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DIRECT SUM DECOMPOSITIONS
OF INFINITELY GENERATED MODULES

D. J. BENSON AND WAYNE W. WHEELER

Abstract. Almost all of the basic theorems in the representation theory of
finite groups have proofs that depend upon the Krull–Schmidt Theorem. Be-
cause this theorem holds only for finite-dimensional modules, however, the
recent interest in infinitely generated modules raises the question of which re-
sults may hold more generally. In this paper we present an example showing
that Green’s Indecomposability Theorem fails for infinitely generated modules.
By developing and applying some general properties of idempotent modules,
we are also able to construct explicit examples of modules for which the can-
cellation property fails.

1. Introduction

The representation theory of finite groups has traditionally concentrated on
finitely generated modules over the group algebra. Recent work [1, 3, 4, 5] has
made it clear, however, that infinitely generated modules play an important role
even if one’s real goal is a better understanding of finitely generated modules. For
this reason it should be useful to try to extend known results in representation the-
ory by omitting the finiteness conditions on the modules. One of the main objectives
of this paper is to study the analogue of Green’s Indecomposability Theorem in this
greater generality.

Suppose that G is a finite group and k is a field of characteristic p > 0. Green’s
Indecomposability Theorem [10] states that if H is a normal subgroup of index p in
G and M is a finitely generated absolutely indecomposable kH-module, then the
induced module M↑G is also absolutely indecomposable. The usual proof of this
result depends upon the Krull–Schmidt Theorem. Work of Brenner and Ringel [7]
shows, however, that for infinitely generated modules the Krull–Schmidt Theorem
fails spectacularly whenever G has noncyclic Sylow p-subgroups. In Section 2 we
present a counterexample showing that Green’s result also fails without the as-
sumption that M is finitely generated.

Sections 3 and 4 are devoted to studying the failure of the Krull–Schmidt prop-
erty in somewhat more detail. This work begins by considering endomorphism
rings of certain types of infinitely generated modules. The arguments of Section 4
then show, in effect, that every complete intersection is isomorphic to EndkG(M)/I
for some elementary abelian p-group G, some countably generated module M , and
some nilpotent ideal I of EndkG(M). If n ≥ 5 and G is elementary abelian of rank
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2n+ 1, then Raynaud’s examples of modules that are stably free but not free [12]
allow us to exhibit modules M and N such that M is indecomposable and

Mn ∼= M ⊕N

but Mn−1 6∼= N . Such examples also exist for certain smaller values of n. If kG
has infinite representation type, then the work of Brenner and Ringel proves the
existence of modules for which the cancellation property fails in this way. Their
methods leave it far from obvious what such modules might look like, however, and
we believe that it is a valuable exercise to construct explicit examples as we have
done.

2. Green’s Indecomposability Theorem

The goal of this section is to produce an example showing that the statement
of Green’s Indecomposability Theorem fails for infinitely generated modules. The
example is based upon Rickard’s construction of idempotent modules in [13]. We
begin with a brief discussion of the necessary definitions and preliminary results.

Let G be a finite group, and let k be an algebraically closed field of characteristic
p > 0. Recall that the objects of the stable category kG-Mod consist of all left kG-
modules, and the morphisms are equivalence classes of kG-homomorphisms; two
homomorphisms f : M → N and g : M → N are equivalent if f − g factors
through a projective module. The collection of morphisms from M to N in kG-
Mod is denoted by HomkG(M,N). Because kG is a self-injective algebra, kG-Mod
is a triangulated category (Theorem I.2.6 of [11]), and the translation functor is
given by Ω−1. The full subcategory of kG-Mod consisting of all finitely generated
kG-modules is denoted by kG-mod.

A triangulated subcategory C of kG-mod is thick if it is closed under taking direct
summands of objects. If C is a thick subcategory of kG-mod such that M⊗N is in C
whenever M is in C and N is in kG-mod, then we say that C is an ideal subcategory
of kG-mod. Let C⊕ denote the smallest full triangulated subcategory of kG-Mod
that contains C and is closed under arbitrary direct sums, and write C⊥ for the
subcategory of kG-Mod consisting of all modules M such that HomkG(C,M) = 0
for all C ∈ C. The objects of C⊥ are said to be C-local. With this notation and
terminology we can now state the following result of Rickard [13].

Proposition 2.1. Let C be an ideal subcategory of kG-mod. For any object M in
kG-Mod there is a triangle

EC(M) →M → FC(M) → Ω−1(EC(M))

such that EC(M) is in C⊕ and FC(M) is in C⊥, and such a triangle is unique
up to isomorphism. The morphism EC(M) → M is the universal map in kG-
Mod from an object of C⊕ to M , and M → FC(M) is the universal map from M
to an object of C⊥. The modules EC(k) and FC(k) are idempotent in the sense
that EC(k) ⊗ EC(k) ∼= EC(k) and FC(k) ⊗ FC(k) ∼= FC(k) in kG-Mod. Moreover,
M ⊗ EC(k) ∼= EC(M) and M ⊗ FC(k) ∼= FC(M) in kG-Mod for any module M .

