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1. Introduction

In this paper, we are concerned with the direct solution of the systems
of linear algebraic equations arising from the discretization of linear partial
differential equations over a rectangle. Such a system is usually solved by
means of the iterative methods, and the direct methods are rarely used be-
cause of storage capacity [117]”. Among the direet methods, however, there
are known the square root method [ 117, the hypermatrix method {9, 367, the
tensor product method [ 18], the method of summary representation [327],
the method .of lines 12, 20, 25, 26, 27, 37, 46 ], and so on [ 13, 16, 23, 39, 40, 45 .

Although the results stated in this paper are not all new, they are sum-
marized in a somewhat unified form. The methods can easily be extended to
the problems in higher dimensions and to the domains consisting of rectan-
gles. Several examples to which the direct methods are applicable are pre-
sented.

2. Preliminaries

2.1 Tridiagonal matrices
Let x be a real number and let U,(x) and V,(x) be the solutions of the
difference equation

2.1 Yro—2y,ty, =0 (r=0,1,...)

satisfying the initial conditions y_.,=0, y=1 and y_.=1, y,=x/2 respec-
tively. Then, as is easily checked, we have the following

Lemma 1. U(x) and V,(x) are expressed as follows:

[ sinh(r+ Do 9cosho = x (x=2)
sinhw
U,(x) = §%)f,l 2c080=x (%] <2)

(—1)r_sin_2i<£}—lrw1>w’ 2cosho = |x| (x= —2)

1) Numbers in square brackets refer to the references listed at the end of this paper.
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cosh(r+ Do, 2coshw = x (x=2)
VAx)= { cos(r+1)0, 2¢co80 =« (|x]<2)
(—1)+teosh(r+1)w, 2coshw = | x| (x < -2).
The general solution of the equation (2.1) 1s given by the formula
(2.2) ¥r = U, +(2)+ GV i(),
where C, and C, are arbitrary constants.

We introduce the following % % & matrices (k=38):

1 01 0 1
n=|1 0 Ji= t-..0 K= | 1 0 Zy=
= o | = O w1 K= O | L= 0O |

0 10 10 1

01 0

1,0 000 0.0 0-. 0
Uk: ., ] Vk: RREN s UI{: -0 3 Vi{: et

0 0 0 8 0 1 0 0 i o

Let p, ¢, « and B be the real numbers such that
(2.3) 1+a>0, 1+5>0,
and put
L=Lk;p, q; & B) = Jp+pU,+qUl+aV,+8V{

p, 1+«
1, 0, 1, 0

1, o, 1
0 1+8, ¢

Then we have the following

Lemma 2. Under the condition (2.3), the eigenvalues of L are all real and
distinct and they are the roots of the equation

(2.4) Fy() = UD—(p+ QUs1(D+(pg—a— B Up-2()+
+(pB+qa)U,_s(A)+afUs-4(4) = 0.

Let 4 be an eigenvalue of L and put

(2.5) %= U;oi(D)—pU;o(D)—alU;_s(A) (=12, .., k),
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(2.6) a7 =(x1, ®2, -+, Xk),
then x is an eigenvector corresponding to A.

Proor. Let L=(l;), then since L is a real tridiagonal matrix and
Livyy iliy 10120 (=1, 2, ..., k—1), the eigenvalues of L are all real and distinet
[447].

Let A be an eigenvalue of L and x be an eigenvector corresponding to A.
Then there holds the relation (L—11)x=0, namely

2.7 (p—Dx1+A+a)x; =0,
(2.8) %j-1— A%+ %51 =0 (j=2,8, ., k—1),
(2.9) A+B)xp-1+(g— Az, = 0.

By (2.2) x; satisfying (2,8) can be written as follows:
(2.10) x; = CLU; (D) + GV 1(D)
and, by (2.7) and (2.9), constants C; and C. must satisfy the equations

(2.11) (p—Dx1+A+a)x, = pxy+ax,— xo

=(p+aUiM))Ci+(pVo(D)+aVi(A)—1)C, = 0,
and

(2.12) A+Bxp-1+(g—Dxp = Brp1tqur— %441
= (BUs-oD)+ qUs—s(D) = UsQ)C1 +(BV 1-2()+ q Vo 1(D)— V(D) C2 = 0.

The necessary and sufficient condition for the equations (2.11) and (2.12)
to have a non-trivial solution is that

(218)  (pVotaVi—1XBUs2+qUs1— U)—(pUs+aUXBVs-2+qVi1— Vi)
= Up—p(VoUr~UsV)— qUs-1+pg(Vo U1 — U V1)~ BUj 2 —
— (W Up— U V) +pBVoU_s— UsVi_2)+ gl ViUs_1— Ui Vi) +
+aB(ViUpy— Uy Vi) = 0.

Using Lemma 1 and addition theorems for trigonometric and hyperbolic fune-
tions, we can rewrite (2.13) as (2.4).
In the case where p+aU:(2)==0, from (2.11) we have

and, if we put C;=p+aUy(2), then it follows from (2.10) that

26 = Upa(D) = p(V oD Uy (D) — V;21(D) — el V(D) U -1(2) — Ur() V;-1(2))
= Ujs(D)—pU; D) —alU;-3(A).
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In the case where p+aU;(1)=0, from (2.3) it follows that
1—pV(A)—aV(2) =1+ UV ()= V(D)) =1+ a>0,
so that C;=0 from (2.11). If we put C,=1-«, then we have
x; = G U; (D) = A+ ) U;1(2)
= U —pUj o) =l o(2).

Thus the vector x given by (2.6) is an eigenvector corresponding to A

Cororrary 1. Let 4; (j=1, 2, ..., k) be the eigenvalues of L and put

G(k; p, q; @, B) = diag(ds, 42, -+, 4s),
R(k; p, g5 a, B) = (rip),
D(k; a, p) =diag(1/A+a)1, 1, ..., 1, 1/1+B)),

where
Tij = Cifijs
Fij = Uia(A) — pUi_o(d)) — aU;_3(4)),
l ‘k'~1
(2.14) c; =1 L +7/A+a)+7%;/A+B) 2

i=

Then it 1s valid that
Lk; p, q; &, B) = R(k; p, q; a, BYG(k; p, q;0t, B)R(k; p, q; a, B)7F,
Rk; p, q; a, B = Rk; p, q; o, B Dk; &, B).

Proor. Put

F=diag(Q/N1+a, 1,1, .., 1, 1/V1+8).

Since FLF'=S is a real symmetric matrix, there exists an orthogonal
matrix T such that S=T7GT- If we put

7? - (Fu» fzj', Ty 7kj),

then c#; (c=£0) is an eigenvector of L corresponding to.4;. Let R be the
matrix

R = (c1F1, coFzy -+, ChF0),
then it follows that
LF'T=F'TG, LR = RG.

