonian fluid. Such a dumbbell consists of two beads and an elastic interconnect 

(spring). The elastic effects are due to the action of the spring‟s force and the momentum exchange 

between the dumbbell and the Newtonian fluid. The total stress σ  has a pressure contribution (PI), a 

viscous stress contribution ( sτ ), and an elastic stress contribution ( eτ ): 

 P   s eσ I τ τ  (1) 

with   T

s   sτ u u  and u the velocity field. The Newtonian „solvent‟ viscosity is recognized as s . 

In the FENE-CR model the elastic stress is  
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   p
F




 eτ A A I  (2) 

with A RR  the ensemble-average dyadic product of dumbbell orientation R, and the scalar function F 

the spring force function     2

1

1
F

tr L



A

A
. The three elastic material parameters , ,  and p L   can be 

interpreted as the elastic contribution to the shear viscosity, the relaxation time, and the maximum spring 

extension length respectively. The tensor A obeys the following transport equation 

      T F

t 


        


AA
u A A u u A A I . (3) 

The FENE-CR model recovers the Oldroyd-B model [24] in the limiting case of 2
L  . Both FENE-CR 

and Oldroyd-B are constant viscosity models. The application of Oldroyd-B fluids is limited because it 

allows (unphysical) infinite dumbbell extension. 

 

Dimensionless numbers 

Where many systems involving Newtonian fluid flow can be pinned down by the flow geometry (in terms 

of aspect ratios) and the Reynolds number, the four material parameters in the FENE-CR model 

( , , ,  and s p L   ) give rise to a parameter space with more dimensionless numbers. With our application 

of sedimentation of spherical particles (with diameter d and density 
s ) in mind, results will generally be 

presented in the following non-dimensional form 

 

 
2

0

2

0

, , , , , aspect ratioss sU g
f L

d d d

   
  
 

  
 

, (4) 

with the characteristic velocity U  (e.g. the settling velocity) as an output parameter on the left-hand side, 

and the input parameters on the right. The liquid density is identified as  , g is gravitational acceleration, 

and 0 s p    . The Deborah number is recognized as De
U

d


 , the elasticity number as 0

2
El

d




 , the 
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gravity parameter as 
2

G
g

d


 , and the viscosity ratio as 

0

s


 . The parameter L is non-dimensional; it 

represents the ratio of the maximum extension length of a dumbbell divided by its equilibrium length. The 

Reynolds number can be written as 
0

De
Re

El

Ud


  . 

In addition to the above, settling velocities in viscoelastic liquids will also be compared to the 

Stokes settling velocity U according to 
  2

018

s gd
U

 



 , and 

0

Re
U d



  .       

 

Numerical approach 

The basis of our numerical approach is formed by a lattice-Boltzmann (LB) flow solver according to the 

scheme proposed by Somers [12]. An LB fluid can be viewed as a collection of fluid parcels residing on a 

uniform, cubic lattice with grid spacing  . Each time step these parcels stream to neighboring lattice sites 

where they collide (i.e. exchange momentum) with parcels coming from other directions to the same site. 

The state of the flow at discrete moment t in time and discrete location x in space is defined by the 

distribution of the mass of the fluid parcels over the discrete set of velocities in the lattice  ,iN tx . The 

index i relates to the discrete set of velocities ic  (i=1…18 directions in our approach). The set of velocities 

is discrete given the uniformity of the lattice and the fact that parcels are only allowed to move to 

neighboring lattice sites during one time step. Macroscopic flow variables follow from summing mass and 

momentum per lattice site:        
18 18

1 1

, , , , ,i i
i i

t N t t N t 
 

   ix x u x c x . Pressure is linked to density 

through an equation of state. The grid spacing and time step are taken as unit length and time respectively: 

1 and 1t    .  

In the LB scheme due to Somers [12], the streaming step is performed in terms of iN ; the collision 

step, however, is performed in terms of the macroscopic flow variables: density (scalar), momentum 

(vector), and stress (tensor). This allows for directly adding the elastic stress to the pressure and viscous 
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stress already present in the LB momentum balance. After initialization with zero velocity, zero stress and 

uniform density, the flow systems are evolved in time in the following manner: First the transport equation 

for the tensor A (Eq. 3) is solved according to an explicit finite volume (FV) scheme (more details below). 

This allows us to determine the elastic stress tensor according to Eq. 2. We then perform an LB time step 

in the same manner as we would do for a Newtonian fluid, only now with the additional elastic stress eτ . 

This LB step provides us with an updated velocity field u that is used to perform the next FV time step to 

update eτ , and so on.  