For the remainder of this section k denotes an algebraically closed field of char-
acteristic two. Let H be an elementary abelian group of order four generated
by commuting involutions h1 and h2, and let G be the group generated by H
and an involution g satisfying gh1 = h1h2g and gh2 = h2g. Then H is a nor-
mal subgroup of G of index two, and G is isomorphic to the dihedral group D8.
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Set Xi = hi − 1 ∈ kH for i = 1, 2. If we identify H1(H, k) with the vec-
tor space Hom(H, k) of group homomorphisms into k, then there are elements
ζ1, ζ2 ∈ H1(H, k) satisfying ζ1(h1) = ζ2(h2) = 1 and ζ1(h2) = ζ2(h1) = 0, and
H∗(H, k) is the polynomial ring generated by ζ1 and ζ2. Let C be the subcate-
gory of kH-mod consisting of all finitely generated kH-modules N whose variety
VH(N) is contained in VH(ζ2), and let M = FC(k) be the corresponding idempotent
kH-module. More explicitly, M can be described as the module with generators
x0, x1, x2, . . . and relations

X1xi +X2xi+1 = 0 for all i ≥ 0.(2.1)

This module has a unique kH-endomorphism α satisfying α(xi) = xi+1. The
relations (2.1) can be rewritten in terms of the endomorphism α as

(X1 +X2α)m = 0 for all m ∈M.(2.2)

Using Proposition 7.3 of [9] and the techniques of [8], one can show that EndkH(M)
= k[α]. This fact is also easy to prove directly.

If the commutative ring kH [α] is regarded as a free left kH-module, then there
is a kH-homomorphism onto M sending αi to xi for i ≥ 0. Thus by (2.2) there is
an isomorphism of kH-modules

M ∼= kH [α]/(X1 +X2α).(2.3)

The conjugation action of g on kH extends to an action on the ring kH [α] satisfying
g−1αg = α + 1, and it is easy to check that g induces an action on the quotient
in (2.3). Under the kH-isomorphism (2.3) this action of g determines a k-linear
map φ : M →M satisfying

φ(xm) = (g−1xg)φ(m)

for all x ∈ kH and all m ∈M . The map φ is given on the generators of M by

φ(xi) = φ(αi(x0)) = (α+ 1)i(x0) =
i∑

j=0

(
i

j

)
xj .

Now consider the induced module M↑G = M⊕(g⊗M). The map m 7→ g⊗φ(m)
is a kH-isomorphism from M to g ⊗M ; its inverse is given by g ⊗ m 7→ φ(m),
because g is an involution so that φ2 = 1M . Corresponding to this isomorphism is
a kG-endomorphism ψ : M↑G →M↑G given by

ψ(m1, g ⊗m2) = (φ(m2), g ⊗ φ(m1)).

In addition, there is an endomorphism a of M↑G given by

a(m1, g ⊗m2) = (α(m1), g ⊗ α(m2));

this is the map induced from the kH-endomorphism α of M . If the isomor-
phism m 7→ g ⊗ φ(m) is used to identify the kH-modules M and g ⊗ M , then
EndkH (M↑G↓H) is isomorphic to Mat2(EndkH (M)). It is helpful to think of the
endomorphisms a and ψ as matrices:

a =
(
α 0
0 α+ 1

)
, ψ =

(
0 1
1 0

)
.

Lemma 2.2. The endomorphism ring EndkG(M↑G) is isomorphic to the k-algebra
with generators a and ψ and relations

aψ = ψ(a+ 1), ψ2 = 1.
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Proof. Because EndkG(M↑G) is contained in EndkH (M↑G↓H), it can be regarded
as a subring of Mat2(EndkH (M)). The composition of the isomorphisms

EndkH(M)⊕ EndkH(M) ∼= EndkH (M)⊕HomkH (g ⊗M,M)
∼= HomkH (M↑G↓H ,M)
∼= EndkG(M↑G)

is given by the map

(β, β′) 7→
(

β β′

φβ′φ φβφ

)
.

Moreover, β and β′ are projective endomorphisms of M if and only if the corre-
sponding matrix is a projective endomorphism ofM↑G. Because EndkH (M) = k[α],
we conclude that EndkG(M↑G) is generated by the images of the maps a and ψ,
and the desired result follows.

The kH-module M is indecomposable because EndkH (M) = k[α], so the follow-
ing result shows that Green’s criterion for indecomposability fails for M↑G.

Theorem 2.3. The module M↑G is decomposable.

Proof. Set e = a(1 + ψ) ∈ EndkG(M↑G). It is easy to check that e is a nontrivial
idempotent of EndkG(M↑G), so M↑G is decomposable.

