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ABSTRACT 
 

Current design of cold-formed steel members is unduly complicated. Part of this 
complication arises from the need to perform elastic buckling calculations by hand. Also, 
complications occur in determining the effective width and resulting effective properties 
of members. Further, as cross-sections become more optimized (e.g., through the 
introduction of longitudinal stiffeners) both the elastic buckling and effective width 
calculations become markedly more complex. In order to investigate alternatives to 
current design a large amount of experimental data on flexural members of varying 
geometry is collected. The use of numerical elastic buckling solutions for the entire 
member, is investigated as an alternative to current practice. Employing strength curves 
on the entire member, similar to the effective width strength curves for an element, it is 
found that a “direct strength” approach is a reliable alternative to current design. Such an 
approach leads to complete flexibility in cross-section geometry, thus greatly increasing 
the ability to optimize cold-formed steel members. Conservative limitations of the direct 
strength approach are also addressed. 
 
INTRODUCTION 
 

The thin-walled nature of typical cold-formed steel members makes stability a primary 
concern. Most modern design specifications (e.g., AISI (1996)) account for stability 
issues by using an effective width approach. The expression for empirical determination 
of the effective width includes the elastic buckling stress of an element and the applied 
compressive stress on the element. For simple cross-sections (e.g., a hat with no 
intermediate stiffeners) this approach is relatively straightforward. However, for more 
modern, optimized, cross-sections the calculation of the elastic buckling stress and the 
calculation of the effective properties can become complicated. A simple design method 
that avoids the complexity of current methods, yet is general enough to be applicable to 
modern optimized cross-sections is needed. 
 
 



 

 

ELASTIC BUCKLING SOLUTIONS 
 

A necessary first step in cold-formed steel member design is calculation of the elastic 
buckling solution. Design specifications typically use idealized plate buckling solutions. 
For example, the k = 4 solution for a simply supported plate in pure compression, is 
employed for local buckling of the compression flange. These simple solutions ignore 
interaction amongst elements, also unusual member geometry, such as the addition of 
longitudinal stiffeners, is difficult to incorporate. Further, new buckling modes that arise 
with more complex member geometry (e.g., distortional buckling) are difficult to predict 
using these simple, classical methods. 
 

The result of these complications is that existing design specifications actively hamper 
the development of more optimized member geometry. Reliance on hand methods insures 
that in the few cases in which design rules are developed for more optimized cross-
sections, the resulting guidelines are even more complicated. The hand calculation of 
elastic buckling requires a great deal of effort and complication, even though reliable 
computational methods now exist. Modern computational methods: finite element 
(example programs: ABAQUS, ANSYS, STAGS), finite strip (example programs THIN-
WALL, CUFSM) may all be used to determine the elastic buckling solution. In this work, 
the “semi-analytical” finite strip method, as implemented in CUFSM, is employed. 
 
COLLECTED EXPERIMENTAL DATA 
 

Experimental data is collected from 17 researchers for a total of 574 flexural members. 
The member types investigated include laterally braced channels and zees, as well as hats 
and trapezoidal decks. The members include different types, locations, and numbers of 
longitudinal stiffeners. The geometry of the collected members is summarized in Table 1. 
Finite strip analysis is completed on every member to determine the elastic buckling 
solution. The slenderness of each member is determined from the minimum critical 
buckling moment (Mcr) and the yield moment (My). In Figure 1, the slenderness is plotted 
versus the experimental bending strength (Mtest) normalized by My. Despite the vastly 
differing member geometry clear trends exist. 
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Figure 1: Slenderness vs. strength for the experimental data 



 

 

TABLE 1 
DESCRIPTION OF THE EXPERIMENTAL DATABASE FOR FLEXURAL MEMBERS 
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Acharya (1997) 30 32 32 94
Bernard (1993) 6 12 18
Cohen (1987) 14 22 36
Desmond (1977) 22 22
Ellifritt et. al. (1997) 5 5 10
Hoglund (1980) 6 53 16 4 19 98
Konig (1978) 4 15 13 32
LaBoube and Yu (1978) 32 32
Moreyra (1993) 9 9
Papazian (1994) 2 6 6 6 20
Phung and Yu (1978) 6 42 48
Rogers (1995) 50 9 59
Schardt and Schrade (1982) 8 29 37
Schuster (1992) 5 5
Shan (1994) 29 29
Willis and Wallace (1990) 4 6 10
Winter (1946) 15 15
Grand Total 154 9 22 42 19 39 49 38 38 12 65 16 4 19 19 29 574  
 