We chose to solve the transport equations in the components of A with a FV scheme and not in an 

LB manner (as e.g. done by Malaspinas et al [25]) since – at least in our explicit formulation – FV 

methods are less memory intensive and have the same parallelization potential as LB schemes. In addition 

FV methods have well-developed options for controlling numerical diffusion [26].   

The FV approach for solving Eq. 3 uses the same uniform, cubic grid and the same time step as 

used by the LB scheme. Since A is symmetric, each time step the six independent components A  (with 

 and    the coordinate directions) are updated. The update is Euler explicit, so that the right-hand side of 

Eq. 3 is treated as a (known) source term at the old time level, except for the term 
 F


A

A . To enhance 

stability the latter term is transferred to the left-hand side if   0F A  so that A (not  F A  though) is 

represented at the new time level. The convective fluxes in Eq. 3 have been discretized as a blend between 

first-order upwind difference, and second-order central difference [27] with a weighing factor of 0.9 

towards the central difference giving stable behavior of the FV solver.  

 

Boundary conditions 

No-slip conditions at the walls bounding the rectangular flow domains are dealt with by means of the half-

way bounce back rule, where fluid parcels iN  reverse direction when they hit a wall and return to the 

lattice site they started from at the beginning of the time step [28]. This places the wall at distance 2  
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from lattice nodes adjacent to the wall. Inflow and outflow boundary conditions are based on a zero 

normal-gradient approach which implies copying fluid parcel populations 
iN  in the streamwise direction 

at inflow and outflow and imposing a velocity profile at an inflow boundary [29]. 

Curved and/or moving no-slip walls inside the flow domain (as we have when studying particle 

sedimentation) are imposed by an immersed boundary (IB) method [30,31]. As these boundary conditions 

are in terms of velocity (not in terms of stress) we use the same approach as we have been using 

extensively for solid-liquid suspensions with Newtonian fluids [7,9,10]. In this approach the solid surface 

is defined by a set of closely spaced points not coinciding with the lattice; the typical spacing between 

points is 0.7 . The fluid velocity at these points is determined by interpolation from the lattice. A control 

algorithm based on locally forcing the fluid [30] is applied to match the local fluid velocity with the 

velocity of the (moving) solid surface. A consequence of this methodology is that the particles have 

internal fluid and thus internal (elastic) stress. The internal stress has no physical meaning. Its presence, 

however, could have impact on resolving stress and (steep) stress gradients in the fluid near the particle 

surface. The latter has been tested through comparison with results of simulations from the literature, and 

through grid refinement studies (see the next section).   

The force distribution around the solid surface of a particle is integrated to determine the total force 

and torque the particle exerts on the fluid. The opposite (action is minus reaction) are the force and torque 

exerted on the particle by the fluid. These we use to update the equations of (linear and rotational) motion 

of the particle in which the time derivatives (i.e. the accelerations) are discretized according to a second-

order two-level backward difference scheme: for a velocity component w  that depends on time we write 

( 1) ( ) ( 1)3 4

2

n n n
dw w w w

dt t

   
  




 with n the current time level (at which force and torque have been 

evaluated), and 1n  and 1n  the new and old time levels respectively. 

The set of points defining the spherical surface moves with the particle over the fixed and uniform 

lattice. This provides a way to efficiently deal with many particles. The flip side is that grids are not locally 
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refined in high-gradient regions (e.g. between two closely spaced spheres), and these resolution limitations 

of our numerical method need to be carefully assessed.   

The hyperbolic (i.e. non-diffusive) nature of the transport equation in A (Eq. 3) makes that we do 

not need elastic stress boundary condition at solid walls and at outflow boundaries. At inflow boundaries 

the elastic stress distribution has been determined analytically based on the specified inlet velocity profile. 

 

Benchmark: two-dimensional flow past a cylinder 

As a benchmark case we consider the two-dimensional viscoelastic flow past a cylinder that is placed in 

the center of a plane channel, see Figure 1 for the definition of the flow geometry and the associated 

coordinate system. This flow has been studied experimentally by Verhelst & Nieuwstadt [32], and 

computationally by Alves et al [33], and by Fan et al [34]. The results due to Alves et al will be used for 

comparison with our simulation results. 

The parabolic (Poiseuille) velocity profile is imposed at the inlet along with the conformation 

tensor A associated with this velocity profile and the assumption the flow has fully developed upstream of 

the inlet boundary. A zero-normal-gradient condition for velocity is imposed at the outlet. By extending 

the length of the domain we confirmed that the domain is sufficiently long for the location of the outflow 

to have no effect on the simulation results. The no-slip (zero velocity) condition completely characterizes 

the channel walls and no additional conditions are required there for the elastic stress. 