Hence we can choose ¢; (j=1,2, ..., k) so that FR=1T7. Evidently such a ¢;
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is given by (2.14). Then it follows that
R'=T"'F=TTF=R'F'F=RTF'=R7D.
From this corollary we directly obtain the following

CororLrary 2. Suppose that the matrix al,—L(k; p, q; «, B) 18 mon-
singular. Then

(alk“l‘(k;p: q: o, B))71
= R(k; p, q; &, BMal;—G(k; p, q; «, B) 'Rk; p, q; a, B)".

Differentiating the formula (2.4) and using the relation (2.1), we have

CororrLAry 3. The functions F,(2), Fi(2) and F, (1) satisfy the following
recurrence formulas:
F2) = 2F, (&) — F,_5(2),
F)=2F (D—F,,(D+F,_,()  (r=3,4, ., k),
FJ() = 2F]_,()—F_ (D) +2F,_ (D),

where
F()=A—ap)d—(p+q+pB+qa),
F()=2—(p+i+pg—a—B—aB—1,
Fily=1=ap, FyA)=21—(p+q),
Fi)=0, F=2.
Now put

Gi(k) = diag(2cos8;1, 2¢080;2, ---, 2c080;,),

where
T (j—Dr 2/ —r
01j:k']_?1'a 02]':7] kf) 5 aaj:”£k+%,
o G=br ,_@=Dx . _2j-lm
BT o BT g oGm0

Further put
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Rl(k) = (sin i01,~), Rz(k) = (sin(zlz— 1)02j),

Ry(k) = (sin(k+1—0)0s;), Ru(k)=/(cos(i—1)0,;),
Rs(k) = (cos(i—1)0s;), Re(k) = (ryj),
where
ra=1/N2, ry=cos(i—1)0s; (@<j<i-1),
ru=0cos(i—1)0;, ry=sin(G—1); (I+1Zj<k),
1 (k: odd)
I=[k/2], 0= -
1/V2  (k: even).
Then we have the following
Turorem 1. There holds the relation
Lk) = R{k)G{(k)R(k)™ G=12,...,6),
and Rik)™! are represented as follows:

a2, a2 T a_ 4 T
R = 2 R Dy Re(B) =2 RBF Dy Ro(B) = 2 Ro(hY,
where

Dy =diag(1/2,1, ..., 1,1/2), D,=diag(1/2,1, ..., 1).

Proor. The results for i=1,2, ..., 5 follow directly from Corollary 1.
The result for i=6 is obtained from the fact that Ls(k) is a circulant matrix
197,

Now put

Ly(k; p) = L(k; p, 0;0,0), Lio(k; p)= L(k; p, 0; 1, 0),

and let us define G(k; p, q), Ri(k; p, ¢) (i=1, 8), Gi(k; p) and Ri(k; p) (j=9, 10)
likewise.

By Corollary 2 we can obtain the matrix (e, — L)™' in terms of the eigen-
values and eigenvectors of L. Without knowledge of eigenvalues, however,
we can also write it explicitly by the following

Lemma 8. Under the condition (2.83), suppose that the matrix aly—
L(k; p, q; a, B) 18 non-singular. Then it is valid that
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(aly—L(k; p, g5 @, B) ' =(ry),
where
rin= A" Upei—qUpoi1— BUp_i2),
AN Ui —pUis— Ui ) (Usoj— qUaoj 1 —BUs-j2)  (j=i),
e { AN Uy i=qUpia=BUs i ) (U1 —pUs s —al;5)  (j<i),
C=sj=sk-1)
rie = AN Uio1—pUi_s—aU;_y),
A= Fya), U;=Ufa) (j=-2,-1,0, ...).
Proor. We consider the system of equations
(2.15) (el —L(k; p, g; @, B)x=f,
where

xT:(xla X2y vy xk): fT :(f1>f29 "'sfk)‘
From the first £ —1 equations of (2.15) we obtain inductively

-1
(2.16) «x,= —.é Uiar-ifi— Uio f1i/A+a)+ x1(Uisy—pUs 2~ U, _5) /(1 + ).
(l:15 2) Ty k)

Substituting the expressions for x,_; and x, into the last equation of (2.15),
we have

(217) Ax/(1+ ) :fk+I;f_,‘zl(Uk—i"‘qu—i—l_BUk—i-Z)fi'i‘

F(Up-1—qUp—2—=BUs-3)f1/ 1+ ).
Multiplying (2.16) by A and substituting (2.17) into it, we have

218) Ax;=((U_1—pUi_s—aU;_3)(Up-1— qUs_y— BU_3)— AU_5) f1/ A+ )+

-1
+ ‘gz((Uk—i”‘qu—i-l“BUk-i—Z)(Ul~1’_PUI~2'_aUl—B)—AUl~1-i)fi+

k-1
+ _}_::I(Uk~i_qu—z‘—l_BUk—i—Z)(Ul—l'-PUI—Z_aUI—EI)fi"I‘

F(Ur-1=pUps—alU_3)f .

Using Lemma 1 and addition theorems for trigonometric and hyperbolic func-
tions, we can rewrite (2.18) as follows:
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k-1
Ax; = (Upe1—pUi_y—aU_3)(fr+ .§(U1H" qUp1-i—BUs_2-)f )+

-1
+(Ukvl—qu—1—l—ﬁUk—Z—l)(_g:z(UFl —pUi_s—aU, s)fi+ f1).

This completes the proof of the lemma.

Lemuva 4. Let W be a kx k non-singular matrix and let p and q be con-
stants. Suppose that (W —pU,—qU]) is non-singular. Then it is valid that

(W—pU,—qU) ' =W+ W'ZW,

where
( pA A —quie), 0, -, 0, pgA~lwy,
0 0
Z= . :
0 0
quﬂlwkh 0, -, 0, qAAl(l—Pwu)/

W= (w;j), A= (1 —pwu)(l—~qwkk)—-pqw1kwk1.
Proor. Consider the system of equations
(W—pU,—qUx=f.

Then we have

(2.19) Ax=(L,—pW ' U,—qW ' UDx=W"f=g,
where
[ 1—PW11, —qwlk { &1 h
—pwa, 1 0 . &2
4= : : , g= | &
. 0 1: —qWe-1k .
{ —PWer — QW L8k,

From the equations
A —pwi)x1—quixs = &1,
—pwix1+ (1 —quwe)xe = g,
we have
x1= A YL —qw) g+ A qws, g,
(2.20) q 81 qUWir &k
xr = A" pwn g+ A A —pwi) g,

and substituting these into the remaining equations of (2.19), we obtain
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Xy = g1+pwl1x1+qugk
= g1+ ( pwn A1 — qwus) + quipA " pwss) g1+
+(pwnA~lquwis+ quiA A —pwi))ge  (1=2,8, ..., k—1).