PREDICTION METHODS 
 

Based on the trend shown in Figure 1, three new prediction methods are introduced. The 
methods are also compared to the current AISI Specification (1996) approach. The AISI 
Specification for a cold-formed steel flexural member is based on the unified effective 
width approach of Peköz (1987). For members that do not undergo lateral-torsional 
buckling the nominal bending strength (Mn) is calculated as:  
 

 ( )M S fn AISI eff y=  (1) 
 

The effective section modulus (Seff) is determined by finding the effective moment of 
inertia and effective neutral axis location. These are determined once the effective width 
(be) of the component elements is calculated, via: 
 

 b be = ρ , ( )ρ λ λ= −1 0 22. , λ = f fy cr  and λ > 0.673 or ρ = 1 (2) 
 

Three “direct strength” methods are investigated as alternatives to the “effective width” 
approach. The first alternative method employs the same reduction factor, ρ, as in Eqn. 2, 
but applies ρ to the entire section, such that: 
 

 ( ) ( ) ( )M M S f S fn y g y g y1
= = =ρ ρ ρ  (3) 

 



 

 

Though ρ in Eqn. 3 is applied directly to My, in some cases it may be simpler to think of ρ 
as providing a reduced section modulus, or a reduced stress. To determine ρ in Eqn. 3, λ, 
(see Eqn. 2) applies to the entire cross-section. If λ < 0.673 then Mn = My. For cases in 
which λ > 0.673, Eqn. 3 may be rewritten to give the direct strength prediction: 
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The second prediction method provides an additional reduction for failures in the 
distortional mode. Hancock (1995) and Schafer (1997) observed decreased post-buckling 
capacity in distortional failures. Further, the distortional mode may control failure even 
when elastic buckling predicts otherwise. Therefore, a correction can be made in 
determining Mcr. The selected approach based on Schafer (1997) is: 
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The third, and final, direct strength prediction method is based on the form of Eqn. 4, 
modified to better agree with the available experimental data. If λ < 0.776 then Mn = My. 
For cases in which λ > 0.776 then: 
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PERFORMANCE OF PREDICTION METHODS 
 

The strength curves for the direct strength method: M1 (Eqn. 4), M2 (Eqn. 5), and M3 
(Eqn. 8) are shown in Figure 2. M2 only differs from M1 in cases where distortional 
buckling controls. For these cases the reduced strength curve for M2 is plotted in Figure 2. 
Direct comparison of the adequacy of the proposed approaches as well as the existing 
AISI Specification is provided in Figure 3 and Table 2. 
 

On average the AISI Specification performance is reasonable. However, the variation is 
high (i.e., wide scatter in the test to predicted ratio plot of Figure 3). The results by 
researcher indicate consistently unconservative strength predictions for certain classes of 
channels and zees. Also, the prediction of members with multiple intermediate stiffeners 
in the compression flange is quite poor. The AISI Specification has no design rules for 
members with web stiffeners. Therefore, no AISI data is reported for the work of 
Hoglund, or Phung and Yu. 
 



 

 

The first direct strength approach, M1, appears relatively conservative for all the members 
tested. The variation in the predictions is lower than the AISI Specification. Figure 3 
shows that the prediction becomes progressively more conservative as slenderness 
increases. Use of the standard reduction factor (ρ) on the whole member works 
reasonably well on a wide class of members. The M2 approach is poorer than the M1 
approach. The method is based on the observation that distortional buckling has a lower 
post-buckling capacity than local buckling. This conclusion is not borne out by this 
experimental data. The M3 approach performs well, excepting the conservative 
predictions for the Winter (1946) data. The method is markedly more accurate and 
reliable than the other direct strength approaches and even better than the AISI 
Specification. A simple direct strength approach is viable for this class of cold-formed 
steel flexural members. 
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Figure 2: Strength curves and experimental data 

 

