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Abstract

We propose a deblurring algorithm that explicitly takes

into account the sparse characteristics of natural images

and does not entail solving a numerically ill-conditioned

backward-diffusion. The key observation is that the sparse

coefficients that encode a given image with respect to an

over-complete basis are the same that encode a blurred ver-

sion of the image with respect to a modified basis. Follow-

ing an “analysis-by-synthesis” approach, an explicit gen-

erative model is used to compute a sparse representation of

the blurred image, and the coefficients of which are used to

combine elements of the original basis to yield a restored

image. We compare our algorithm against the state of the

art in variational methods as well as wavelet-based algo-

rithms.

1. Introduction

Deblurring refers to the task of “undoing” the effects of

convolving1 the data with a known kernel. A common in-

stance occurs when an image is taken with a finite-aperture

system that is not well focused, so the measured image is

a blurred version of the “ideal image,” convolved with the

point-spread function of the lens. Ideally, one would like

to recover, or “restore,” the image as would be captured

by a well-focused lens. Unfortunately, deblurring is well-

known to be an ill-posed inverse problem, so small per-

turbations in the data (for instance noise in the measured

“blurred” image) lead to large errors in the reconstruction.

These artifacts are usually kept at bay by means of regu-

larization, following the classical work of Tikhonov [17].

Several choices of such generic regularizers have been pro-

posed, mostly made for mathematical convenience, some

based on empirical observations on the quality of the recon-

struction. Recently, the research has converged towards reg-

ularizers that enforce the statistics of natural images, which

are well-known to possess highly kurtotic behavior [10] due

to the presence of large homogeneous regions bounded by

sharp discontinuities at visibility boundaries such as occlu-

sions and cast shadows. Some classic regularizers, such

1Although usually deblurring refers to non-shift-invariant kernels, we

use deblurring and deconvolution interchangeably in this manuscript.

as the Total Variation, implicitly favor these kind of solu-

tions, and remain among the most competitive deblurring

algorithms to this day. Nevertheless, deblurring in this con-

text involves solving an inverse diffusion partial differential

equation (PDE). In [6], Favaro et al. have approached the

problem of deblurring using a “direct” method: Rather than

deconvolving the measured image and the noise that goes

with it, they convolve the “model image,” which is noise-

less by definition, with the known kernel. This yields a sim-

ple diffusion PDE whose (space-varying) stopping time en-

codes the value of the kernel. They do not, however, exploit

the statistics of natural images in their solution.

A related literature stream encodes the image as a dis-

crete array of positive numbers, approximated by linear

combinations of local overcomplete bases, where the natu-

ral statistics are captured by the fact that the vector of coeffi-

cients is sparse, so at any location only few bases contribute

to the approximation [11]. In this case, there is no need for

an explicit regularizer, due to the finite dimensionality of

the representation, but there is still a trade-off between fi-

delity of the approximation and complexity of the model.

While the measured image is undoubtedly a discrete ob-

ject, with quantization of both the domain and the range,

the object of inference, or the “ideal image,” is best rep-

resented in the continuum, with the final discretization left

only for the numerical implementation of the optimization

scheme. We therefore take the continuum approach, and

explicitly write cost functionals that have the ideal image as

an infinite-dimensional unknown.

In this manuscript, we devise a deblurring algorithm that

(a) explicitly takes into account the “sparse” natural statis-

tics of the image as a regularizer, and (b) does not suf-

fer from the numerical conditioning issues associated with

solving an inverse diffusion PDE.

1.1. The basic idea

The idea of direct sparse deblurring is simple and can be

illustrated in three steps.

First, let us pretend that the image is square-integrable

and sparse in some basis defined on the entire real plane.

This is a common assumption underlying most image com-

pression algorithms, in particular those based on over-

complete bases, or “dictionaries” {dk} ∈ L2(R2 → R)
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that can be used to approximate the original image f to

an arbitrary degree 2 by a sparse linear combination u
.
=

∑K

k=1 dkαk
.
= Dα where ‖α‖0 is small [5].