Further (2.20) can be rewritten as follows:

x1= g1+ pA (wi (1 — qwes) + qwiwie) g1 + A qui g1,
=gt pAwn g+ qul(wkk(l — pwi1)+ pwr i) G-

Hence it follows that 4 '=1,+ W~'Z. Thus the lemma has been proved.
Let 4 be an m x m matrix and B be an n x n matrix. Then we define an

mn X mn matrix AQB by
A@B = (a,']'B).

For simplicity, in the sequel, the matrices A4,, 4;(k) and Aik; p, q) are
written as 4, 4; and A, (p, q) respectively when k=n and they are written as
Ay Ay and A{(p, q) respectively when k=m. Further we put

(2.21) S=1,0R, P=R®I

The following lemma is an extension of Lemma 4 and it can be proved
analogously.

Lemma 5. Let Wbe an mn x mn matrix and let p and g be constants. Sup-
pose that the matric W—(pU,+qU,)RI is non-singular. Then it is valid that

(W—(pU,+qURQD ' =W+ W1ZW,
where
f PA(% 1’ 03 M) O; PQ(I—P W11>_1 Wv(l)mA;tl h

Z: : : b
0 0
N PQ(I_‘Y l'-me)u1 WmlAl_ly 09 Tty 05 qA;zl

Wﬁlz(l’-Vij) (l,]:]-a 2a Tty m’),
Ap= (I"'P Wll)_PQ(I'—q W'mm)k1 W,
Am = (I_q Wmm)'—PQ(I“P Wll)_l Wlm,

and W;;’'s are n x n matrices.
Let p, g, a, 8, v and 0 be real numbers and put

Mk; p, g5 @, B5 7, 0) = 7(Ky+pUy+aV )+ 10K +qUi +B8V])
={ 7p, 10°+ 700 )

oo, e O

or_ O, 10
\ 7+70%8, 1o%q |
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where it is assumed that
(2.22) 70, 0>0, 01
Then, as is easily seen, we have the following
LemMA 6. Let E;, be the matrix defined by
E,=diag(, 0, 6%, ..., 0% 1),
Then, under the condition (2.22), it is valid that
Mk; p, q; @, B; 7, 0) = E, " 'y0L(k; pd~', q0; ad 2, BODE;.

This lemma reduces the problem of finding Jordan’s canonical form of M
to that of finding the canonical form of L(k; pd~', ¢0; ad~? B0%). As special
cases of L, we consider two cases where p=¢g=1, a=p=0 and p=¢=0, a=
A=1. Put

Lu(k; 0)=L(k; 674,050, 0), Lao(k; 0) = L(k; 0, 0; 67%, 0%,

Guk; 0)= diag(Zcosﬂ, oy 2cos(k_kl)”, é‘+6"1>

Gixk; 0) = d1ag<2cos 2cos(k 2)”

- -1
L T 0407, —(0+87)),

Ru(k; 0) = (rij), Ruolk; 0)=(sip),

where

o .o J 1/2
ri; =V2/k (6 sin LZZ sin—Lj7 kl)]”>/<1+62——26cos—]k£> 1<<k-1),

rie =NA—0%)/(A—2#) i1,

= U GO

jn. 1/2
+(6+6”1)2sin2m> A<j<k—2),

Sigp-1 = \/(1 —09/(2(0%—024)) i1,
sin = V(1 —0%)/(2(02— 82)) (—0)i 1.

Then by Corollary 1 we have the following
TueoreMm 2. Under the condition (2.22), it is valid that
Lik; 0) = Ry(k; 0)G,(k; O)Ry(k; )7 (j=11, 12),
Ru(k; )t = Ru(k; )T, Riglk; 8)' = Ryy(k; 6)" Dy,
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where
D; = diag(62/(1+0%), 1, ..., 1, 1/(1+0%)).
We consider further the matrices
Lys(k; p, q; 0)= L(k; pd~*, 0 0, 0),
Li(k; p, q; 0)= L(k; pd~1, q0; 072, 6%),

and define G(k; p, ¢; 0) and R,(k; p, ¢; 0) (j=13, 14) likewise.
Since

alk-M(k, P> q; «@, B, 6) = Ek“le((Ta)_laIk—L(k; p6_1> 95, a6_29 562))Ek>

we can obtain (al,— M)™! by Lemma 3.

2.2 Quidiagonal matrices

Let A4 be the matrix defined by

(2.23) A=al—2b]+(J*—2I),
where
-1, 0, 1
0, 0, 0, 1
1a 03. ¢ O
Ji-2l= Lo
o.. u-. 1
0 ~0, 0
1,0, —1

Then we have
A= R, ((a—2—-b)I+(bI— )R,

Thus the matrices of the form (2.23) can be diagonalized easily.
Let S,(2) and T,(2) be the solutions of the difference equation

(2.24) Yrrz—2ayp1tdyr—2ayp 1+ yp2 =0 ((=0,1,2,...)
satisfying the initial conditions

y_].:yO:O, ylzl’ yZ‘:O,
and

respectively, where

d=a*+2—2 (a>0).
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Put
Ri() = T{D)S;-1(D)— T;-1(D)SLA).
Then, as is easily checked, we have the following
Lemma 7. Ri(j=0,1, 2, ...) are the solutions of the difference equation
(2.25) Rj.3—dR; 2+ (4a*—1)R;,1~(8a®—2d)R;+(4a*—1)R; 1—dR; 2+ R; ;=0
satisfying the initial condition
R;=1, R;=Ry=R =0, R:=1, R3=d.
Moreover it is valid that
Ri(D) = TA— T;1(D) Tj.a(R).
Solving the characteristic equation of (2.25), we have the following

Lemma 8. Ri(4) can be expressed as follows:
In the case where A>(a+2)? or 1<(a—2),

n 2

(—'7)6—‘([] (8)— Uj—o(s))s

where

r— —%(az—/lJr\/m), 5= —(a @ =T —1632).
In the case where (a—2)* <A< (a+2)?,
R = 5 =20 sV 1)+ Uy o) U+ VA Uy o),
where

r=a+vi, s=a—V1i.
In the case where 2= (a+2)* or A= (a—2),
[ g U Ly 00 042)

R{(H= 1
] Téjz(].z‘“l) : (r:Z),

where

r=(a*—2)/2.
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Solving the characteristic equation of (2.24) and using the initial condi-
tions, we have the following

Lemma 9. S,(2) and T{(A) can be expressed explicitly as follows:
In the case where 1>>0,

Sy = 21;(0Uk—1(ﬂ)—ﬂUk-1(0)+ Us—o{1)— Ui _2(0)),

T = le(Uk—l(O)' Uk-l(ﬂ))’
where
c=V2, =atc, U=a—ec.