The cylinder is represented by the immersed boundary method. As the characteristic length and 

velocity we take the cylinder radius R= 2D  and the average fluid velocity at the channel inlet U  

respectively (the average velocity and center line velocity CLU  are related according to 2 3CLU U ). This 

defines a Reynolds number that has been fixed to Re=0.067. Also the blockage ratio has been fixed:  

Br
R

H
 =0.25. Results will be presented in the form of velocity and stress profiles and in terms of the drag 

coefficient. To be consistent with the literature [33], the latter has been defined as 
0

d
d

F
C

U
  with dF  the 



 10 

force exerted by the flow on the cylinder. The drag force follows from integrating the forces calculated by 

the IB method to maintain no-slip over the cylinder surface.  

Results on three meshes will be compared; mesh M1, M2, and M3 have a lattice spacing   such 

that 5 ,10 ,  and 15R      respectively. Figure 2 shows centreline and wall-normal profiles of the 

streamwise velocity. There are minor differences between the M2 and M3 results for a Newtonian liquid, 

as well as for an Oldroyd-B liquid. If the two liquids are compared it is observed that the elastic liquid has 

a longer wake, and that it accelerates faster when passing through the gap between the cylinder and the 

channel wall. These observations regarding the flow will be further detailed below. 

Our results can be directly compared to the numerical results due to Alves et al [33] for Oldroyd-B 

fluids. There are only slight differences in the input parameters and flow configuration: In their study 

Re=0, the viscosity ratio is 0.59  , and the channel length is 60chL R ; we have Re=0.067, 0.60  , 

and 40chL R . The rest of the input parameters are the same. In what follows we will focus on the effect 

of the Deborah number on the flow around the cylinder and the drag force on the cylinder. 

Table 1 here  

Table 1 and Figure 3 summarize our results regarding the drag coefficient in relation to Alves et 

al‟s [33] data. The table shows adequate grid convergence from mesh M2 to mesh M3. The trends in the 

drag coefficient versus the Deborah number are well captured by our simulation method: a decay in 
dC  

until De=0.6 after which 
dC  levels off and marginally increases beyond De 0.8 . Our drag coefficients 

are systematically some 2 to 3% higher than Alves et al‟s [33]. We attribute this to the cylinder being 

represented on a square grid. As will be discussed in the next section (on three-dimensional flows) an 

increased hydrodynamic force on curved surfaces in square grids is a known effect that – to a large extent 

– can be corrected for. 

Profiles of the axial velocity along the channel centerline for De=0.0, 0.6, and 0.9 are presented in 

Figure 4. At this low Reynolds number (Re=0.067) the Newtonian case (De=0) is approximately for-aft 

symmetric. For the viscoelastic fluids this symmetry is progressively distorted with increasing elasticity. 
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The perturbation length downstream of the cylinder increases with increasing Deborah number. Upstream 

of the cylinder, the velocity is not significantly affected by elasticity and the profiles virtually overlap. 

Figure 4 also contains results due to Alves et al [33] with a good agreement between their and our data. 

Profiles of the elastic normal xx-stress along the centerline at De = 0.6, 0.7 and 1.0 are plotted in 

Figure 5. The peak stress levels directly downstream of the cylinder are a strong function of the Deborah 

number, with very high stress gradients in the near wake where liquid elongates rapidly. Capturing this 

structure accurately requires high spatial resolution, as recognized in [33]. In Figure 5 it can be seen to 

what extent the stress peaks are resolved by our numerical method at a resolution of 30 lattice-spacings 

over the cylinder diameter. Beyond De=0.7 we clearly lack spatial resolution. It is interesting to note that 

the consequences for not fully resolving this stress peak are not severe when it comes to capturing the way 

the drag force relates to the Deborah number (as earlier discussed in relation to Figure 3). As a final result 

regarding the two-dimensional cylinder-in-channel benchmark we assess in Figure 6 the effects of the 

finite extension length L
2
. It shows how the streamwise velocity profiles in the wake of the cylinder transit 

from near-Newtonian for 2 10L   to Oldroyd-B ( 2
L  ). 

 

Spheres moving in viscoelastic liquids 

We now turn to the actual subject of this paper which is motion of spherical particles in FENE-CR liquids. 

These involve intrinsically three-dimensional simulations with the particles moving relative to a fixed grid. 