Our next objective in this section is to study direct sum decompositions of M↑G

by considering idempotents in the endomorphism ring EndkG(M↑G). Let P,Q ∈
k[x] be polynomials with Q 6= 0. Then one can check that P (a) + Q(a)ψ is an
idempotent in EndkG(M↑G) if and only if

P (x + 1) = P (x) + 1,(2.4a)

P (x)P (x + 1) = Q(x)Q(x+ 1).(2.4b)

We will describe how to find the solutions to these equations.
First consider equation (2.4a), and observe that P (x) = x is a solution. More-

over, any other solution is of the form P (x) = x + P0(x), where P0 ∈ k[x] is a
polynomial satisfying

P0(x+ 1) = P0(x).

Such polynomials P0 form a subspace V of the vector space k[x], and the solutions
of (2.4a) are the elements of the coset x+ V . The next result describes a basis for
V .

Proposition 2.4. Let Z/2 = 〈g〉 act on k[x] by (g · P )(x) = P (x + 1) for all
P ∈ k[x]. For each n ≥ 0 there is a g-invariant polynomial of degree 2n in k[x],
and there are no g-invariant polynomials of odd degree. Moreover, if B is a subset
of k[x] consisting of precisely one g-invariant polynomial of degree 2n for all n ≥ 0,
then B is a basis for V = soc k[x].

Proof. Set V−1 = 0, and for any integer n ≥ 0 let Vn be the k[Z/2]-submodule
of k[x] consisting of all polynomials of degree at most n. Then V2n+1/V2n−1 is a
two-dimensional k[Z/2]-module. Because x2n+1 + (x + 1)2n+1 is a polynomial of
degree 2n, it follows that V2n+1/V2n−1 is not a trivial module and must be free of
rank one. It is easy to see by induction on n that V2n+1 is free of rank n+ 1. Thus
soc(V2n+1) = soc(V2n) has dimension n + 1 and soc(V2n−1) has dimension n, so
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V2n+1 has a g-invariant polynomial of degree 2n but no g-invariant polynomial of
degree 2n+1. Moreover, if B is a set consisting of exactly one g-invariant polynomial
of degree 2n for all n ≥ 0, then B is a basis for soc k[x], as desired.

Now suppose that P ∈ k[x] is a polynomial satisfying (2.4a). Write

P (x)P (x + 1) = λ(x+ a1)e1 · · · (x+ an)en ,

where a1, . . . , an ∈ k are distinct. Then for each index i there is a unique j 6= i
such that aj = ai + 1, and ej = ei. Thus n = 2s for some natural number s. By
reordering the indices if necessary, we may assume that a2i = a2i−1+1 for 1 ≤ i ≤ s.
Let µ ∈ k be the element satisfying µ2 = λ. Then Q ∈ k[x] satisfies (2.4b) if and
only if

Q(x) = µ(x+ a1)m1 · · · (x + an)mn

for some nonnegative integersm1, . . . ,mn such that m2i−1+m2i = e2i for 1 ≤ i ≤ s.
Thus we obtain a description of the polynomials satisfying (2.4). In particular, it

follows that the ring EndkG(M↑G) contains infinitely many nontrivial idempotents,
so that the module M↑G has infinitely many different direct sum decompositions.
We end this section by showing that all of these nontrivial idempotents are actually
conjugate in EndkG(M↑G).

If EndkG(M↑G) is regarded as a subalgebra of Mat2(k[α]) as before, then an
arbitrary element P (a) +Q(a)ψ ∈ EndkG(M↑G) is given by the matrix(

P (α) Q(α)
Q(α+ 1) P (α+ 1)

)
.

Thus P (a) +Q(a)ψ is a unit if and only if the determinant

P (α)P (α + 1) +Q(α)Q(α+ 1)

lies in k − {0}. The units of determinant one form a subgroup U1 of the full group
of units U in EndkG(M↑G). If k× denotes the multiplicative group of the field k,
then it is easy to see that U = U1 × k×.

Proposition 2.5. The group U1 of units of determinant one in EndkG(M↑G) acts
transitively on the collection of nontrivial idempotents in EndkG(M↑G). The sta-
bilizer in U1 of the idempotent e = a(1 + ψ) is the subgroup

StabU1(e) = {c+ (c+ c−1)e | c ∈ k×}.
Proof. Let P,Q ∈ k[x] be polynomials with Q 6= 0 such that P (a) + Q(a)ψ is an
idempotent in EndkG(M↑G), and let

e
P,Q

=
(

P (α) Q(α)
Q(α+ 1) P (α+ 1)

)
be the corresponding idempotent matrix in Mat2(k[α]). By (2.4b) we can write
Q(x) = Q0(x)Q1(x), whereQ0(x) divides P (x) andQ1(x) divides P (x+1). Because
P (x+ 1) = P (x) + 1, the polynomials P (x) and P (x+ 1) have no common factors,
so Q0(x) and Q1(x) are unique up to scalar multiples. Moreover,

P (x) = Q0(x)Q1(x+ 1).