In the case where 2<0,
SKD = 1 (UerUs s0)= Us o) Us. (0)+
+ U Us-op) = Us-s()Us-(0)),
142 = 4 (Vs U0) = Ui Us-+(0)),
where
p=2c0s0 = L ((a+22—1—V(a—2)'=2),

0 =2cosho = %((a+2)2—/1+‘/(a—2)2—1),

¢ = cosh?c —cos?0.
In the case where A=0,

1

Sud) = 4—

az((2+2k)Uk+1(a)+(k—2)Uk;1(a)~(2+ 2k) U (@),

T = 1 (kA DT oe)— Vi),
Put
NMa; p, @) = @+ 2I—2a]J+(J*—2D)+(p+ 1)U+ (g+ 1)U’
(a’+2+4+p, —2a, 1

—2a, @*+2, —2q, 1 0
1, —2a, o*+2, —2a, 1

‘ 1, —24, 42, —2a, 1
0 1, —2a, a®*+2, —2a
1, —2a, a*+2+¢q
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Then there holds the following

Lemma 10. The eigenvalues of N(a; p, q) are all real and they are the
solutions of the equation

(2.26) HQ) = Ry o)+ (p+ QR iaD) + pgRo(D) = 0.

Let 2 be an eigenvalue of N(a; p, ) and x; (i=1, 2, ..., n) be the solution of
the difference equation

(2.27) %,2—2a%, 1+ dv,—2a%, 1+ %,2=0  (r=1,2,..)
satisfying the initial condition
%1 =pTui(A), x0=0, x1=T, 1), x2=—S8,1(A)+pTid)
and put
xT = (%1, %3, -+, Xn)-
Then x 18 an eigenvector corresponding to A.

Proor. Since Ma; p, q) is a real symmetric matrix, its eigenvalues are
all real. The equation Ma; p, ¢)x—Ax=0 can be written as follows:

(d+p)xi1—2ax;+ x5 =0,
—2ax,+ dxy—2ax3+x,=0,
(228) x;#2—2ax¢~1+ dx,-—Zaxi+1+xi+z =0 (’«239 4, Tty n"—2)9

Xy 3—2a%, 3+ dx, 1—2ax, =0,

Zp_p—20% -1+ (d+q)x, =0,
where d=a?+2—21. Then we have inductively
(2.29) x; = (S =p T;-1(R)x1+ TN, (j=L2,..)

and the last two equations of the system (2.28) become as follows:

(2.30) Xn-3—2a%,_2Fdxy1—2a%, = —x,,1=0,

(2.31) Xp-2—20%,-1+(d+@)x, = qxp+2ax,,1— %42 = 0.
Subtracting (2.30) from (2.31) and substituting (2.29) into them, we have
(2.32) (Sur) = p TuD) 51+ T xRz =0,

(Sn+2()~) —-P Ty ()~ q(Sn(l) 4 TnAl(/I)))xl + ( Ty — q Tn(l))xz =0,

For these equations to have a non-trivial solution it is necessary and sufficient
that
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H) = Ty 2)SnirlD)—~ Tri1(R)Sy12(R) +P( Tn+1(l)2‘“ T2 Tn+2<l))+
=+ 9( Tn+1(}‘)5n(l)" Tn@)snﬁhl(l)) +P9( Tn(}*)z— Ty i) T 1('1)) =0.

Using Lemma 7, we can rewrite this equation in the form (2.26).
Evidently x; (i=1, 2, ..., n) defined by (2.29) satisfy the equation (2.27).
By (2.32) we set

x1= Tpi2(A), x2= — S l(D)+pTu(d).
Then we have from (2.29)
%o = (So()— p T-1()) Ty 1 (D) + To()(p T(2)— S,.:21(D) = 0,
x-1= (S-1(D)—pT-o(D) TpsrD)+ T A (p Tw(D) — Sp11(D) = p Tr.r(2).

This completes the proof of the lemma.
Now we consider the equation

(2.33) (Na; p, 9)—ADx =,

where 1 is a real number that is not an eigenvalue of Na; p, q). Then we
have the following

LemMa 11, The solution of the equation (2.33) is given by the formula

(234) Xy — ’glz Tr~j(]\>fj+ (Sr(l) —p Tr—l(;‘))xl + Tr(l)x%
(r=1,2, -, n)

(2.35) 1= HO™ 5 X f o1

(2.36) w2 = HQ™ & Y frrios

where X; and Y; are the solutions of the equation (2.24) satisfying the initial
conditions

X—l‘:an+l(l): Xo = O, .X1: Tn+2(l)3 XZ:(d+q) Tﬂ(i>—2a Tﬂ—l(l)—{h T"—Z(l)

and
Vo= —qSua)+pqTu(d), Yo=0, Yi=—S8, (D)+pTL),
V2= S,,2(0)—2a8, 1()— ¢S, (D) —p(Tr:1(D)—2a T(A)— g T,1(2))
respectively.

Proor. Form the system (2.33) we have inductively the formula (2.34),
and from the last two equations of the system (2.33) it follows that
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(SeiD=p L@+ TrsDro = = £, T D
(Sns s D)= gSuD) = p Tus(D) +pg T s (D)1 + (T oD — g To(D) 2=
=~ £ (Tuo s D= TS D)f
Solving these equations, we have

)31 = Ty 5 (Turs- iD= g T s D)5~
(Lass®)= g ToR) £ Tor Q)
H@)2 = (S1:2() =450 =p TarsD+pg TosD) £ Tor Df s

~(Suo@=pTu() £ (Twsr- D= LoD

From these (2.35) and (2.86) are obtained.

8. Second order elliptic equations

3.1 Methods for the solution

The problem of solving approximately the second order elliptic equations
is often reduced to that of solving the difference equations of the following
form:

Al; Cy, S ) /fl
— By, Az, -‘Cz, x2 f2
Bl Mx= ~ ~f
B, 1, Ap_1, Cna Xm—1 fm—l
N _Bm> Am N Xm / fm

Where A4;, B; and C; are n x n matrices. For convenience we consider that
B].:Cm:.o‘ '
Methods for solving the equation (3.1) are considered in the following

three cases:
1°. Case where M is similar to a block-diagonal matrix. When M is

expressed as
(32> M= Edlag(Dla DZ) Tt DM)E—la
since

M= Ediag(Di*, D3, -, D,OE™,
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the problem is reduced to that of finding the matrices D;! (=1, 2, ..., m).
2°. Case where M is decomposed as M= W+ N and W' is easily obtained.
The equation (8.1) can be rewritten as follows:

(3.3) (I+ W-'N)x= W-Yf.