Now, convolving an image with a shift-invariant kernel h

yields a blurred image f = h ∗u = h ∗Dα; this shows that

the coefficients α that encode the sharp image u relative to

the basis {dk} are the same as the coefficients that encode

the blurred image f relative to the blurred basis {bk} .
=

{h ∗ dk}.

But while we do not have access to the sharp image u, we

do have access to the original basis elements {dk}. There-

fore, all we need to recover the encoding of the sharp image

are the coefficients of the encoding of the blurred image

relative to the blurred basis. The ensuing algorithm is as

follows:

1. Take a dictionary {dk}, either from a generic over-

complete basis or learned form the image using any

of a variety of sparse coding algorithms, for instance

[1]. Convolve the basis with the kernel h to obtain a

“blurred basis” {bk} .
= {h ∗ dk}.

2. Perform sparse coding of the blurred image f relative

to the blurred basis {bk} to obtain α̂ with ‖α̂‖0 small

such that ‖f − ∑K

k=1 bkα̂k‖ is also small.

3. Reconstruct the original (deblurred) image directly via

û =
∑K

k=1 dkα̂k.

Note that this algorithm performs deblurring without

solving a backward diffusion or other numerically ill-

conditioned problem. Instead, it solves the inverse problem

by “direct methods,” an approach sometimes referred to as

“analysis by synthesis” [9], whereby an explicit generative

model is used to match the statistics of the measured data,

and the model itself provides both the necessary regulariza-

tion and the solution to the desired inverse problem.

Now, of course the devil is in the details, as real images

are not defined on the entire real plane. If we wish to keep

the complexity of the coding step manageable we will have

to break down the image into patches, which raises the issue

of boundary effects and scale. We now derive the algorithm

for a partition of the image, explicitly taking these issues

into account.

1.2. State of the art

The concept of sparsity has recently re-gained popularity

in image processing and computer vision; similarly, there is

a sizeable literature on the problems of deblurring, decon-

volution and shape from defocus or motion blur. The two

streams, however, have never crossed, at least to the best of

our knowledge.

2∀ ǫ ∃ K = K(ǫ) such that if M > K, then ‖f −
∑

M

k=1
dkαk‖ < ǫ.

The literature on “exemplars” in computer vision, al-

though not explicitly about sparsity, goes in this direc-

tion, including the early work of non-local super-resolution

[8, 4, 15]. The idea of sparse representation of local patches

is widely used in the many applications of image process-

ing, such as denoising [5], color denoising and inpainting

[12] and super-resolution [18, 3]. Deconvolution, on the

other hand, is mainly solved by regularization. For exam-

ple, the Wiener filter [2] uses the H1 semi-norm of the solu-

tion, which favors smooth reconstructions. Total Variation

(TV) [16], as already mentioned, favors piece-wise constant

solutions, whereas wavelet-based deconvolution does not

explicitly enforce a regularizer, but exercises regularization

through complexity bounds [14, 7].

There is, however, relatively little work on the use of

sparse priors for deblurring, which is the goal in this paper.

Although super-resolution is a close relative to deblurring

(the point-spread function corresponds to block-averaging

of neighboring pixels), the latter has not been addressed di-

rectly in a sparse setting.

Since we use the K-SVD algorithm [5] as a building

block, we will briefly review it here to make the manuscript

self-contained. We will then extend it to the continuum and

apply it to deblurring in Sect. 2. More details on the imple-

mentation are presented in Sect. 2.1, and Sect. 3 contains

numerical experiments.

1.3. Sparse representations for denoising

If we consider discrete image patches, i.e. positive-

valued matrices of size
√

n × √
n pixels, ordered lexico-

graphically as column vectors x ∈ R
n, then the sparsity

assumption corresponds to assuming the existence of a ma-

trix D ∈ R
n×K , the “dictionary,” such that every image

patch x can be represented as a linear combination of its

columns with a vector of coefficients with small L0 norm.

If we measure y, a version of x corrupted by additive Gaus-

sian noise that is spatially white (independent and identi-

cally distributed) with standard deviation σ, then the maxi-

mum a-posteriori (MAP) estimator of the “denoised” patch

x is given by Dα̂, where

α̂ = arg min
α

||α||0 s.t. ||Dα − y||22 6 T , (1)

where T is dictated by σ. If one wishes to encode a larger

image X of size
√

N ×
√

N (N ≫ n), with a combination

of columns of the low-dimensional dictionary D, a natural

approach is to use a block-coordinator relaxation.