Then one can check that

u
P,Q

=
(

Q0(α) Q1(α)
Q0(α+ 1) Q1(α+ 1)

)
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is a matrix of determinant one in Mat2(k[α]) such that

u−1
P,Q

eP,QuP,Q =
(

1 0
0 0

)
.

Now suppose that P ′, Q′ ∈ k[x] are also polynomials with Q′ 6= 0 such that
P ′(a) +Q′(a)ψ is an idempotent. Write Q′(x) = Q′

0(x)Q′
1(x) as above, and set

Q̂0(x) = Q0(x)Q′
1(x+ 1) +Q1(x)Q′

0(x+ 1),

Q̂1(x) = Q0(x)Q′
1(x) +Q1(x)Q′

0(x).

Then

u
P,Q

u−1
P ′,Q′ =

(
Q̂0(α) Q̂1(α)

Q̂1(α+ 1) Q̂0(α+ 1)

)
is a matrix of determinant one that conjugates eP,Q to e

P ′,Q′ . Moreover, the matrix
u

P,Q
u−1

P ′,Q′ corresponds to the unit Q̂0(a) + Q̂1(a)ψ ∈ EndkG(M↑G). Thus U1 acts
transitively on the nontrivial idempotents in EndkG(M↑G).

Finally, suppose that P (x) = Q(x) = x, so that e
P,Q

is the matrix corresponding
to the idempotent e = a(1 + ψ). The stabilizer in SL2(k[α]) of the matrix eP,Q

consists of all matrices of the form

u
P,Q

(
c−1 0
0 c

)
u−1

P,Q
=
(
c+ (c+ c−1)α (c+ c−1)α

(c+ c−1)(α + 1) c+ (c+ c−1)(α+ 1)

)
for c ∈ k×. It follows that StabU1(e) consists of all elements of the form

c+ (c+ c−1)a+ (c+ c−1)aψ = c+ (c+ c−1)e,

and this completes the proof.

Even if the coefficient field k is not algebraically closed, one can define an abso-
lutely indecomposable kH-module M with generators x0, x1, x2, . . . and relations
given by (2.1). In this case the solutions to (2.4b) are obtained by writing

P (x)P (x+ 1) = λP1(x)e1 · · ·Pn(x)en ,

where P1, . . . , Pn are distinct irreducible monic polynomials in k[x] and λ ∈ k. The
possibilities for Q(x) are then determined by considering the cases Pi(x) = Pi(x+1)
and Pi(x) 6= Pi(x + 1) for each factor Pi. With this minor change all of the
results proven in this section for M or for M↑G remain valid. In particular, when
k = F2, Proposition 2.5 shows that the group U1 of units of determinant one in
EndF2G(M↑G) acts regularly on the nontrivial idempotents in EndF2G(M↑G).

3. Graded endomorphism rings of idempotent modules

Throughout this section G denotes an arbitrary finite group, k is an algebraically
closed field of characteristic p > 0, and C is an ideal subcategory of kG-mod.
The objective is to study graded endomorphism rings for the idempotent module
F = FC(k) and certain related modules. The results are used in the next section
to produce examples of modules for which the cancellation property fails.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIRECT SUM DECOMPOSITIONS OF MODULES 3849

For any kG-modules M and N , write Hom∗
kG(M,N) for the Z-graded vector

space with

Homn
kG(M,N) = HomkG(ΩnM,N).

Assume that Ω0 is the identity functor on kG-Mod, so that HomkG(M,N) is the
space of elements of degree zero in Hom∗

kG(M,N). If ξ ∈ Homm
kG(M,N) and

ζ ∈ Homn
kG(L,M), then we write ξ ◦ ζ for the element of Homm+n

kG (L,N) given by
ξ ◦ ζ = ξ(Ωmζ). For convenience we usually identify ΩnM with Ωnk ⊗M when no
confusion is likely to arise.

Let η : k → F denote the universal map in kG-Mod from k to an object of C⊥, as
in Proposition 2.1. Suppose that M and N are in C⊥, so that η⊗1M : M → F ⊗M
and η ⊗ 1N : N → F ⊗ N are stable isomorphisms. If ζ ∈ Endm

kG(F, F ) and
f ∈ Homn

kG(M,N), then there is a unique map ζ · f : Ωm+nM → N such that the
following diagram commutes:

Ωmk ⊗ ΩnM
ζ·f

//

Ωmη⊗1

��

N

η⊗1

��

ΩmF ⊗ ΩnM
ζ⊗f

// F ⊗N.

One can check that this definition makes Hom∗
kG(M,N) into a graded left module

for End∗kG(F ). It is easy to see that

ζ · f = (ζ · 1N) ◦ (1Ωmk ⊗ f) = f ◦ (ζ · 1ΩnM ).