This decomposition is effective when the problem of solving (3.3) is reduced to
that of solving the equations of the lower order.
3°. Case where all the block principal minor matrices

Ay, —Cy, b
M;= | —B,, Az, —C; (=12, ...,m)
—B, 4

\

of M are non-singular. M can be decomposed into the form LU, where

ey 0 P % 0
L= . , U= ;
O Zppi, 1) \ 0 “p, Tl |
Py = A,
(3.4) P,=4,—-B,P;'.C, (k=2,8, ..., m).
Then since
Ux=L"f=g, x=Ulg,
x; (=1, 2, ..., m) can be obtained through the recurrence formulas

81 :fls 8 :fk+BkP;—11gk—1 (k=2,3, ..., m),
xm:P;ngm; xk:Plgl(gk+Ckxk+l) (k:m_la m"_zs ) 1)

In the case where 4,, B,, and C, can be diagonalized by the same simi-
larity transformation, namely where there exists a matrix F such that

Ak:F/j\kF—l, Bk:FBk.F—l, C= F(ij_l (k:]., 2, ey m)

with diagonal matrices A,, B, and C,, this method is easily applied. Since
14/\1) - (21) A O

- BZ)' AZ, - CZ

¢

if we put z;,=F 'x; and f,:F‘lf,-, then the system (8.1) can be rewritten as
follows:

(3.5) M= (T &QF) I.QF),

. .o - . A
'—Bm—ly Am-l; R —Cm-l

ms m /
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4y, G, = ) | B
. —Bz, T, 5.2 fZ a
Mz = IR : = : =f
.. —Cm—l Bm—-1 3
\ —Bma Ap Zm ‘Cm_l

m

P, and P;! are easily obtained because 4,, B, and C, are diagonal matrices.
In the particular case where

A; = A=diag(ay, a3, ---, an) (a;>0;i=1,2, ..., m),
B;= B=diag(by, by, -, b,)  (5;>0;i=2,8, ..., m),
C; = C=diag(cy, ¢z, ---» cn)  (¢;>0;i=1,2, ..., m—1),
we investigate the stability of this numerical process.
TuroreMm 3. Suppose that
(3.6) a;=>max(2bics, 2bics, 2bs, 2¢i, bit i, L4 bic) (=12, ..., n).
Then both the forward process
(3.7 g:=fi+BPilg,, (k=2,3,..,m)
and the backward process
(3.8) z,= P,'Cz,.,+ P;g, (k=m,m—1, ..., 1)
are numerically stable.

Proor. The vectors g, and z, are written explicitly in terms of f} and g;
as follows:

A k-1 k-1 ~
8 :fk+ ZI(IZ.BPl_l)P]'Ml.fj (k:]*a 2> Tt m)a
j=11=j

.

i=1
s=Pig+ 3 (LPIOPg; (b=m, m—1, ., 1)

i=k+1

Hence in order that the round-off errors incurred in the course of numerical
computation may not grow, it is sufficient that the eigenvalues of P;!, BP;?
and P;C (I=1, 2, ..., m) are all less than one in modulus.

Put P,=Q;1,0; (j=1, 2, ...), where Q, are diagonal matrices. Then, in
view of (8.5), we have

QJ':AQJ'*]-—BCQJ'—Z (]:27 37 ) m)
Q=1 O=A.
Since by (8.6) a; == 2d; = 2Vb,c;, Q; can be written as follows:
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d’sinh(j+1o; )
sinhw, '/

0, =diag( ..,
where
e = L (a—Vai—4d?),
2d;" " : !
Hence we have

Pt = diag(. sinhjo, >

On the other hand, since cosh(j+1)w/sinh(j+1)wv>1(w>0), it follows
that

sinh jw

_ __cosh(j+1)w
Sinh(j+1)

coshw Ei'ﬁh*(m sinhw

< coshw — sinhw =e™*.
Hence we have only to show that
e i/d; <1, be/d; <1, ce */d;<1.
Since b; < a;—c;, it follows that
402 <4ab;—A4d3, (a;,—20;,)? <Za?-—4d},
and so
a;—Nai—4d3 <2b,.
Similarly we obtain the result
a;~Va?i—4d?<2c,.
From these follows that
bei/d; <1, ce*/d;<1.
Since b;c;—a; < —1, it follows that
4b3c?—4da;b,c; < —4d?, (a;,—2d3)? L a?—4d},
so that
a;i—ai—4d? < 2d%
This means that e *:/d;<<1. Thus the theorem has been proved.
3.2 Examples

In the following examples, we are concerned with partial differential
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equations over a rectangle R with sides parallel to the x- and y-axes. We
denote by UH and LH the upper and lower horizontal sides of R respectively
and by RV and LV the right and left vertical sides respectively. Let £ and
h: be the mesh-sizes in the x- and y-directions respectively, and put

(3.9 c=h/h, b=0% a=2(1+5b).
Values of the unknown function u;=u(x;, ;) are arranged in the following
manner:

x7 = (uyiy uziy -y Uni) (i=1,2, ..., m).

Laplace’s operator A is approximated by the following two formulas:
(I) Five point formula

——(Au),-,- = h"zHu,'j—FO(hz)

—b
= L1 ~1 | uy+oR?
- *hT | a if ).
s
(II) Hermitian difference formula
1
1] 10 1 |
—QAuyy =~y | 10 | 100 10| (Awy
1 10 [ 1
—(1+3) | —(106—2) | —(1+b)
:% —(10—2b) 100 | —(10-28) | uytOG)
—(A48) | —106—2) —(1+b)

8.2.1 Example 1
We consider the equation
—Au+iu = f(x, ¥) (A=0).

(I) Case where five point formula is used.
The matrix M takes the form

M=1,84— BRI, A=(a+hHI—bC,
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where B is an m x m matrix, 4 and C are n X n matrices and, according to the
boundary conditions imposed on LH and UH, C becomes as follows:
(a) when u is given on LH and UH, C=1L,.
(b) when u is periodic in the y-direction, C= L.
(¢) when u is given on UH and u, is given on LH,
(i) in the case where u,(x, y) is approximated by the forward differ-
ence (u(x, y+h)— u(x, y)/hy or by the backward difference (u(w, y)—
u,(x, y_hl))/hl, C:L3
(ii) in the case where u,(x, y) is approximated by the central
difference (u(w, y+h1)—u(x, y—hy)/(2hy), C=Ls.
(d) when u, is given on LH and UH, C=1L, in the case (i) and C=L, in
the case (ii).
(e) when u,+0z is given on LH and u,+0,u is given on UH,
C=L(p, q), p=1+ho;, q=1+mo0, in the case (i);

C=Lyp, @)y p=2h01, q=2h0s, in the case (i),

where ¢, and ¢, are constants.
(f) when u is given on UH and u,+0cu is given on LH,

C=Ly(p), p=1+mo in the case (i);
C=Li(p), p=2h0, in the case (ii).