X̂ = arg min
X,αij ,D

||X − Y||22 + λ
∑

i,j

||αij ||0

+µ
∑

i,j

||Dαij − RijX||22 . (2)

The first term measures the fidelity between the measured

image Y and its denoised (and unknown) version X. The
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second term enforces sparsity of each patch; the n×N ma-

trix Rij extracts the (i, j)th block from the image. A simple

denoising algorithm based on sparse coding goes as follows,

1. Initialization: Set X = Y,D = an overcomplete dis-

crete cosine transform (DCT) dictionary.

2. Repeat until it converges:

• Sparse Coding: fix X and D, compute the repre-

sentation vectors αij for each patch RijX

α̂ij = arg min
α

||α||0 (3)

s.t. ||Dα − RijX||22 6 T .

• Dictionary Update: fix X and {αij}, compute D

via K-SVD [1] one column at a time.

3. Set:

X =
Y + µ

∑

ij RT
ijDαij

Id + µ
∑

ij RT
ijRij

, (4)

which is a simple averaging of shifted patches.

One could also fix the dictionary and only perform sparse

coding in the iteration. Alternatively, the dictionary can be

learned from a large number of patches in natural images

via K-SVD [1] so that it is tailored to the data.

2. Direct Sparse Deblurring

In this section we formalize the problem of direct sparse

deblurring. We find the formalization to be clearer when

written in the continuum, so one knows on what domain

each function is calculated. The previous claim, that the

blurred image can be sparsely represented in the blurred ba-

sis by the same coefficients that the “ideal” image would

have on the original basis, will become clear.

Let u : Ω ⊂ R
2 → R

+;x 7→ u(x) be the “ideal image”,

corresponding to X in the discrete model. The procedure of

extracting a small patch from an epsilon ball centered at x,

{u(y) : y ∈ Bǫ(x)} = {u(x + y) : y ∈ Bǫ(0)} (5)

can be expressed by an indicator function χǫ acting on the

image u.

Let dk : Bǫ(0) ⊂ R
2 → R, k = 1, . . . ,K be a given

overcomplete basis of Lloc(Bǫ(0) → R), and αk(x) ∈ R
K

be the kth sparse coefficient of the patch centered at x. Then

the sparse representation of one image patch is given by

ux(y) = χǫ(y)u(x + y) (6)

=
K

∑

k=1

dk(y)αk(y)
.
= d(y)α(x) ,

Figure 1. Diagram of the continuum formulation.

where d(y) = [d1, d2, · · · , dK ](y), y ∈ Bǫ(0) and α(x) =
[α1, α2, · · · , αK ](x), x ∈ Ω. Fig. 1 illustrates the dictio-

nary elements and how they match to local patches.

We want to use this local sparsity to enforce a global

reconstruction prior in the sense that u(x) is the minimizer

of the sparse representation error for all the local patches.

û(x) = minJ(u) , (7)

where J(u) is defined to be

∫

x∈Ω

∫

y∈Bǫ(0)

‖χǫ(y)u(x + y) − d(y)α(x)‖2dydx

=

∫∫

Ω×Ω

χǫ(y)‖u(x + y) − d(y)α(x)‖2dydx (8)

=

∫∫

Ω×Ω

χǫ(z − x)‖u(z) − d(z − x)α(x)‖2dzdx .

To solve for u(x), we compute its Euler-Lagrange equa-

tion

∂uJ(u)(z) (9)

=

∫

χ2
ǫ(z − x)

(

χǫ(z − x)u(z) − d(z − y)α(x)
)

dy

=
[

∫

χǫ(z − x)dx
]

u(z) −
∫

χǫ(z − x)d(z − x)α(x)dx .

