DIRECT SUMS OF LOCAL TORSION-FREE ABELIAN GROUPS

DAVID M. ARNOLD
(Communicated by Stephen D. Smith)

Abstract

The category of local torsion-free abelian groups of finite rank is known to have the cancellation and n-th root properties but not the KrullSchmidt property. It is shown that 10 is the least rank of a local torsionfree abelian group with two non-equivalent direct sum decompositions into indecomposable summands. This answers a question posed by M.C.R. Butler in the 1960's.

1. Introduction

Let $T F$ denote the category of local torsion-free abelian groups of finite rank, where an abelian group G is local if there is a fixed prime p with $q G=G$ for each prime $q \neq p$. Each M in $T F$ has the cancellation property (if $M \oplus N$ is isomorphic to $M \oplus K$ in $T F$, then N is isomorphic to K), and the n-th root property (if the direct sum M^{n} of n copies of M is isomorphic to N^{n} for some N in $T F$, then M is isomorphic to N) Lady 75. An M in $T F$ is a Krull-Schmidt group if any two direct sum decompositions of M into indecomposable summands are equivalent, i.e. unique up to isomorphism and order of summands.
M.C.R. Butler, in an unpublished note dating from the 1960's, constructed an example of a local torsion-free abelian group of rank 16 that is not a Krull-Schmidt group (see [Arnold 82]) and asked for the smallest such rank. An example of a rank-10 local torsion-free abelian group that is not a Krull-Schmidt group is given in Arnold 01.

This paper is devoted to showing that 10 is the minimum such rank, i.e. if $M \in T F$ with rank $M \leq 9$, then M is a Krull-Schmidt group. Many arguments in this paper carry over directly to torsion-free modules of finite rank over valuation domains, keeping in mind that the existence and minimal rank of a non-Krull-Schmidt module depends on the structure of the valuation domain; see Goldsmith May 99] and references.

The quasi-isomorphism category $T F_{\mathbb{Q}}$ of $T F$ is an additive category with objects those of $T F$ but with morphism sets $\mathbb{Q} \otimes \operatorname{Hom}(M, N)$ for $M, N \in T F$ and \mathbb{Q} the rational numbers. The category $T F_{\mathbb{Q}}$ is a Krull-Schmidt category in that each object in $T F_{\mathbb{Q}}$ can be written uniquely, up to isomorphism in $T F_{\mathbb{Q}}$ and order, as a finite direct sum of indecomposable objects in $T F_{\mathbb{Q}}$; see Walker 64. This is because

[^0]an indecomposable object M in $T F_{\mathbb{Q}}$ has a local endomorphism ring $\mathbb{Q} E n d M$ in $T F_{\mathbb{Q}}$. Indecomposable objects in $T F_{\mathbb{Q}}$ are called strongly indecomposable groups, isomorphism in $T F_{\mathbb{Q}}$ is called quasi-isomorphism, and summands of groups in $T F_{\mathbb{Q}}$ are called quasi-summands.

Each $M \in T F$ is a torsion-free $\mathbb{Z}_{(p)}$-module, where $\mathbb{Z}_{(p)}$ is the localization of the integers at the prime p. The rank of M as a group is equal to the rank of M as a $\mathbb{Z}_{(p)}$-module, and $\operatorname{Hom}_{\mathbb{Z}}(M, N)=\operatorname{Hom}_{\mathbb{Z}_{(p)}}(M, N)$ for each $M, N \in T F$. Hence, rank $M=1$ if and only if M is isomorphic to either $\mathbb{Z}_{(p)}$ or \mathbb{Q}. Define p-rank M to be the $\mathbb{Z} / p \mathbb{Z}$-dimension of $M / p M$, a finite dimensional $\mathbb{Z} / p \mathbb{Z}$-vector space. Notice that p-rank $M \leq \operatorname{rank} M, M$ is divisible if and only if p-rank $M=0$, and M is isomorphic to a free $\mathbb{Z}_{(p)}$-module if and only if p-rank $M=\operatorname{rank} M$. Moreover, if N is a $\mathbb{Z}_{(p)}$-submodule of M, then the p-rank of the pure submodule of M generated by N is less than or equal to the p-rank of N and if M is quasi-isomorphic to N $\oplus K$, then p-rank $M=p$-rank $N+p$-rank K Arnold 72. If M is reduced (no proper divisible subgroups), then M is isomorphic to a pure subgroup of M^{*}, the completion of M in the p-adic topology. Moreover, M^{*} is a free \mathbb{Z}^{*}-module with rank equal to the p-rank of M, where \mathbb{Z}^{*} is the p-adic completion of $\mathbb{Z}_{(p)}$. Each endomorphism of M lifts to a unique \mathbb{Z}^{*}-endomorphism of M^{*}, whence End M is a pure subring of $\operatorname{End}_{\mathbb{Z}^{*}} M^{*}$.