If UH, LH, u,, L;, C, p, q, ¥, 01, and 0, are replaced with RV, LV, u,, L,
B, r, s, x, 05 and ¢, respectively, then B is determined similarly.
Thus we have the matrices

(3.10) M;; = L,Q(a+DHI—bL)— LRI (G, j=1,2, ..., 10).
Since
(8.11) My = (I.QR)(1,R((a+ I —bG) — LRQI)(T,QR) Y,

matrices M;; are of the form (3.5) except for the case j=6.
On the other hand, since

(3.12) My = (R,QD)(I,Q((a+ W) —bG))— G;QI)(R,Q1) 7,
matrices M;; are of the form (38.2). Moreover, it follows that
(3.13) Mij = (I,QR)(RQD AR, Q1) (I.QR) ™,

Aij = L,R((a+ HI—bG)—G;R1,

— diag (A(_ll\ A(_Z‘) ey A(177)>,

ij> iis
W 34 ) 3D )
Al = dlag()‘ijb 5%, s )‘ijn))

]-(ikj)l — (a+lh2)— blil —Hips
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where
G,‘ = diag(ln, liz, Tty lin):

Cj = diag(ﬂjh Hjzy <oy :a]'m)‘

In particular, we have

Ou 4si?f% G, j=1,2, .., 6).

8.14) 2, = 2h?+4bsin? 5 5

When M;; are non-singular, evidently their inverse matrices are given
by the formula

M;}=I,QR)(R,QDA; }(R,QI) (R, .
Since
M;,= Mil—(rUm+SU7{L)®I7 M;s= Mi4_(rUm+SU7£)®I3
M= Mn—TUm@L Mo = Mis—TUm®L

matrices M7}, M7}, M7} and M;], can also be obtained by Lemma 5. In ad-
dition, since

(3.15) M= L,((a+ W) —bL{p, ¢))— LI
=RD2R,RD  (i=1,8,9;j=1,4,5),
2i;= L,RQ((a+B)I—bL{p, ¢))— G,
= diag (25, 22, ..., 2,
2 = (a+h*— p;,)I—bL(p, q),

Q-1 are obtained by Lemma 3. Hence M;{, M;} and M;! can be obtained
without knowledge of the eigenvalues of L(p, ¢).
(IT) Case where Hermitian difference formula is used. Put

a1 =100+ %51112, a5 = 106—2— %lhz,
bi=10—2b— 2 Ah? by=1+b— L 2
R 12

A=a11—a2J, B:b1[+sz

Then we have the formula

'—‘bz —ay —bz

aad bl ai - bl Uijj— hz.gf,'j + O(he)

]
‘—‘bz ’ — a2 i —"bz
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The partial derivatives u, and u, are to be approximated by the central
difference. Then we have the following results:
1°. when u is given on the whole boundary,

My =I,4—L,QB.
2°.  when u is periodic in both directions,
My = I, (a1 I —azLe)— Ls@(b1 1+ b,oJ).
3°. when v is given on LH and UH and u is periodic in the x-direction,
M;=I1,QA4— L« B.
4°. when u is given on LH and UH and u, is given on LV and RV,
My =I,RA—LKQB.
5°. when u, is given on LH and UH and u, is given on RV and LV,
Ms = I,&(a I — a2 L) — La®(b1 T+ by Ly).

6°. when u is given on LH and UH, u,+0su is given on LV and u,+06,u
is given on LV,

Ms =1, A—Ls(p, )RB, p=2h0;5, q=2h0,.
7°. when u is given on LH, UH and RV and u,-+0u is given on LV,
M, =1,A4—Li(p)RB, p=2hos.
Since

I, A4—L,QB = (L, QR (1, (a1 — a:6)— L;Q(b, T+ b,6) (I, Ry) Y,
(i=1,3,4,6,7)

My = (Im®R6)(Im®<all_a206)— Z6®(bll+ bzGe‘))(Im@)Re)_l,
Ms = (1, QR) (I (a1 I — a;61)— Lo(bi I+ 5:6.)) (1, QR,) ™,

each block of M; can be diagonalized.

8.22 Example 2
We consider the equation
—Au+dus+euy+ gu=f(x, y.

(I) Case where five point formula is used.
We assume first that

d=d(x), e=const, g=g(x),
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The mesh-size 4 is to be chosen small so that

T:<1_%e>>0’ 762:<1—1—%e>>0 (6>0).

Then A, B; and C; become as follows:
f , ‘
— 2, n _ . .
Al—(a+h &1 T(1+ 2 d1>>1 M(P, q;a, 83 7 6)5
A;= (a+h2gt)I—M(Pa q; &, B, 7, 6) (l:2,3> Tt m_l),

Ay = <a+h2gm——s<1-— % d,,,))[-M(p, g, B: 7, O),

C1=<1‘]'21'— d1+w<1+£d1>>1,

2
C,~:<1—%d,~>l, Bi=<1+%di>1 (i=2,3, ..., m—1),
Bm:<1+—gd,,,+z<1——g~ ,,,))1

The values of p, ¢, « and /5 are determined according to the boundary condi-
tions as follows:

in the case (a), p=qg=a=p=0;

in the case (¢) (i), p=1, g=a=p=0;

in the case (¢) (ii), p=0, ¢=0, a=1, B=0;

in the case (d) (i), p=g¢=1, a=p=0;

in the case (d) (ii), p=¢=0, a=p=1;

in the case (e) (i), p=1+had, ¢=1+ho, a=F=0;

in the case (e) (ii), p=2h0;, ¢=2m0; a=p=1;
in the case (f) (i), p=14+Mmo, ¢=0, a=p=0;
in the case (f) (ii), p=2m0,, ¢=0, a=1, F=0.

If LH, UH, u,, p, q, &, B, 01, 02 and h, are replaced with LV, RV, u,, r, s, w,
z, 03, 04 and h respectively, then the values of 7, s, w, and z are determined
similarly.

In each case it is readily seen by Lemma 6 that 4; (i=1, 2, ..., m) can be
diagonalized by the same similarity transformation.