For LB simulations of Newtonian liquids it has been recognized that having spherical particles on a cubic 

grid requires a calibration step [35]. Ladd [35] introduced the concept of a hydrodynamic diameter. The 

calibration involves placing a sphere with a given diameter inpd  in a fully periodic cubic domain in 

creeping flow and (computationally) measuring its drag force. The hydrodynamic diameter d of that sphere 

is the diameter for which the measured drag force corresponds to the expression for the drag force on a 

simple cubic array of spheres due to Sangani & Acrivos [36] which is a modification of the analytical 

expression due to Hasimoto [37]. Usually d is slightly bigger than inpd  with inpd d  typically equal to one 
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lattice spacing or less. For Newtonian fluids and a lattice-Boltzmann scheme the difference 
inpd d  is a 

weak function of the viscosity. For this reason, and given the non-Newtonian fluids dealt with in this paper 

the issue of hydrodynamic diameter needs careful consideration. 

We first performed the Newtonian calibrations as described above. To assess how these calibrated 

spheres behave in an elastic liquid, they are placed in fully periodic domains, now containing a FENE-CR 

liquid with  =0.1 and 2 10L  . The liquid is forced such that Re=0.1. Figure 7 shows how the normalized 

drag force N

d dF F  (with N

dF  the drag force at 0   and thus De=0) measured this way behaves as a 

function of Deborah number and spatial resolution; we compare calibrated spheres with d=8, 12 and 16 

(lattice spacings  ). We conclude that as long as 12d   the drag results have an acceptably weak 

sensitivity to the spatial resolution: the maximum deviation in N

d dF F  obtained with d=12 and d=16 is 

less than 2%. 

 

Rotation of a single sphere in shear flow 

A relevant three-dimensional benchmark involves spherical particles subjected to simple shear flow. In 

Newtonian fluids under low inertia conditions the shear flow makes the sphere rotate at an angular velocity 

equal to half the shear rate. For the system and coordinates as defined in Figure 8 this means 2y   

with 2 sU W   the overall shear rate generated by two parallel plates moving opposite in the z-direction. 

Snijkers and co-workers [38,39] have experimentally and numerically investigated this system for a 

spectrum of elastic liquids and found a reduction of the ratio y   with the reduction getting stronger for 

higher Deborah numbers (here defined as De  ). In Figure 9 we show that our numerical method with 

a (modest) resolution such that the sphere diameter spans 12 lattice spacings ( 12d   ) is able to 

accurately reproduce the results in [39] for an Oldroyd-B liquid. The ratio y   decays monotonically 

with the Deborah number. The deviations between Snijkers et al‟s and our results are less than 4%. The 

curve in Figure 9 that we attribute to Snijkers et al has been derived from Figure 6 in their paper [39]. That 
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figure shows the ratio 
y   as a function of the Weissenberg (Wi) number for (among more) an Oldroyd-

B liquid. For viscosity ratio 0.5  , Wi is identical to De.  

 

Sedimentation of a single sphere 

Our numerical settling experiments will be performed in a cylindrical, closed container with square cross 

section (see Figure 10), and it is anticipated that wall effects significantly influence the settling velocities 

[40]. To benchmark this, we first report on the settling velocity of spheres in Newtonian liquids, where we 

assess the effect of blockage ratio Br d W , and the effect of spatial resolution of the simulations. The 

parameters were chosen such that Re
U d



   0.36; the density ratio was 2.5s

 . The calibrated 

spheres (see above for a discussion regarding hydrodynamic diameter calibration) are released at vertical 

location z=0.8H (with H=4W) in the center of the cross section of the channel. They then quickly (within 

time 0.5t d U ) attain a steady settling velocity. This steady velocity we report in Figure 11. The good 

agreement with the experimental data due to [40] demonstrates that the simulations correctly capture the 

dynamics of the system, including wall effects. Only minor effects of spatial resolution are observed. 

In our study of spheres settling through elastic (FENE-CR) liquids, the main interest was the 

impact of the relaxation time on the dynamics of settling, i.e. the way the sphere starts up from rest and 

reaches a steady velocity. The effect of the relaxation time will be captured by the elasticity number 

0

2
El

d




  that directly relates to input parameters of the simulations.  The following non-dimensional 

parameters were set to fixed values: the blockage ratio Br=0.25, the viscosity ratio 0.1  , the 

(dimensionless) extension length 2 10L  , the density ratio 2.5s

 , and the aspect ratio 10

H

W
 . 

Gravitational acceleration g was determined such that 
0

Re
U d



   0.36, with 
  2

018

s gd
U

 



 . In all 

cases the resolution was such that the sphere diameter 12d   . 
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We first examine the transient behavior of the settling velocity; see Figure 12 (top panel). Elasticity 

is responsible for an initial overshoot of the settling velocity. This overshoot is followed by a strongly 

damped oscillation, with damping the result of viscous effects. The strength and the time-scale of the 

overshoot is a pronounced function of El. This dependency has been quantified by plotting the 

dimensionless time of the moment of maximum settling velocity 
pt   against the elasticity number El 

(see Figure 12). A fit of the data points suggests that 0.6 Elpt    with 0.6 a fitting parameter. Beyond 

dimensionless time 1t    the settling velocity gets steady with U U  increasing with increasing El, 

which implies drag reduction due to elastic effects [21,41]. The velocity quickly reducing to zero around 

2.2t    for El=11.11 is the result of the sphere reaching the bottom of the container. It illustrates that for 

the parameter range studied the container is tall enough for the spheres to reach steady state, and the 

relatively short time over which the spheres decelerate from steady to zero velocity near the bottom.   