2. Uniqueness of direct sums

A group $M \in T F$ has the one-sided $U D S$ property if whenever $M \oplus N$ is isomorphic to $K_{1} \oplus \ldots \oplus K_{n} \in T F$ with M quasi-isomorphic to each K_{j}, then M is isomorphic to some K_{j}. The group M has the $U D S$ property if whenever $N_{1} \oplus \ldots$ $\oplus N_{m}$ is isomorphic to $K_{1} \oplus \ldots \oplus K_{n} \in T F$ with M quasi-isomorphic to each N_{i} and K_{j}, then $m=n$ and there is a relabelling of indices with each N_{i} isomorphic to K_{i}.

Given a strongly indecomposable M in $T F$, there is a faithful $G_{M} \in T F$ quasiisomorphic to M such that End G_{M} / N End G_{M} is a maximal order in the division algebra \mathbb{Q} End $M / J \mathbb{Q}$ End M, where $J \mathbb{Q}$ End M is the Jacobson radical of the finite dimensional \mathbb{Q}-algebra \mathbb{Q} End M, N End $G_{M}=$ End $G_{M} \cap J \mathbb{Q}$ End M is a nilpotent ideal of End M, and G_{M} is faithful if $I G_{M} \neq G_{M}$ for each maximal right ideal I of End G_{M} Arnold 01. A maximal right ideal J of End G_{M} / p End G_{M} has the unique maximal condition if whenever I is a non-zero right ideal and J is a unique maximal right ideal of End G_{M} / p End G_{M} containing I, then $I=J$.

The first lemma is the local version of [Arnold 01, Theorem 1.5].
Lemma 1. The following statements are equivalent for a strongly indecomposable N in $T F$, where G_{N} is as defined above:
(i) N has the UDS property.
(ii) Each group in TF quasi-isomorphic to N has the one-sided UDS property.
(iii) Either End G_{N} is a local ring or else End G_{N} has exactly two maximal right ideals M_{1} and M_{2} such that M_{1} is a principal right ideal of End $G_{N}, G_{N} / M_{1} G_{N} \cong$ $\mathbb{Z} / p \mathbb{Z}$, and $M_{1} / p E n d G_{N}$ has the unique maximal condition in End $G_{N} / p E n d G_{N}$.

Following are non-trivial examples of groups in $T F$ with the UDS property.
Example 1. If $N \in \mathrm{TF}$ is strongly indecomposable with p-rank $N \leq 2$, then N has the (one-sided) UDS property.

Proof. It suffices to confirm the conditions of Lemma 1(iii). If p-rank $N \leq 1$, then p-rank $G_{N} \leq 1$, since G_{N} is quasi-isomorphic to N. Thus, either p-rank $G_{N}=0$ and $G_{N} \cong \mathbb{Q}$ or else p-rank $G_{N}=1, G_{N}^{*} \cong \mathbb{Z}^{*}$, and End G_{N} is isomorphic to a pure subring of $\mathbb{Z}^{*} \cong \operatorname{End}_{\mathbb{Z}^{*}} \mathbb{Z}^{*}$. In either case, End G_{N} is a local ring, as desired.

Now assume that p-rank $N=p$-rank $G_{N}=2$ and End G_{N} is not a local ring. Let M_{1}, \ldots, M_{n} be distinct maximal right ideals of End G_{N} with $n \geq 2$. Then $G_{N} /\left(M_{1} \cap \ldots \cap M_{n}\right) G_{N} \cong G_{N} / M_{1} G_{N} \oplus \ldots \oplus G_{N} / M_{n} G_{N}$ and p End $G_{N} \subseteq J$ End $G_{N} \subseteq M_{1} \cap \ldots \cap M_{n}$. Since p-rank $G_{N}=2$ and G_{N} is faithful, it follows that $n=2, p$ End $G_{N}=M_{1} \cap M_{2}=J$ End G_{N}, each $G_{N} / M_{i} G_{N} \cong \mathbb{Z} / p \mathbb{Z}$, and each M_{i} / p End G_{N} has the unique maximal condition. Finally, each M_{i} is principal as an application of Nakayama's Lemma, because p End $G_{N}=J$ End G_{N} and End $G_{N} / p \operatorname{End} G_{N}$ is finite.