By interchanging the roles of x and y, the case where

d=const., e=e(y), g=g(y

can be treated analogously.
Next we are concerned with the case where d, e and g are constants.
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We choose k small so that

u=<1+ %d>>0, ﬂ02=<1—-}21d>>0 (0>0),

and put
F=diag(l, o, 0% -, 0" ).
Then it is valid that
M= 1,((a+W DI—Mp, q; a, B; 1, ) — M, s; w, 25 1, ORI
Since
M=(L,QE) (FRI) '2FRI)(I,QE),
2=1,(a+hgI—70L(pd1, g0; ad~?, pO%))—
—uoL(ro™", s0; wo™", 20",

M can be reduced to the form (8.5).
(II) Case where Hermitian difference formula is used.
We assume that

d:d(x)’ eZO, g:g(x)’

and put
a; = 10a—2h3,d, + 8h? g; + k0% g, + 2hidi— %iﬁd,@,,g,.,
b, = (B5—b)2+hd,)—hd,d,+ %6§di+h2(d%—gi)+
% % 5
5 0ngim o dildadi— o digi,
¢; = (5—b)(2—hd,)—hd,d;— %6%,- FRA(dE— g)—
B2 % B?
- gangi‘ ’4* diaxdi‘}' ? digi,
—10h Al Q. — L) _ _h4
a:=10b—hg;, 31_(1+b)<1+ 5 d) r,—(1+b)<1 5 d,),
where

Oufi;=Fivii—firis Oifi;=fiv;=2f i+ i-1p
Osfis=fiia=fis Ofi; = fiiea—=2 i, fijne
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Then we have the formula

—Bi | —ay | —7i u,‘jzh2<8fij+fij+l+fij—1+<1+-%d,')f,’_lj—F
—b; a; —C;
—Bi | —o —7i +<1— _g di>fi+lj>+0<h6)’

and the following results are obtained:
1°. when u is given on the whole bounary,
 Ai=al-a] (=12, .., m),
B;=b;1+6:] (i=2,3,...,m),
Ci=cI+r] (=12 ...,m—1).
2°. when u is given on LH and UH and u, is given on LV and RV,
Ai=all—aiJ GG=1,2, ..., m),
Cr= b1+ e )+ Br+1)J,
Ci=ciI+7:J, Bi=bI+BJ (i=2,8,...,m—1),
By = (bn+cn)I+But1m].
3°. when u, is given on LH and UH and u, is given on LV and RV,
Ai=al—a;Ly  (i=1,2, ...,m),
Cr= b1+ c)I+(Br+710)L4s
Ci=ci+riLs, Bi=bI+8Ls (i=2,3,...,m—1),
B,, = (bu+cn)I+(Bm=+7m)Ls.

In each case M can be reduced to the form (3.5).

8.2.3 Example 3

We consider the axially symmetric problem
1 ou , 0%u , 0%u
T or oz top/ne) (0<r<l0<E<d),
where u(r, 0) is given and u is regular at r=0. Let A=1/n be the mesh-size

in the r-direction and A, =5h/0 be the mesh-size in the z-direction. 'If we use
five point formula, then M becomes as follows:

M;; = I,Q4:— B;QbI,
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where A4; and B; are determined according to the boundary conditions in the
following manner:
(i)  when u(l, 2) is given,

Aﬁ:c+(—1+gﬁ%EQV%

(ii) when u,(1, z) is given,
Ay =C—-2V7.

(iii) when u,(1, 2)+0,u(d, z) is given,
As=C—2V742ho4( 1 v.
3 + 1< + 2 _1)>

1°.  when u(r,(m+1)h,) is given,

By=Jn.
2°. when u,(r, mh,) is given,

=T+ Vi
3°. when u.(r, mh))+0;u(r, mhy) is given,

B,=]J,+V,—2hs,U;,

where
2(2+ b)a ~43
1 _3 0
5 2(1+b)a )
C=
1oL eaan), 11
0 2(n—2)’ ’ 2(n—2)
! 0, 2(1+5)
Let
B =S A]S] 1, Aj - diag(ijla ij2> Ty '{Jm)
Then since

My; = (S;QD2:(S;,QI)7,
i = 1nQRQA;— A, Qb1

= diag (25, 27, -, 27),
Q8 = A, —bh;, 1,

matrices M;; are of the form (3.2).



44 Hisayoshi SHINTANI

3.2.4 Example 4

We consider Poisson’s equation in polar coordinates
0%u _
= 502 —f(r, ) 0<r<.

In the case where u(1, 6) is given, we have

Bi, <1+%>I

d m (el
<1—24(m1—~—1)>1’ B, <1+§(m1—_1)>1

(-3 .

where

_ 1 1
B,= 2<1+(p6‘0)2)l+ v

In the case where u,(1, 0) is given, we have

By, <1+%>I
o <1—%>I,. B, ‘<1+%>1.
(-gump)h B (Vo)
i 21, B, )

Since

B,=R(—2(1+ G%)—QH G;T)ZGQR;%

each block of M can be diagonalized.

4. Fourth order elliptic equations

The problem of solving approximately the fourth order elliptié equations
is often reduced to that of solving the system of equations of the following
form:
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A, —Cy, E 1 x \; ( f1
_B2> AZ) ‘Cza E, O X2 f2
D3, — B, As, — G, E; X3 fa
(4.1) Nx= : = =f.
Dm—2> ‘_Bm~2, Am»Z’ _Cm-23 E, s Xm—2 fm—Z
O Dm—la —Dm-1, Am~19 —Cpy Xm-1 | m—-1
L Dm7 —'Bma Am N Xm ; m

In the case where all the block principal minor matrices of N are non-
singular, NV can be decomposed into the form LU, where

1 1 P, —U, E
—Lz, 1 0 KR . . O
L= Mg, —L3, 1 5 U= Em-z s

.Pm»ly . - Umfl
0 P,

0 "M, oL 1 . )
M;=D,P;1,,
L;=(B,— MU, ,)P;\,
U;=C—~LE;_,, (=12 ..,m).
P,=4,—LU,_,—ME,_,

This method is easily applied when 4;, B;, C;, D; and E; can be diagonalized
by the same similarity transformation.

Example We consider the equation
Adu+2aAu+Bu = f(x, y),
where « and @ are constants and u is given on the entire boundary. Put
A = (a®+2b%+ 2+ 2ah’a+ SR — 2(a+ ah®)b J + b*(J* —21),
B=(a+ah)I—bJ.

We consider the following three cases:
(i) when u,, is given on LV and RV and u,, is given on LH and UH,

N =1,84-2],QB+{:—2[,)RI
Since
Ny = S(L, (24 (B— DY +((a+ah®)[—bG1)* )+
+ 1, R2((a+ ah®HI— G )+ (Ji—2L,)R1)S7,

each block of Ncan be diagonalized. In this case, moreover, it is valid that

N, = SPAP-57},
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A= LB~ MW T+ (1@ +ak’) [~ 661~ C: I )
=diag(4y, 4z, -, Ap),

Ay = (B—a®)h* + ((a +ah®)I—bG,—2cos hm I>2
m+1

= diag (Ap1, A2, -+ Aan)s

2
. :(3_a2>h4+<ah2+4b sin? +4sin —k—”—) .