Similarly, Hom∗
kG(M,N) has a right module structure given by setting f · ζ =

f ◦ (ζ · 1M ), and this definition makes Hom∗
kG(M,N) into an End∗kG(F )-bimodule.

Moreover, if ζ ∈ Endm
kG(F ) and ξ ∈ Endn

kG(F ), then ζ ◦ ξ = ζ · ξ.
If C is the zero subcategory of kG-mod so that F = k, then this definition

produces the usual bimodule structure of Ĥ∗(G, k) on Êxt
∗
kG(M,N). Thus the

following proposition generalizes a standard result.

Proposition 3.1. Let M be a C-local kG-module, and let ζ be a homogeneous
element of End∗kG(F ). Then ζ · 1M lies in the graded center of End∗kG(M), so that
End∗kG(M) is a graded End∗kG(F )-algebra.

Proof. The proof is similar to that of Theorem 5.2.3 of [6]. The details are left to
the reader.

If M and N are kG-modules, we write τ : M ⊗ N → N ⊗ M for the kG-
homomorphism that interchanges factors. By abuse of notation the same symbol τ
is used for all such modules M and N .

Lemma 3.2. Let M be a C-local kG-module. If α ∈ Endm
kG(F ) and n is any

integer, then

(α · 1Ωnk⊗M )(τ ⊗ 1M ) = 1Ωnk ⊗ (α · 1M ).
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Proof. The commutativity of the diagram

Ωmk ⊗ Ωnk ⊗M
α·1Ωnk⊗M

//

τ⊗1

��

1⊗η⊗1⊗1

**TT
T
T
T
T
T
T
T
T
T
T
T
T
T

Ωnk ⊗M

η⊗1⊗1

wwnn
n
n
n
n
n
n
n
n
n
n

1⊗1

��

Ωmk ⊗ F ⊗Ωnk ⊗M

��

α⊗1⊗1
// F ⊗ Ωnk ⊗M

τ⊗1

��

Ωnk ⊗ Ωmk ⊗ F ⊗M
1⊗α⊗1

// Ωnk ⊗ F ⊗M

Ωnk ⊗Ωmk ⊗M

1⊗1⊗η⊗1

55
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

1⊗(α·1M )
// Ωnk ⊗M

1⊗η⊗1

ggP
P
P
P
P
P
P
P
P
P
P
P

shows that α · 1Ωnk⊗M = (1⊗ (α · 1M ))(τ ⊗ 1), as desired.

If ζ ∈ Endn
kG(F ), write F/(ζ) for the module defined by the triangle

ΩnF
ζ−→ F

λ−→ F/(ζ)
µ−→ Ω−1k ⊗ ΩnF.

Note that if F = k, then F/(ζ) = Ω−1Lζ .

Proposition 3.3. Suppose that α ∈ Endm
kG(F ) and ζ ∈ Endn

kG(F ), and let M be
a C-local kG-module. Then there is a morphism of triangles of the form

Ωmk ⊗ ΩnM
1⊗(ζ·1M )

//

α·1ΩnM

��

Ωmk ⊗M //

α·1M

��

Ωmk ⊗ F/(ζ) ⊗M //

α·1F/(ζ)⊗M

��

Ω−1k ⊗ Ωmk ⊗ ΩnM

1⊗(α·1ΩnM )

��

ΩnM
ζ·1M

// M // F/(ζ) ⊗M // Ω−1k ⊗ΩnM.

Proof. The top and bottom rows of the commutative diagram

Ωmk ⊗ ΩnF
1⊗ζ

//

Ωmη⊗1

��

Ωmk ⊗ F
1⊗λ

//

Ωmη⊗1

��

Ωmk ⊗ F/(ζ)

Ωmη⊗1

��

(τ⊗1)(1⊗µ)
// Ω−1k ⊗ Ωmk ⊗ ΩnF

(Ωmη⊗1⊗1)(τ⊗1)

��

ΩmF ⊗ ΩnF
1⊗ζ

//

α⊗1

��

ΩmF ⊗ F
1⊗λ

//

α⊗1

��

ΩmF ⊗ F/(ζ)
1⊗µ

//

α⊗1

��

ΩmF ⊗ Ω−1k ⊗ ΩnF

α⊗1⊗1

��

F ⊗ ΩnF
1⊗ζ

// F ⊗ F
1⊗λ

// F ⊗ F/(ζ)
1⊗µ

// F ⊗ Ω−1k ⊗ ΩnF

ΩnF
ζ

//

η⊗1

OO

F
λ

//

η⊗1

OO

F/(ζ)
µ

//

η⊗1

OO

Ω−1k ⊗ ΩnF

η⊗1⊗1

OO

are triangles in kG-Mod. Computing the compositions of the maps in the four
columns and using the fact that (α · 1Ω−1k⊗ΩnF )(τ ⊗ 1ΩnF ) = 1Ω−1k ⊗ (α · 1ΩnF )
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shows that there is a morphism of triangles

Ωmk ⊗ ΩnF
1⊗ζ

//

α·1ΩnF

��

Ωmk ⊗ F
1⊗λ

//

α

��

Ωmk ⊗ F/(ζ)
(τ⊗1)(1⊗µ)

//

α·1F/(ζ)

��

Ω−1k ⊗ Ωmk ⊗ ΩnF

1⊗(α·1ΩnF )

��

ΩnF
ζ

// F
λ

// F/(ζ) µ
// Ω−1k ⊗ ΩnF.