The next lemma is used for an induction step in the proof of the main theorem.
Lemma 2. Assume that $M=N \oplus N^{\prime}=K_{1} \oplus \ldots \oplus K_{n} \in T F$. There are subgroups K_{i}^{\prime} of K_{i} with $N \oplus N^{\prime}=N \oplus K_{1}^{\prime} \oplus \ldots \oplus K_{n}^{\prime}$ if either
(a) Warfield 72 End N is a local ring or
(b) Arnold Lady $75 N$ and N^{\prime} have no quasi-summands in common.

In this case, N^{\prime} is isomorphic to $K_{1}^{\prime} \oplus \ldots \oplus K_{n}^{\prime}$.
An indecomposable $M \in T F$ is purely indecomposable if p-rank $M=1$. In this case, End M is a local ring, being a pure subring of $\mathbb{Z}^{*} \cong \operatorname{End}_{\mathbb{Z}^{*}} \mathbb{Z}^{*}$. Dually, M is co-purely indecomposable if M is indecomposable with rank $M=p$-rank $M+1$. There is a contravariant duality F on $T F_{\mathbb{Q}}$ sending a purely indecomposable group M to a co-purely indecomposable group $F(M)$ Arnold 72 (see Lady 77 for an alternate definition of the duality). Hence, \mathbb{Q} End $F(M)$ is isomorphic to \mathbb{Q} End M, a subring of the p-adic rationals \mathbb{Q}^{*}.

Following are some elementary properties of purely indecomposable and copurely indecomposable groups that are consequences of the definitions and the duality F.
Proposition 1 ([Arnold 72]). Let $M \in T F$.
(a) If M is purely indecomposable, then:
(i) End M is a pure subring of Z^{*};
(ii) each pure subgroup of M is strongly indecomposable;
(iii) if $K \in T F$ is a homomorphic image of M with rank $K<\operatorname{rank} M$, then K is divisible; and
(iv) two purely indecomposable groups M and N in TF are isomorphic if and only if rank $M=\operatorname{rank} N$ and $\operatorname{Hom}(M, N) \neq 0$; equivalently M and N are quasi-isomorphic.
(b) If M is co-purely indecomposable, then:
(i) End M is isomorphic to a subring of \mathbb{Q}^{*}, hence an integral domain;
(ii) each torsion-free homomorphic image of M is strongly indecomposable;
(iii) if K is a pure subgroup of M with rank $K<\operatorname{rank} M$, then M is a free $\mathbb{Z}_{(p)}$-module; and
(iv) two co-purely indecomposable groups M and N are quasi-isomorphic if and only if $\operatorname{rank} M=\operatorname{rank} N$ and $\operatorname{Hom}(M, N) \neq 0$.
(c) If M is indecomposable with rank ≥ 2 and N is co-purely indecomposable with $\operatorname{rank} M<\operatorname{rank} N$, then $\operatorname{Hom}(M, N)=0$.
(d) If M is purely indecomposable with rank ≥ 3 and N is co-purely indecomposable with $\operatorname{rank} M=\operatorname{rank} N$, then $\operatorname{Hom}(M, N)=0$.

Remark 1. There is a co-purely indecomposable $M \in T F$ with p-rank 3 and rank 4 that does not have either UDS property. In this case End M has 3 maximal right ideals and M is the summand of a non-Krull-Schmidt group of rank 12 Arnold 01, Remark]. In view of the following lemma, this group cannot be a summand of a non-Krull-Schmidt group of rank $8=2(\operatorname{rank} M)$. On the other hand, if $M \in T F$ and End M has at least 4 maximal right ideals, then M is a summand of a non-Krull Schmidt group of rank equal to $2($ rank $M)$.

The next lemma is used in the proof of the main theorem. In view of Proposition 1 (b)(i), the hypotheses are satisfied if N is co-purely indecomposable.

Lemma 3. Assume that $N \in T F$ with End N an integral domain and $M=N \oplus$ $N^{\prime}=K_{1} \oplus K_{2} \in T F$ with each K_{i} indecomposable. If p-rank $N \leq 3$, then N is isomorphic to some K_{i}.