For El=5.56 snapshots of flow structures are shown (in Figure 12, bottom panels) at characteristic 

moments in the time series. At the height of the overshoot we see a strongly for-aft-asymmetric flow. A 

flow region in the wake of the sphere with upward velocity (negative wake) has developed at the end of 

the deceleration that follows the overshoot. This is a stable structure as it remains intact after steady state 

has been reached [21,42]. 

Steady state flow around the settling sphere is examined in Figure 13 where we compare a non-

elastic situation with two elastic cases. The negative wake is a clear characteristic of the latter with the 

negative wake approaching the sphere closer for higher elasticity number El. 

 

Sedimentation of two spheres – Hydrodynamic interactions 

To study hydrodynamic interactions between spheres in elastic liquids we place two spheres in a similar, 

square, tall container that we also used for the single-sphere study, and let them settle. The two types of 

initial placements of the spheres are given in Figure 14. In the vertical configuration both spheres start on 

the centerline of the container, with a distance s between their centers. The horizontal configuration is 
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made slightly asymmetric (with the initial midpoint between the spheres at x=0.6W and y=0.5W) to 

enhance sphere-wall and (as a result) sphere-sphere hydrodynamic interactions. As for single sphere 

sedimentation, we focus on the effect of relaxation time  ( through the elasticity number); in addition we 

vary the initial spacing (in terms of the aspect ratio s d ) between the spheres. The rest of the 

dimensionless parameters were given fixed values: Br 0.25 , 6H W  , 0.1  , 2 10L  , 2.5s   , 

and Re =0.36.    

We first discuss the results for the vertical configuration. For a Newtonian fluid and a vertical 

tandem configuration, in the moderate inertia regime (0.25<Re<2.0), the separation distance decreases 

with time as the spheres settle [15]. The stable steady configuration is a horizontal arrangement after the 

drafting-kissing-tumbling process [43]. In the low-inertia regime (Re<0.2), the separation distance and 

spheres orientation remain constant [3]. Although in the present study Re 0.36  , the bounding walls 

sufficiently slow down the spheres to stabilize the vertical orientation of the pair of spheres settling in 

Newtonian liquid. The two spheres settle with the same velocity with the velocity slightly increasing for 

smaller spacing; see Figure 15. 

In viscoelastic fluids, the necessary conditions for a stable vertical particle configuration were 

identified by Huang et. al. [44] as Re De 1   and El 1 . Under these conditions the nature of interaction 

(attraction or repulsion) between the two spheres depends on the initial separation distance [14,45]. For the 

complete range of initial separation distances considered, these authors reported an initial transient 

attraction. The transient attraction is followed by steady attraction or repulsion if their initial separation 

distance is less or greater than a critical value. This value depends on the fluid rheology and on the flow 

geometry. 

The results of our systems are summarized in Figure 15 where we show time series of the spheres‟ 

vertical velocities and the separation distance starting from a zero-velocity, and zero-stress situation. 

Simulations of elastic liquids are compared with Newtonian (El=0) simulations, and the initial separation 
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distance has been varied. In all elastic cases we see an initial approach of the two spheres, followed by a 

separation. In the separation stage, the two spheres have virtually constant (though different) velocities. 

The initial approach relates to a velocity overshoot that was also witnessed for a single sphere; the 

overshoot of the trailing sphere is larger than that of the leading one. The time-period of the overshoots is 

in agreement with that of a single sphere. The initial approach is consistent with the experimental 

observations of [14,15,45] and the two-dimensional and three-dimensional numerical calculations of 

[17,22]. The overshoot is followed by a rapid extension of the elastic fluid which generates a negative-

wake behind the spheres as shown in Figure 16 (left panel). The negative wake of the leading sphere 

interacts with the trailing sphere and drives the spheres apart. This repulsion was not observed in the 

numerical studies [17] and [22]. In these papers, this was attributed to the absence of negative wakes. After 

the velocity overshoots for a second time, the two spheres reach a steady velocity. 

The phenomena described above are clear functions of the levels of elasticity, and of the initial 

separation distance, as follows from comparing the results of the various cases as displayed in Figure 15. 