Applying the functor − ⊗ M to this diagram and using the stable isomorphism
η : M → F ⊗M now gives the desired result.

Assume that ζ1, . . . , ζs are homogeneous elements in End∗kG(F ), and set ni =
deg ζi. Define

F/(ζ1, . . . , ζs) = F/(ζ1)⊗ · · · ⊗ F/(ζs).

For simplicity set F0 = F and Fi = F/(ζ1, . . . , ζi) for 1 ≤ i ≤ s. Then Fi can also
be defined by observing that there is a triangle

ΩniFi−1

ζi·1Fi−1−−−−−→ Fi−1
λi−→ Fi

µi−→ Ω−1k ⊗ ΩniFi−1.(3.1)

Note that the modules F0, F1, . . . , Fs are C-local by induction.

Proposition 3.4. Let ζ1, . . . , ζs be a regular sequence in End∗kG(F ). Then for
1 ≤ i ≤ s the elements ζi · 1, . . . , ζs · 1 form a regular sequence in End∗kG(Fi−1), and

Hom∗
kG(Fi−1, Fi) ∼= End∗kG(Fi−1)/(ζi · 1)

as graded End∗kG(F )-bimodules. Moreover, the composition

End∗kG(Fi)
λ∗i−→ Hom∗

kG(Fi−1, Fi) ∼= End∗kG(Fi−1)/(ζi · 1)

is an epimorphism of rings.

Proof. Assume by induction that i ≥ 1 and that ζi ·1, . . . , ζs ·1 is a regular sequence
in End∗kG(Fi−1). Applying the functor Homn

kG(Fi−1,−) to the triangle (3.1) gives
a short exact sequence

0 → Endn−ni

kG (Fi−1)
(ζi·1)∗−−−−→ Endn

kG(Fi−1)
λi∗−−→ Homn

kG(Fi−1, Fi) → 0

because ζi · 1 is a regular element of End∗kG(Fi−1). It follows that there is an
isomorphism

Hom∗
kG(Fi−1, Fi) ∼= End∗kG(Fi−1)/(ζi · 1)

of graded right End∗kG(F )-modules. Proposition 3.3 implies that this is actually an
isomorphism of graded End∗kG(F )-bimodules. For example, if α ∈ Endm

kG(F ) and
f ∈ Endn

kG(Fi−1), then

λi∗(α · f) = λi ◦ (α · 1Fi−1) ◦ (1Ωmk ⊗ f) = (α · 1Fi) ◦ (1Ωmk ⊗ λi∗(f)) = α · λi∗(f).

Applying the functor Homn
kG(−, Fi) to the triangle (3.1) gives a long exact se-

quence

· · · → Endn
kG(Fi)

λ∗i−→ Homn
kG(Fi−1, Fi)

(ζi·1)∗−−−−→ Homn+ni

kG (Fi−1, Fi) → · · · .
Because Hom∗

kG(Fi−1, Fi) ∼= End∗kG(Fi−1)/(ζi · 1), it follows that there is a short
exact sequence

0 → Hom∗
kG(Fi−1, Fi) → End∗kG(Fi)

λ∗i−→ Hom∗
kG(Fi−1, Fi) → 0
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in which the first map has degree 1− ni. Moreover, the maps in this sequence are
homomorphisms of graded End∗kG(F )-bimodules by Proposition 3.3. The elements
ζi · 1, . . . , ζs · 1 form a regular sequence in End∗kG(Fi−1), so ζi+1, . . . , ζs is a regular
sequence on the End∗kG(F )-bimodule End∗kG(Fi−1)/(ζi · 1) ∼= Hom∗

kG(Fi−1, Fi) and
hence also on End∗kG(Fi). Finally, it is easy to check that the composition

End∗kG(Fi)
λ∗i−→ Hom∗

kG(Fi−1, Fi) ∼= End∗kG(Fi−1)/(ζi · 1)

is an epimorphism of rings. This completes the proof.

Theorem 3.5. Let ζ1, . . . , ζs be a regular sequence in End∗kG(F ). Then there is an
epimorphism

End∗kG(F/(ζ1, . . . , ζs)) → End∗kG(F )/(ζ1, . . . , ζs)

whose kernel is an ideal I satisfying I2s

= 0.