Proof. The proof is a variation on a proof given in Arnold 01. Let π be a projection of M onto N with kernel N^{\prime}, and π_{i} a projection of M onto K_{i} for each i with $1_{M}=\pi_{1}+\pi_{2}$. Then $1_{N}=\beta_{1}+\beta_{2}$, where $\beta_{i} \in \operatorname{End} N$ is the restriction of $\pi \pi_{i}$ to N and $\beta_{i}(N)$ is contained in a subgroup $\pi\left(K_{i}\right)$ of N. Since End N is an integral domain, \mathbb{Q} End N is a field and each β_{i} is a unit in \mathbb{Q} End N.

For each $1 \leq i \leq 2$, let $I_{i}=\beta_{i}$ End N, a right ideal of End N. Then End $N=I_{1}+I_{2}$, since $1_{N}=\beta_{1}+\beta_{2}$. Each $($ End $N) / I_{i}$ is bounded by a power of p since β_{i} is a unit in \mathbb{Q} End N. Moreover, $I_{i} N$ is contained in $A_{i}=\pi\left(K_{i}\right)$ so that [$N: A_{i}$] is finite. It now suffices to prove that $N \cong A_{i}$ for some i, in which case $N \cong K_{i}$.

If some $\left[N: A_{i}\right]=1$, then $N=A_{i}$ and the proof is complete. The next step is to assume that each $\left[N: A_{i}\right] \neq 1$ and reduce to the case that each $\left[N: A_{i}\right]=p$. Suppose, by way of induction, that $\left[N: A_{i}\right] \neq p$. Choose $x \in N \backslash A_{i}$ such that $p x \in A_{i}$. Then $A_{i} \subset A_{i}+\mathbb{Z} x$. If N and $A_{i}+\mathbb{Z} x$ are not isomorphic, then replace A_{i} by $A_{i}^{\prime}=A_{i}+\mathbb{Z} x$. If $N \cong A_{i}+\mathbb{Z} x$, say $f \in$ End N with $f(N)=A_{i}+\mathbb{Z} x$, then replace A_{i} by $A_{i}^{\prime}=f^{-1}\left(A_{i}\right)$. In either case, $\left[N: A_{i}^{\prime}\right]$ is a proper divisor of $\left[N: A_{i}\right]$.

The substitution of A_{i}^{\prime} for A_{i} doesn't change the hypothesis that End $N=I_{1}+I_{2}$ for right ideals I_{i} of bounded index with $I_{i} N$ contained in A_{i}. In particular, $I_{i}^{\prime}=$ $f^{-1} I_{i}$ is an ideal of End N (since $I_{i} N$ is a subgroup of $f(N)$), $I_{i}^{\prime} N$ is contained in A_{i}^{\prime}, and $I_{i}^{\prime}+\Sigma\left\{I_{j}: j \neq i\right\}=\operatorname{End} N$ (since f End $N=\Sigma f I_{i}$ is contained in $\left.I_{1}+\Sigma\{f I j: j \neq i\}\right)$. If $N \cong A_{i}^{\prime}$, then, by the construction of $A_{i}^{\prime}, N \cong A_{i}$. By induction, and the fact that $\left[N: A_{i}^{\prime}\right]$ is a proper divisor of $\left[N: A_{i}\right]$, the A_{i} 's can be chosen with each $\left[N: A_{i}\right]=p$.

At this stage, End $N=I_{1}+I_{2}$ for right ideals I_{i} of finite index in End N with $I_{i} N$ contained in a subgroup A_{i} of N and $\left[N: A_{i}\right]=p$ for each i. Replace I_{i} by $I_{i}+p$ End N, if necessary, to guarantee that $p \operatorname{End} N$ is contained in I_{i} for each i. But p-rank $N \leq 3, p$ End $N \subseteq J$ End N, End N is an integral domain, and $N /\left(M_{1} \cap \ldots \cap M_{n}\right) N \cong N / M_{1} N \oplus \ldots \oplus N / M_{n} N$ for maximal ideals M_{i} of End N. Hence, End N has at most 3 maximal right ideals M_{1}, M_{2}, and M_{3} and p End $N=M_{1}^{i_{1}} M_{2}^{i_{2}} M_{3}^{i_{3}}$ with $i_{1}+i_{2}+i_{3} \leq 3$. Furthermore, $p N \subseteq\left(I_{1} \cap I_{2}\right) N$, and $N /\left(I_{1} \cap I_{2}\right) N \cong N / I_{1} N \oplus N / I_{2} N$. After relabelling subscripts, if necessary, $I_{1}=M_{1}, N / I_{1} N=\mathbb{Z} / p \mathbb{Z}$, and $I_{1} N=A_{1}$. Finally, I_{1} is principal by Nakayama's

Lemma, since p End $N \subseteq J$ End N and I_{1} / p End N is principal. This shows that A_{1} is isomorphic to N, as desired.