TABLE 2 
TEST TO PREDICTED RATIOS OF DIFFERENT PREDICTION METHODS 

 
average of test to predicted ratio standard dev. of test to predicted ratio

count
Acharya (1997) 1.03 1.15 1.24 1.04 0.32 0.16 0.22 0.13 94
Bernard (1993) 1.04 1.22 1.33 1.01 0.12 0.19 0.26 0.11 18
Cohen (1987) 1.14 1.12 1.15 1.02 0.09 0.12 0.13 0.10 36
Desmond (1977) 1.07 1.06 1.11 0.94 0.07 0.07 0.08 0.07 22
Ellifritt et. al. (1997) 0.78 0.89 0.97 0.81 0.10 0.11 0.13 0.10 10
Hoglund (1980) #DIV/0! 1.06 1.06 0.99 #DIV/0! 0.13 0.12 0.09 98
Konig (1978) 1.01 1.18 1.26 0.96 0.23 0.33 0.35 0.18 32
LaBoube and Yu (1978) 1.02 1.14 1.14 1.04 0.08 0.12 0.13 0.10 32
Moreyra (1993) 0.82 0.96 0.96 0.88 0.09 0.10 0.10 0.09 9
Papazian (1994) 0.90 1.11 1.15 1.03 0.17 0.12 0.13 0.11 20
Phung and Yu (1978) #DIV/0! 1.15 1.21 1.03 #DIV/0! 0.10 0.12 0.07 48
Rogers (1995) 1.01 1.15 1.22 1.05 0.12 0.11 0.17 0.08 59
Schardt and Schrade (1982) 1.05 1.15 1.17 1.03 0.10 0.07 0.09 0.07 37
Schuster (1992) 0.82 1.03 1.03 0.94 0.04 0.04 0.04 0.04 5
Shan (1994) 0.97 1.08 1.12 0.99 0.13 0.12 0.16 0.10 29
Willis and Wallace (1990) 1.00 1.07 1.08 0.98 0.07 0.07 0.07 0.07 10
Winter (1946) 1.10 1.84 1.84 1.54 0.08 0.32 0.32 0.21 15
Grand Total 1.02 1.14 1.18 1.02 0.16 0.14 0.16 0.10 574
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Figure 3: Test to predicted ratios for AISI and direct strength methods 



 

 

LIMITATIONS OF DIRECT STRENGTH METHODS 
 

Multiple Minima in the Elastic Buckling Solution 
When determining the elastic buckling solution numerically many different modes will 
exist. One philosophy is to simply take the minimum buckling moment (stress) and use 
that to determine the slenderness of the member. This seemingly rational decision has 
some rather serious ramifications. First, it assumes that the strength and failure mode are 
governed by the mode of behavior consistent with the minimum elastic buckling moment 
(stress). Experimental data shows that when two buckling modes compete the final failure 
mode may not be consistent with the elastic minimum. Second, this encourages an 
optimum design in which several different modes occur at the same elastic buckling 
moment (stress). Experimental evidence shows this is a poor optimum, due to strength 
considerations and that it invites problems with coupled instabilities. The M2 method is 
an attempt to alleviate these concerns. However, the approximations made for this 
approach appear to be excessively conservative. 
 

Effective Width vs. Direct Strength 
One obvious limitation to the direct strength method is the conservative predictions for 
the Winter test specimens. The basic geometry of these specimens is shown in Figure 4. 
These hat sections illustrate an important conceptual difference between the direct 
strength approach and the effective width approach. Consider that as the flange becomes 
more slender the results for the two methods approach Figures 4b and 4c. For the 
effective width approach the elimination of the compression flange as ρ goes to zero 
causes a large neutral axis shift and the resulting section is left to carry the load. For the 
direct strength appraoch as ρ goes to zero so goes the entire strength. A parametric study 
of hats similar to those of Figure 4 shows that the difference between these two methods 
is particularly pronounced in specimens similar to those Winter tested. Specimens with 
low height to flange width (h/b) ratios, and low tension flange width to compression 
flange width (c/b) ratios, and low reduction factors (ρ) are predicted quite conservatively 
using a direct strength approach. However, as h/b, or c/b or ρ increase the two prediction 
methods become similar again. For more typical sections the adequacy of the direct 
strength approach is evidenced by the fine correlation with existing data. 
 
CONCLUSIONS 
 

Current design methods for cold-formed steel members are unduly complicated and as a 
result hamper innovation in cross-section design. A significant amount of this 
complication is due to the need to calculate elastic buckling solutions by hand. Today, 
these solutions may be completed numerically with great reliability and ease. Further, 
using numerical methods for the elastic buckling solution the whole member may be 
treated consistently, rather than just the component elements. A secondary complication 
of current design methods is the determination of the effective section. Comparison to a 
large experimental database of flexural members of varying geometry shows that accurate 
knowledge of the member buckling solution (member slenderness) provides a direct way 
to get at the member capacity. The current AISI Specification and three alternative direct 
strength approaches are compared with the large experimental database. It is shown that a 
direct strength method can provide the same overall average predictive capabilities and 



 

 

lower variation than the existing AISI Specification. The direct strength approach is not 
however without its limitations, for some specific cross-sections (low h/b, and c/b and ρ) 
it may become too conservative. 
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Figure 4: Difference in effective width vs. direct strength methods (a) gross section (b) 

effective section as ρ approaches 0 (c) direct strength approach as ρ approaches 0. 
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