Higher elasticity and closer initial spacing lead to stronger sphere-sphere interactions. 

In the horizontal side-by-side configuration of spheres (see Figure 14, right panel) we start with a 

slightly asymmetric placement (the midpoint between the sphere centers is 

   , , 0.6 ,0.5 ,0.8x y z W W H ). This is done to enhance lateral migration effects. It is known [46] for 

Newtonian fluids and at moderate Reynolds numbers (0.1< Re<2.0), that spheres settling side-by-side at 

close distance slowly move apart until an equilibrium separation distance is reached. Since this is a fairly 

slow process it would require very tall domains to mimic this computationally. By placing the spheres 

asymmetrically in the domain, lateral effects show up sooner and stronger and shorter domains can be 

applied. Only one initial placement and spacing ( s d =1.5) was simulated; the variable in the simulations 

was the elasticity number El. The results are in Figures 17 and 18. 

In addition to the earlier observations regarding velocity overshoot upon startup in elastic liquids, 

the most striking difference between the elastic cases and the Newtonian case is the repulsion of the two 
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spheres in the latter cases, and attraction in the former (see the middle panel of Figure 18). Also we see 

that the rate at which the two spheres change their mutual orientation from horizontal at startup to more 

inclined is a clear function of the elasticity number. This behavior is consistent with the experimental 

findings of Joseph et. al [15], two-dimensional numerical simulation of Feng et. al [17] and Stokesian 

dynamics simulation of Binous & Phillips [22].  

 

Multiple spheres sedimentation  

In this final Results subsection, the feasibility of simulations involving multiple spheres in a viscoelastic 

liquid has been investigated. These simulations will be compared with simulations involving a Newtonian 

liquid. Eight equally sized solid spheres (diameter d, spatial resolution such that d=12) are released in a 

tall, closed domain (no-slip walls all around) with square cross section (side length W=4d, and height 

H=8W). The solid over liquid density ratio is 
s  =2.5 and the spheres sediment as a result of (net) 

gravity. The FENE-CR liquid has viscosity ratio  =0.1 and extension length parameter 2
L =10. The total 

viscosity 0  and gravitational acceleration are such that Re =0.36. The elasticity number is El=6.25. The 

Newtonian liquid has a dynamic viscosity equal to the total viscosity of the FENE-CR liquid. Collisions 

between spheres are dealt with by means of a soft-sphere approach with a repulsive force between spheres 

that becomes active when the distance between two sphere centers gets less than 1.05d. For collisions with 

container walls the spheres feel a wall-repulsive force when their centers got closer than 0.55d to a wall. 

Two different initial conditions were considered. In the first one the spheres are placed 

symmetrically near the top of the container with their centers on the corners of an imaginary cube with 

side length 1.5d. At this initial moment the spheres have zero velocity, and the liquid has zero velocity and 

zero stress. Compared to the first initial configuration, in the second the top four spheres are shifted in the 

positive x-direction by an amount 0.5d; the bottom four by the same amount in the negative x-direction. 

Symmetry is retained if the spheres are released in a symmetric arrangement (see the top row of 

panels in Figure 19). Initial repulsion between the spheres in the FENE-CR liquid is apparent. Where the 
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spheres in the Newtonian liquid reach a stable configuration in which their relative positions do not change 

anymore, the spheres in the viscoelastic liquid keep changing their mutual locations. With the asymmetric 

initial condition (lower row of panels in Figure 19) the spheres in Newtonian liquid tend to the same 

stable, symmetric configuration as when they were released symmetrically. This is certainly not the case 

with the elastic liquid. The level of asymmetry quickly grows in the course of the settling process. As 

noted above, vertical sphere configurations are stable if Re De 1   and El 1  with Re and De based on 

the actual (average) sphere velocity U . The El 1  condition is clearly met. Typically 0.6U U  (as a 

result of the confinement) so that Re=0.216. Since De Re El  , Re De 0.54  . This would suggest that 

the spheres are evolving towards a vertical arrangement (if the container were sufficiently tall). 

The computational effort involved in the eight-sphere simulations was not excessive. The total grid 

size was 48483840.9 million lattice nodes. The simulations typically ran over 500,000 time steps. On a 

single CPU in modern hardware this took 252 hours (1.93 s per time step). The additional effort for 

solving the six transport equations of the components of the conformation tensor A (Eq. 3) clearly shows if 

we compare runtimes for the FENE-CR liquid with those for the Newtonian liquid (1.93 s versus 0.68 s 

per time step). Given that the above is based on sequential computer code, and given the inherent parallel 

nature of the lattice-Boltzmann method we consider scaling up the computations to many more spheres in 

much bigger domains feasible. This would open up possibilities for simulations of dense solid-liquid 

suspensions involving elastic liquids. 