The point of the next lemma, as used in the proof of the main theorem, is that Lemma 2(a) applies to a group quasi-isomorphic to a direct sum of two purely indecomposable groups of the same rank.

Lemma 4. If $N \in T F$ is indecomposable and quasi-isomorphic to $A \oplus B$ for purely indecomposable groups A and B in TF with rank $A=\operatorname{rank} B$, then $\operatorname{Hom}(A, B)=$ $0=\operatorname{Hom}(B, A)$ and End N is a local ring.

Proof. Choose purely indecomposable pure subgroups A and B of N and some least positive integer i with $p^{i} N \subset A \oplus B \subset N$. Since p-rank $N=2, N / p^{i} N \cong$ $\mathbb{Z} / p^{i} \mathbb{Z} \oplus \mathbb{Z} / p^{j} \mathbb{Z}$ for some $1 \leq j \leq i$. Because A and B are purely indecomposable pure subgroups of $N, N /(A \oplus B) \cong \mathbb{Z} / p^{j} \mathbb{Z}$, say $N=A \oplus B+\mathbb{Z}(a, b)\left(1 / p^{j}\right)$ for some $a \in A \backslash p A$ and $b \in B \backslash p B$.

If $\operatorname{Hom}(A, B) \neq 0$ or $\operatorname{Hom}(B, A) \neq 0$, then A and B are isomorphic by Proposition 1(iv). Moreover, $C=N / A$ is purely indecomposable and quasi-isomorphic to B. Hence, $C \cong A \cong B$ and $\operatorname{Hom}(C, N) C=N$. By Baer's Lemma Arnold 82, A is a summand of N, a contradiction to the assumption that N is indecomposable.

Now assume that $\operatorname{Hom}(A, B)=0=\operatorname{Hom}(B, A)$. Then A and B are fully invariant subgroups of $N=A \oplus B+\mathbb{Z}(a, b)\left(1 / p^{j}\right)$. Thus, End N is the pullback of a homomorphism $A \rightarrow \mathbb{Z} / p^{j} \mathbb{Z}$ with kernel $p^{j} A$ and a homomorphism $B \rightarrow \mathbb{Z} / p^{j} \mathbb{Z}$ with kernel $p^{j} B$. It follows that End N / p^{j} End $N \cong \mathbb{Z} / p^{j} \mathbb{Z}$, whence End N is a local ring.

3. The main theorem

Theorem 1. If $M \in T F$ and $\operatorname{rank} M \leq 9$, then M is a Krull-Schmidt group.
Proof. Let N be an indecomposable summand of M of minimal rank and $M=N$ $\oplus N_{1} \oplus \ldots \oplus N_{m}=K_{1} \oplus \ldots \oplus K_{n}$ with each N_{i} and K_{j} indecomposable. Then $\operatorname{rank} N \leq 4, \operatorname{rank} N \leq \operatorname{rank} N_{j}$, and $\operatorname{rank} N \leq \operatorname{rank} K_{i}$ for each i and j, since rank $M \leq 9$ and N is an indecomposable summand of M of minimal rank.

If p-rank $N \leq 1$, then End N is a local ring, as noted above. In this case, by Lemma 2(a), $N_{1} \oplus \ldots \oplus N_{m}$ is isomorphic to $K_{1}^{\prime} \oplus \ldots \oplus K_{n}^{\prime}$ for subgroups K_{i}^{\prime} of K_{i}. It follows, by an induction on the rank of M, that M is a Krull-Schmidt group. In particular, if p-rank $N=\operatorname{rank} N$, then N is free and cyclic, hence of p-rank 1 .

If N and $N_{1} \oplus \ldots \oplus N_{m}$ have no quasi-summands in common, then, by Lemma 2(b), the proof is completed by an induction on the rank of M.

In view of the preceding remarks, it is now sufficient to assume that M is reduced, $2 \leq p-\operatorname{rank} N<\operatorname{rank} N \leq 4$ for each indecomposable summand N of minimal rank, and if $M=N \oplus N^{\prime}$, then N and $N^{\prime}=N_{1} \oplus \ldots \oplus N_{m}$ have a quasi-summand in common. Under these assumptions, M has no rank- 1 quasi-summands. This is because the only rank- 1 groups in $T F$ are $\mathbb{Z}_{(p)}$ and \mathbb{Q} and, since M is reduced, any rank- 1 quasi-summand must actually be a summand isomorphic to $\mathbb{Z}_{(p)}$. The strategy of the remainder of the proof is to show that N must be isomorphic to some K_{i}, in which case the cancellation property for $N \in T F$ and an induction on the rank of M shows that M is a Krull-Schmidt group.