Proof. For 1 ≤ i ≤ s let ni = deg ζi, and let φi : End∗kG(Fi) → End∗kG(Fi−1)/(ζi · 1)
be the epimorphism given by Proposition 3.4. If ζ ∈ End∗kG(F ) is homogeneous,
then φi sends ζ · 1Fi to ζ · 1Fi−1 + (ζi · 1) by Proposition 3.3. Thus φi induces an
epimorphism

θi : End∗kG(Fi)/(ζi+1 · 1, . . . , ζs · 1) → End∗kG(Fi−1)/(ζi · 1, . . . , ζs · 1),

and the composition θ = θ1 ◦ · · · ◦ θs maps End∗kG(Fs) onto End∗kG(F )/(ζ1, . . . , ζs).
It remains to show that I = Ker θ satisfies I2s

= 0. We will prove this result by
showing that Ker θi is an ideal of square zero for 1 ≤ i ≤ s. Consider the triangle

Ωnk ⊗ ΩniFi−1
1⊗(ζi·1)−−−−−→ Ωnk ⊗ Fi−1

1⊗λi−−−→ Ωnk ⊗ Fi

(τ⊗1)(1⊗µi)−−−−−−−−→ Ω−1k ⊗ Ωnk ⊗ ΩniFi−1.

If β ∈ Endn
kG(Fi) satisfies 0 = λ∗i (β) = β(1Ωnk ⊗ λi), then there is a map β′ :

Ω−1k⊗Ωnk⊗ΩniFi−1 → Fi with β′(τ⊗1ΩniFi−1)(1Ωnk⊗µi) = β. Because ζi ·1 is a
regular element of End∗kG(Fi−1) and µiβ

′ : Ω−1k⊗Ωnk⊗ΩniFi−1 → Ω−1k⊗ΩniFi−1

satisfies

(1Ω−1k ⊗ (ζi · 1))(µiβ
′) = 0,

it follows that µiβ
′ = 0. This fact implies that Kerλ∗i = Kerφi has square zero.

Because the vertical maps in the commutative diagram

0 // (ζi+1·1,...,ζs·1) //

��

End∗kG(Fi) //

φi

��

End∗kG(Fi)/(ζi+1·1,...,ζs·1) //

θi

��

0

0 // (ζi·1,...,ζs·1)/(ζi·1) // End∗kG(Fi−1)/(ζi·1) // End∗kG(Fi−1)/(ζi·1,...,ζs·1) // 0

are all epimorphisms, it follows that Ker θi is an ideal of square zero for all i. This
completes the proof.

4. Failure of cancellation

In this section we apply the previous results to construct a class of examples of
modules for which the cancellation property fails. In particular, when p is an odd
prime, we exhibit countably generated modules M and N for the group (Z/p)7 such
that

M ⊕M ⊕M ∼= M ⊕N
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but M ⊕M 6∼= N . When p = 2, we give a similar example in which the cancellation
property fails for (Z/2)9. The idea of the construction is to begin by producing
a module such that the cancellation property fails for finitely generated projective
modules over its endomorphism ring. This step is based upon some related examples
of Raynaud [12], and we begin by describing these examples.

Let k be an algebraically closed field of characteristic p > 0. Let q and n
be integers with 1 < q < n, and let δjl denote the Kronecker delta function for
1 ≤ j, l ≤ n− q. Set

R = k[Xji, Yij ]1≤i≤n,1≤j≤n−q ,

E = R/A,

where A is the ideal generated by the elements1(
n∑

i=1

XjiYil

)
− δjl(4.1)

for 1 ≤ j, l ≤ n− q. We use the same symbols Xji and Yij to denote the images in
E of Xji, Yij ∈ R. Let X denote the (n−q)×n matrix (Xji) with entries in E, and
let Y denote the n × (n − q) matrix (Yij). Then the relations (4.1) show that the
product XY is the (n− q)× (n− q) identity matrix, so e = Y X satisfies e2 = e. If
e is regarded as an idempotent endomorphism of a free module En of rank n, then

En = eEn ⊕ (1 − e)En.

Regarding X and Y as homomorphisms X : En → En−q and Y : En−q → En of
right E-modules, we see that

eEn ∼= En−q,

so that (1 − e)En is a finitely generated projective E-module that is stably free
of rank q. In Corollaire 6.3 of [12] Raynaud uses Steenrod operations in étale
cohomology to show that the modules (1− e)En are not free, except possibly when
p = q = 2 or when p = q = 3.