LA 2
2(n+1) 2(m+1)
(ii) when u,, is given on LH and UH and u, is given on LV and RV,
N,= N +2(U,+ UK.
In this case each block of NV, can be diagonalized and since

N, = S(PAP~ ' +2(U,,+ UDRI)S™,

N3 can also be obtained by Lemma 5.
(iii) when u, is given on LH and UH and u, is given on LV and RV,

Ny = N,+2(U,+ U)X,
where
N, = I,R(A+26*(U+ U7))—2/,QB+(J2—2L,)YR1.
In this case it is valid that
Ny = PQP,
2= I,(4—2I+2b3(U+ U)—26,QB+G:RI
=diag (2., 2o, -, 2),

km

_ 2 s 2
!Jk—<<26+ah +sin’y s

V- bJ>2+ (B— I+ 20%(U+ U,

2,1 can be obtained either by Lemma 4 or by LU-decomposition, so that N;!
can be obtained easily and then N;! can be computed by Lemma 5. Lemma
10 and Lemma 11 can also be applied.

5. Parabolic equations

5.1 One-dimensional second order parabolic equation
Let us consider the equation

ou

2
a—tzg_x’; 0<x<1),



Direct Solution of Partial Difference Equations for a Rectangle 47

where u(x, 0) is given. Let 4 be the mesh-size in the x-direction and h; be
the mesh-size in the ¢-direction and put r=~h,/h%

In the case where u(0, t)=u(l, t)=0 (:>0), using Crank-Nicolson’s
formula, we have [41]

Blu1+1 :(4I~Bl)u1 (l:(), 1, ),
where
By=21—r].

In the case where the boundary conditions are given by
ou . ou N
(0, ) =k(u—wvy), =, )= —ko(u—0vz) (>0),
Ox 0x

with constants ki, ks, v; and v;, we have

Bou, 1 = (41— Byu,+f; (=0,1, ...),
where

By = 21+ ) —rL(—2hky,— 2hks; 1, 1),

Both cases can be treated easily.

5.2 Two-dimensional second order parabolic equation
We consider the equation

fu 0w , 9%u

’a?"a—x‘ﬁé?’ 0<x, ygl, 0<:<T)

with the initial conditions
ulz, 3, 0)= fl=, ),
and boundary conditions
w@, v, D=ul, v, )=0 (O<y<1,0=:<T7)

u(x, 0, )= u(x,1,)=0 O=+<1, 0T
Put
wijp = u(ih, jha, kD), o=~r/l, 1=0+a+8, 0<a, $1.

Using the formula [ 38]
1
Wijhel = EF((XU«HLJ',ILH+afui—1,j,k+1+18ui,j+1,k+1+

+Bu; 1, k1t @C— @iy + (2 —Bus jo1,0+
+@2—ui 1,5+ @C—Bui jo1,e—24—7Pui j 1),
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we have
Au’i?+1 = BuP (P':O; 13 )7

where
A= I@D—J@fzil, B=A+IQT+IRI,

D= TI—%J, T=—4I+].

A~'B is easily obtained.

5.3 Fourth order parabolic equation
Let us consider the equation

0%u |, 0'u

at2+ —0 (0§x§13t>0)3

oxt
with the initial conditions

u(z, 0)= gi(x), 04 (x, 0= alx)  (O=w=D,

and boundary conditions

w0, = f£ul®), u(l, )= fi®)
TLO,0=pl0, ThA 0 =p@)

Put

o=G ogh 9= =( D)

Then the given equation can be rewritten as follows [ 10]:
02 _ 0%°8
ot 0x%’
Let & be the mesh-size in the x-direction and %, be the mesh-size in the t-direc-

tion and put r=4h,/A%
When Crank-Nicolson method is used, we have

Agp+1 = Bagp+fp (P:O: 1: )’
where

A= 1,041+ JnQQA4s, B=1,8B1+Jx&QBy,
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141:]—2‘*‘7‘0, Azz - 2 C B1 IZ—rC B2— WAZ'

In this case it is valid that
4= (RQLDRRL)!, B=(RILIFRQD),
D= I,QA4,+ 6,4, = diag(Dy, Dy, ---, Dyy),
F=1,0B,+G&B;=diag(F,, Fs, ---, F,,),

D;= A+ 2¢co ;,j_,, 4, =1,+2 inz_J*
’ ! ¢ Sm+1 z 2 T8l 2(m—)—1)c’
;== 7];,, - — i 2___]v

F;= B;+2cos le I,—2rsin 5 1>C.

When Douglas’ high order correct method [ 8] is used, we have
A1:10]2+127‘C, AZZIZ—6TC,
B, =101,—12rC, B,=I1,+6rC.

In this case it is valid that

jm
<8+4cos >12+24rs1n Z(m—l-l)c’
jr
<8+4cos 1>>Iq 24rsin?® 2(”?1)(;
Since
(I4+06C)y = 1 (I,—06C)
1+0? ’

A7'B can be obtained easily.

5.4 Periodic parabolic problem
We consider the equation

%:g%; 0<x<1)
with the boundary condition [42]
u(0, )= ft), u(l, )= g), ulx,0)=ulx, T),
where

fG+T)Y=f), g+ T)=gt) (t=0).
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Put
l=T/m, h=1/(n+1), 6=1/h

and let Q,, be an m x m matrix defined by

0 1

1, 0

1
Qm - ’.'. %e
-'. 0

0 1, 0

0

Then, according as explicit formula or implicit formula is used, the problem
is reduced to the solution of the following systems of equations:

(5.1) (IR —QuQ@M)x = f
or
where

M=01-20)I+0c] (0<X1/2), N=QA+20)I—0].
Since
M= R,DR;', N=R,E 'R,

where

D=01-20)I+0¢G,, E'=1+20)I—0G,
we can write (5.1) and (5.2) as follows:
(5.3) SI,RI—0nQ@D)S 'x =,
(5.4) SUInRI—QuQEYI,RQE )S 'x =g.
Then, for (5.3), it is valid that

(1, QI +Q, QD+ +Qp ' QD" )S If =

=([,QI-QrQD™)S 'x = I,&Q(I—D™)S ',
because Q7=1,, and it follows that

x = S(L, U~ D" ) L,Q1+Q,QD+ - +Qp ' QD" H)S'f.

Similarly for (5.4) we have

x = SU,QE)(I,QU—E") )L, +Q,QE+ -+ Q5 ' QE" 1)S g.
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5.5 Three level difference scheme

Let us consider the equation

6 2
2o gceon

where boundary values are given. If Mitchell-Pearce nine point formula [24]
is used, we have

Aupy = Bup+Cup1+ forn k=1, 2, ..),
where
A=al+b]J, B=clI+d], C=el+f]
1 ., 28 313

@ =47 +5p°— 150"~ g4~ 12600°

b= 2+ 30 350" 0Pt gm0y

o= ~16p"4p — g

4= 85"~ 31"+ 13600’

o= —tptigpiy Ly By M3

S T

Matrices A, B, and C can easily be diagonalized.
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