There is a closed-form solution for u(x) w.r.t α(x) that

minimizes the objective function J(u). It is obtained by

setting the Euler-Lagrange equation to zero:

û(x) =
1

ω

∫

χǫ(x − y)d(x − y)α(y)dy , (10)

where ω =
∫

χǫ(x − y)dy is the area of the ǫ−ball. Now,

the measured image is, by assumption

f(x)
.
=

∫

h(x − x̄)u(x̄)dx̄ + n(x) (11)

=
1

ω

∫

h(x − x̄)

∫

χǫ(x̄ − y)d(x̄ − y)α(y)dx̄dy + n(x)

=
1

ω

∫∫

[

h(x − x̄)χǫ(x̄ − y)d(x̄ − y)dx̄
]

α(y)dy + n(x) ,

3



where h is a space-invariant blurring kernel and n(x) is the

additive noise, whose variance is σ2. The blurred basis is

easily defined as

bk(z)
.
=

∫

h(z − x̄)χǫ(x̄)dk(x̄)dx̄ . (12)

The characteristic function χǫ implies that the boundary

condition for the convolution is zero-padding. Denote with

r the support of the blurred basis, in particular r = ǫ +
supp(h). Therefore the measured image is a sparse repre-

sentation under this blurred basis:

f(x) =
1

ω

∫

χr(x − y)b(x − y)α(y)dy + n(x) . (13)

We solve for the sparse coefficients in the following,

α̂(x) = arg min

∫

‖α(x)‖0dx , (14)

s.t.

∫

‖f(x) − ω−1

∫

χr(x − y)b(x − y)αdy‖2dx 6 T .

This optimization problem (a) is finite-dimensional (the

only unknown is α) and (b) does not involve de-blurring.

All that is required is to find the finite-dimensional sparse

set of coefficient that best approximates the given image.

Note that this is accomplished by blurring the base. In

other words, one is only required to solve a direct problem,

rather than the inverse problem of deblurring. Once the co-

efficients α̂ are obtained, we can compute the “deblurred”

image û via eq. (10). Note that the deblurred image is a

sparse combination of the (original, non-blurred) basis, and

therefore – by construction – one should expect the recon-

struction to exhibit the same spatial frequencies of the origi-

nal (unblurred) data from which the overcomplete basis has

been learned.

2.1. Boundary issues

In practice, solving for α from (14) is not an easy task,

since α at different y contribute to one value. Instead we

minimize an upper bound.

∫

‖
∫

χǫ(x − y)f(x)dy −
∫

χr(x − y)b(x − y)α(y)dy‖2dx

6

∫∫

χǫ(x − y)‖f(x) − b(x − y)α(y)‖2dxdy . (15)

The above equation suggests coding the blurry patch cen-

tered at y in terms of the blurred basis {bi}. Furthermore,

the characteristic function indicates that the blurry patch has

to be zero-padded in order to be consistent with the dimen-

sion of the blurred basis. However, these two terms can not

match due to the boundary issue of convolution, as shown

in Fig. 2. Instead we match them in the region where the

Figure 2. Left: the blurry patch with zero-padding. Right: the blur

basis. The red square indicates the region for our refined dictio-

nary.

convolution is computed without the zero-padded edges. In

particular, we refine our blurred basis to be

b̃i(z) =

{

bi(z) |z| < ǫ − supp(h)
.
= ǫ0 .

0 otherwise.
(16)

Experimentally we find that it is better to tailor the clear

basis to have the same domain size as the blurred one.

Therefore we have a two step algorithm for sparse deblur-

ring

1. Solve the coefficients from the measured image

α̂(x) = arg min ‖α‖0 , (17)

s.t.

∫∫

χǫ0(x − y)‖f(x) − b(x − y)α(y)‖2dxdy 6 T .

2. Stitch all the patches by averaging

û(x) =

∫

χǫ0(x − y)d(x − y)α̂dy
∫

χǫ0(x − y)dy
. (18)

2.2. Weighted Averaging

In the case where an image patch corresponds to a single

entry in the dictionary, we could use weighted averaging to

reduce the sparse coding artifacts. Consider, for example,

the problem of deblurring text: We apply the same sparse

coding step to get the coefficients α(y), then use weighted

averaging to combine the result

û(x) =

∫

y∈Bǫ(x)
d(x − y)α(y)w(y)dy

∫

y∈Bǫ(x)
w(y)dy

. (19)

The weight is chosen to penalize the large L0 norm of the

coefficients, for example,

w(y) = exp

{

1 − |α(y)|0
s

}

, (20)

where s is a control parameter.
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3. Experiments

In this section we compare our algorithm to more tra-

ditional methods, such as ROF [16] and the wavelet-based

approach called ForWaRD [14]. The optimal method pa-

rameters for both ROF and ForWaRD are chosen from a

series of values with wide range. The parameters in our

algorithm are determined by the data: the size of the dictio-

nary is proportional to the width of the blurring kernel and

the stopping criterion for the sparse coding stage is when

the residual is below the variance of the noise.