Let G be an elementary abelian p-group of rank 2n+ 1. If p = 2, then H∗(G, k)
is a polynomial ring k[ζ1, . . . , ζ2n+1] in 2n+ 1 generators of degree one. If p is odd,
then H∗(G, k) is the tensor product of a polynomial ring k[ζ1, . . . , ζ2n+1] and an
exterior algebra Λ(η1, . . . , η2n+1); the elements ζ1, . . . , ζ2n+1 have degree two, and
the elements η1, . . . , η2n+1 have degree one. Let C be the subcategory of kG-mod
consisting of all finitely generated modules M such that VG(M) ⊆ VG(ζ2n+1), and
set F = FC(k). Then End∗kG(F ) is isomorphic to Ĥ∗(G, k)[ζ−1

2n+1]. Set αi = ζ−1
2n+1ζi

for 1 ≤ i ≤ 2n. We claim that every nonzero element of k[α1, . . . , α2n] is regular in
End∗kG(F ). Indeed, Theorem 3.3 of [2] shows that the product of any two elements
of negative degree is zero in Ĥ∗(G, k). Lemma 2.1 of [2] then implies that if ξ ∈
Ĥ−d(G, k) for some d > 0, then ζd

2n+1ξ = 0, so that ξ = 0 in Ĥ∗(G, k)[ζ−1
2n+1]. Thus

End∗kG(F ) = Ĥ∗(G, k)[ζ−1
2n+1] = H∗(G, k)[ζ−1

2n+1],

and it follows that every nonzero element of k[α1, . . . , α2n] is regular in End∗kG(F ).
If q = n − 1, then the relations (4.1) reduce to a single equation in E of the

form
∑n

i=1X1iYi1 − 1 = 0. Let φ : k[α1, . . . , α2n] → E be the ring epimorphism

1There is a misprint in [12] at this point: the term −δjl is omitted.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3854 D. J. BENSON AND WAYNE W. WHEELER

satisfying φ(αi) = X1i and φ(αn+i) = Yi1 for 1 ≤ i ≤ n. Then

ξ =
n∑

i=1

αiαn+i − 1

is in Kerφ, and φ induces an isomorphism of EndkG(F )/(ξ) modulo its nilradical
onto E. Because ξ is regular in End∗kG(F ), Theorem 3.5 implies that if N0 is the
nilradical of E0 = EndkG(F/(ξ)), then E0/N0

∼= E. We use this isomorphism to
identify E0/N0 with E.

Let X ′ and Y ′ be matrices with entries in E0 such that the reduction modulo
N0 of X ′ is X and of Y ′ is Y . Then X ′Y ′ − 1 ∈ N0, so there is an integer t > 0
such that (X ′Y ′ − 1)t = 0. Set X0 = X ′ and

Y0 = Y ′
t∑

i=1

(−1)i−1

(
t

i

)
(X ′Y ′)i−1.

Then X0 and Y0 are matrices with entries in E0 such that X0Y0 = 1 and the
reduction modulo N0 of X0 is X and of Y0 is Y . In particular, e0 = Y0X0 is an
idempotent endomorphism of En

0 lifting the idempotent e. Thus E0 satisfies

En
0 = e0E

n
0 ⊕ (1− e0)En

0

and e0En
0
∼= E0. Moreover, if (1− e)En is not a free E-module, then (1− e0)En

0 is
not a free E0-module.

The following proposition provides the connection between the above discussion
and modules over a group algebra.

Proposition 4.1. Let G be a finite group, and let M be a kG-module with en-
domorphism ring E0. Let e0 and f0 be idempotent elements of Matn(E0). Then
e0E

n
0
∼= f0E

n
0 as right E0-modules if and only if e0Mn ∼= f0M

n as left kG-modules.

Proof. Observe that there are isomorphisms

HomE0(e0E
n
0 , f0E

n
0 ) ∼= f0Matn(E0)e0 ∼= HomkG(e0Mn, f0M

n)

and

HomE0(f0E
n
0 , e0E

n
0 ) ∼= e0Matn(E0)f0 ∼= HomkG(f0Mn, e0M

n).

Thus e0En
0
∼= f0E

n
0 if and only if there are matrices A ∈ f0Matn(E0)e0 and B ∈

e0Matn(E0)f0 with AB = f0 and BA = e0, which occurs precisely when e0M
n ∼=

f0M
n.

Proposition 4.1 implies that there is an isomorphism

(F/(ξ))⊕ (F/(ξ))n−1 = (F/(ξ))n ∼= (F/(ξ)) ⊕ (1− e0)(F/(ξ))n,(4.2)

and (1− e0)(F/(ξ))n is not isomorphic to (F/(ξ))n−1 as long as (1− e)En is not a
free E-module. For p = 2 Raynaud’s result implies, therefore, that (1−e0)(F/(ξ))n

is not isomorphic to (F/(ξ))n−1 when n = 4 and G = (Z/2)9; similarly, for p > 2
these modules are not isomorphic when n = 3 and G = (Z/p)7. Thus (4.2) shows
that the cancellation property fails in these cases. Brenner and Ringel [7] show by
more abstract reasoning that the cancellation property fails as long as the p-rank
of G is at least two.

More generally, if 1 < q < n and G is an elementary abelian p-group of rank
2n(n− q) + 1, then Raynaud’s examples show that the cancellation property fails
for a module of the form F/(ξ1, . . . , ξ(n−q)2). The details are left to the reader.
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