 

Summary & outlook 

A novel, direct simulation strategy for viscoelastic fluid flow has been developed. The simulation 

procedure solves the flow equations in the lattice-Boltzmann framework and the transport of elastic stress 

components using a finite volume scheme. Via an immersed boundary method, no-slip conditions on 

particles moving through the grid can be imposed. This allows for a tight coupling between the dynamics 

of the fluid and the solid: hydrodynamic forces and torques on the solid particles are resolved through the 
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immersed boundary method. These forces and torques are used to update the solids equations of (linear 

and rotational) motion that in turn provides boundary conditions for the liquid flow.  

An important issue is that we apply a uniform, cubic computational grid, i.e. we do not use local 

grid refinement to (better) resolve regions in the flow with high gradients. This choice relates to our longer 

term goal to study dense suspensions involving many (order 1,000) particles moving relative to one 

another in viscoelastic liquids. For such simulations with so many particles adaptive grids are 

computationally unfeasible. At the same time we realize that the uniform grid at some locations under-

resolves the flow. A main goal of the paper was to assess such resolution issues. 

The assessment started with a two-dimensional benchmark: a planar Poiseuille flow of Oldroyd-B 

fluid over a cylinder placed in a channel where the surface of the cylinder was dealt with through the 

immersed boundary method. Compared with previous numerical work [33] drag coefficients were 

predicted within 3%. For moderate levels of elasticity (up to De0.7) and with a spatial resolution such 

that the cylinder diameter spanned 30 lattice spacings, the structure of the elastic stress field was 

represented adequately.  

The three-dimensional simulations involved spherical particles moving through FENE-CR liquids. 

Where possible we compared with data from the literature. The reduction of the rotation rate relative to the 

shear rate of a sphere in simple shear flow when elasticity is increased [39] was resolved. For single 

settling spheres, velocity overshoot and negative wakes were reported. Hydrodynamic interactions 

between two spheres followed trends in accordance with experimental data [15]; where the strength and 

direction of interaction (attraction/repulsion) depends on the rheology of the liquid.   

The feasibility of “many”-particle-simulations was demonstrated through simulations of eight 

settling spheres with (again) markedly different behavior in viscoelastic liquids compared to Newtonian 

liquids. In the eight-sphere-cases the particles were usually well separated and hardly collided. In dense 

suspensions they will be much closer to one another and could collide much more frequently. During the 

collision process the flow in the narrow spaces between spheres gets under-resolved. In the past this has 
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been dealt with by means of lubrication force modeling for suspension simulations with Newtonian liquids 

on fixed grids [7]. A similar strategy would need to be developed for viscoelastic liquids. 
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Figure 1. Channel-with-cylinder geometry. At the left boundary a parabolic velocity profile is imposed. 

The aspect ratios are: 4 2H R D  , 40chL R , and 10l R  (l runs from the inlet boundary to the center 

of the cylinder). The origin of the xz-coordinate system is in the center of the cylinder.  
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Figure 2. Velocity profiles on two grids M2 and M3. Top: streamwise velocity on the centerline 

downstream of the cylinder; bottom: streamwise velocity as a function of z at x=0. Newtonian fluid (De=0) 

and an Oldroyd-B fluid with De
U

R


 =0.9 and viscosity ratio 

0

s


 =0.6. For all cases 

0

Re
UR


 =0.067. 
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Figure 3. Drag coefficient 
0

d
d

F
C

U
  versus De

U

R


  for an Oldroyd-B fluid; comparison with Alves et 

al [33].  Mesh M3, viscosity ratio 
0

s


 =0.6, and 
0

Re
UR


 =0.067. 
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Figure 4. Streamwise velocity along the centerline of the channel for three Deborah numbers as indicated. 

Oldroyd-B fluids with viscosity ratio  =0.6. For all cases 
0

Re
UR


 =0.067. The symbols represent data 

due to Alves et al [33]; they have been sampled from the corresponding curves in their paper (their Figure 

18).  