We use root-mean-square (RMS) as a means of judging

performance, RMS(u, I) =
√

∫

x∈Ω
(u(x) − I(x))

2
dx ,

where I(x) is the original image and u(x) is the recovery.

3.1. Binary Text images

We synthesize a template with all the alphanumeric char-

acters and common punctuation as well as 5 text images

from different categories of CNN news. The dictionary is

comprised of image patches randomly sampled from the

three images and the template, all shown in Fig. 3. The

template contains all individual characters, while the train-

ing images serve to represent meaningful pairs. We test the

deblurring on the other two text images. The data are cor-

rupted by 5 × 5 Gaussian kernel with σ = 1 and additive

noise whose standard deviation is 5. For direct sparse de-

blurring, the visual quality is for the most part satisfactory

except for the smoothing effects around some letters. This

is mostly attributed to the limitations of the dictionary.

We also measure the effect of the number of the elements

in the dictionary on the deblurring performance. Fig. 5

shows the results averaged from ten different experiments

of randomly sampled elements in the dictionary. In gen-

eral, increasing the number of elements in the dictionary

improves the results, but with a diminishing return.

3.2. General case

As in the case of super-resolution [18], the dictionary

consists of random samples from the training images, which

have statistics similar to the test one. Here we consider three

images: ”Rose,” ”Koala,” and ”Castle.” The training images

are taken from the image datasets of flowers, animals and

architecture respectively. Fig. 6 shows several examples

in each training set. Flower images are from the Internet,

while the other images are from the Berkeley Segmenta-

tion Dataset [13]. For each category we randomly sample

20,000 patches of size 16 × 16 to form each dictionary.

The input data are corrupted by convolving with a 9 × 9
Gaussian kernel of σ = 1 with additive noise whose stan-

dard deviation is 5. As shown in Fig. 7, ROF returns piece-

wise constant images, while ForWaRD produces noticeable

artifacts in the reconstruction.

Figure 3. The training data. The dictionary is obtained by ran-

domly sampling raw 10× 10 patches from the text images as well

as the template shown on the top left. All the text images are from

different categories of CNN news.

We also conduct an experiment of texture deblurring, in

which both training and test images have the same structure.

We cut a texture image into half, one as training and the

other as testing. We construct the dictionary to be 20,000

random samples from the training image. We blur the test

image with Gaussian kernel of σ = 2 plus additive noise.

Fig. 8 shows that our method is a significant improvement

over the traditional ones.

Finally, the quantitative measurement, RMS, of each

method for all the experiments is listed in Table. 1.

Image ROF ForWaRD Our method

Text 1 65.55 63.15 15.13

Text 2 64.03 62.72 14.94

Rose 5.47 4.95 4.74

Koala 9.80 9.05 8.69

Castle 14.41 12.93 11.99

Texture 14.52 14.44 8.84
Table 1. RMS errors for different methods.

4. Discussion

We have presented a simple deblurring/deconvolution al-

gorithm that exploits the assumption of sparse representa-

tion for natural image statistics. It is a “direct” algorithm, in

the sense that it performs inference by synthesis relative to

an explicit generative model (which acts as a regularizer),

without the need to solve an ill-conditioned inverse prob-
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Original Images

Blurry noisy input

ROF model

ForWaRD

Our method

Figure 7. Grayscale image deblurring with 20,000 dictionary elements.
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Training blurry input ROF

Testing ForWaRD Our method

Figure 8. The dictionary is comprised of random samples from the training image, which has the same structure as the testing one.

lem. The algorithm is competitive with the state of the art.
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