 



 29 

Figure 5. Streamwise normal elastic stresses ( e

xx ). Top: contours for De=1.0; bottom: comparison with 

Alves et al [33]. Oldroyd-B fluids with viscosity ratio  =0.6 and 
0

Re
UR


 =0.067. The symbols in the 

bottom panel have been sampled from the corresponding curves in [33] (Figure 17 in [33]).  
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Figure 6. The effect of finite extension L
2
 on the streamwise velocity in the wake of the cylinder; 

comparison between Newtonian, Oldroyd-B and FENE-CR liquids. Viscosity ratio  =0.6, De=1.0, and 

0

Re
UR


 =0.067. 
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Figure 7. Steady state drag force on a sphere in a fully periodic, three-dimensional domain in a FENE-CR 

liquid; effect of De and spatial resolution. The drag force has been normalized with its Newtonian 

counterpart N

dF .  =0.1, 2 10L  , and Re=0.1. 
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Figure 8. Sphere in shear flow geometry and coordinate definition. The flow is driven by two parallel 

plates at x=0 and x=W moving  in positive and negative z-direction respectively. The sphere is located in 

the center of the domain. Periodic conditions apply in y and z-direction. The blockage ratio is defined as 

Br d W =0.25. The aspect ratio H W 2.  
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Figure 9. Sphere angular velocity 
y  as a function of De, comparison with Snijkers et al [39]. Oldroyd-B 

fluid. 
2

0

Re
d


  0.1,  =0.5, and 
s   2.5. 
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Figure 10. Single-sphere settling geometry, including coordinate system. No-slip conditions apply at all 

six bounding walls.  
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Figure 11. Single sphere settling through Newtonian liquid in a closed container with square cross section 

with side length W such that  Br d W .  Comparison with experiments of Miyamura et al [40], and 

assessment of grid sensitivity. Re 0.36, 2.5s

 . 
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Figure 12. Top: time series of the settling velocity of a single sphere through FENE-CR liquids and (for 

reference) a Newtonian liquid. Time has been made non-dimensional with   (and with d U  for the 

Newtonian case). The inset shows how the peak velocity instant 
pt  correlates with El. Bottom: streamlines 

for El=5.56 at three moments: from left to right t  =0.2, 0.8, and 3.5.  

 

 



 37 

Figure 13. Streamlines around the settling sphere after steady state was reached for three different 

elasticity numbers: from left to right El=0.0, 2.78, 5.56. 
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Figure 14. Two-spheres configurations. Left vertical orientation; right: side-by-side orientation. At the 

bounding walls, no slip conditions apply. The two spheres have the same diameter d. The starting positions 

are specified in the text.   
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Figure 15. Time series of two spheres in vertical orientation settling over the centreline of the square 

container. Left column: velocities of the leading and trailing sphere for El=4.17 (and for Newtonian liquid 

for comparison). Right column: separation distance for three Elasticity numbers as indicated. From top to 

bottom: initial spacing between the two spheres s d =1.5, 2.5, and 3.5 respectively. Time has been made 

non-dimensional with   (and with d U  for the Newtonian cases). 
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Figure 16. Two spheres in vertical orientation settling over the centerline of the square container with 

initial separation s d =1.5 for El=4.17. From left to right t  =0.4, 2.0, and 5.0 respectively. Streamlines 

and contours of  tr A . The latter is a measure for elastic extension. Note that the color scale changes from 

panel to panel. 
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Figure 17. Two spheres settling side-by-side in a container with square cross section (width W, height 

H=4W). Slightly asymmetric starting position: the midpoint between the two spheres is at 

   , , 0.6 ,0.5 ,0.8x y z W W H  for t=0. The initial spacing is s d =1.5. From left to right: El=0.0, 2.08, 

4.17, and 6.26. The subsequent spheres positions and orientations are spaced by 2.5d U  in time.  
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Figure 18. Time series of vertical velocities, horizontal spacing between the spheres and the y-component 

of the angular velocity for two spheres settling side-by-side in a FENE-CR liquid, and a Newtonian liquid. 

The initial spacing is s d =1.5; El=4.17. The rest of the conditions have been specified in the text. Time 

has been made non-dimensional with   (and with d U  for the Newtonian case). 
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Figure 19. Eight solid spheres settling in a closed container with square cross section (width W=4d, height 

H=8W). Left: Newtonian liquid; right: FENE-CR liquid (specified in the text). The top and bottom panels 

differ with respect to the starting configuration of the spheres. For each of the four cases, four realizations 

are shown at times 
tU

d

 =0, 15, 30 and 45 respectively. In addition the lower left sequence (Newtonian, 

asymmetric initial condition) shows a frame at 
tU

d

 =70. In each frame one sphere is colored red for 

identification purposes only. 
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Table 1: Mesh sensitivity of drag force for Poiseuille flow of Oldroyd B fluid 

De 
   

Alves et al [33] 

0 145.22 136.50 134.87 132.36 

0.1 139.80 133.20 131.73 129.91 

0.2 136.83 130.31 128.85 126.62 

0.4 133.85 125.04 123.15 120.59 

0.6 131.52 121.77 119.49 117.77 

0.8 133.35 121.95 119.61 117.36 

0.9 134.45 122.55 120.12 117.85 

1 136.28 123.18 120.20 118.52 

 

 

 

 

 

 

 

 

  

 