First assume that rank $N=4$, p-rank $N=3$. Then N, being indecomposable, is co-purely indecomposable, hence strongly indecomposable by Proposition 1. Thus,
$N_{1} \oplus \ldots \oplus N_{m}$ is quasi-isomorphic to $N \oplus L$ for some L of rank ≤ 1. To see this, recall that N and $N_{1} \oplus \ldots \oplus N_{m}$ have a quasi-summand in common, N is strongly indecomposable, $\operatorname{rank} N \geq \operatorname{rank} N_{i}$, and rank $N+\sum_{i} \operatorname{rank} N_{i}=4+\sum_{i} \operatorname{rank} N_{i} \leq 9$. Since M has no rank- 1 quasi-summands, $L=0, m=1$, and $n=2$. But $T F_{\mathbb{Q}}$ is a Krull-Schmidt category so that $M=N \oplus N_{1}=K_{1} \oplus K_{2}$ has rank 8 with N quasi-isomorphic to N_{1}, K_{1}, and K_{2}. By Lemma $3, N$ is isomorphic to either K_{1} or K_{2}, as desired.

Next, consider the case that rank $N=4$ and p-rank $N=2$. If N is strongly indecomposable, then, as above, $M=N \oplus N_{1}=K_{1} \oplus K_{2}$ has rank 8 and N is quasi-isomorphic to N_{1}, K_{1}, and K_{2}. By Example 1, N has the UDS property so that N is isomorphic to either K_{1} or K_{2}, as desired. If N is not strongly indecomposable, then N is quasi-isomorphic to $A \oplus B$, where A and B are purely indecomposable groups with p-rank 1 and rank 2. This is because M has no rank- 1 quasi-summands. Now apply Lemmas 2 and 4 and induction on the rank of M to see that M is a Krull-Schmidt group.

The only remaining case is that p-rank $N=2$, rank $N=3$. In this case N is co-purely indecomposable, hence strongly indecomposable by Proposition 1. Since N and N_{1} have a quasi-summand in common, N_{1} is quasi-isomorphic to $N \oplus A$ for some pure subgroup A of N_{1} with $1 \leq p$-rank $A<\operatorname{rank} A \leq 3$. This is because M has no rank-1 quasi-summands and rank $M \leq 9$.

If A has p-rank 1 , then $\operatorname{Hom}(A, N)=0$ by Proposition $1(\mathrm{c})$ and (d), since A is purely indecomposable with $2 \leq \operatorname{rank} A \leq 3=\operatorname{rank} N$, and N is co-purely indecomposable. In this case, $\operatorname{Hom}(A, M)=\operatorname{Hom}(A, A)$. It follows that A is a pure fully invariant subgroup, hence equal to a subgroup of some K_{i}, say K_{1}. Thus, $N \oplus\left(N_{1} / A\right)$ is isomorphic to $\left(K_{1} / A\right) \oplus K_{2} \oplus K_{3}$ and induction on the rank of M completes the proof.

Finally, assume that A has p-rank 2. Then $\operatorname{rank} A=3=\operatorname{rank} N$ and A and N are both co-purely indecomposable. If $\operatorname{Hom}(A, N)=0$, then, as above, M is a Krull-Schmidt group. Finally, if $\operatorname{Hom}(A, N) \neq 0$, then A is quasi-isomorphic to N, since A and N are both co-purely indecomposable modules with the same rank Hence, $M=N \oplus N_{1}=K_{1} \oplus K_{2} \oplus \ldots \oplus K_{n}$ has rank 9 with $n \leq 3$. If $n=3$, then N is quasi-isomorphic to K_{1}, K_{2} and K_{3} by the minimality of the rank of N. In this case, Example 1 yields N isomorphic to some K_{i}. If $n=2$, then, by Lemma $3, N$ is isomorphic to some K_{i}, as desired.

Example 2 (Arnold 01]). There is a rank-10 group in $T F$ that is not a KrullSchmidt group.

Proof. The argument is briefly outlined. There is $M \in T F$ of p-rank 4 and rank 5 such that $M \cong$ End M, a subring of an algebraic number field with exactly four maximal ideals M_{1}, M_{2}, M_{3}, and M_{4}, and $p M=p$ End $M=M_{1} \cap M_{2} \cap M_{3} \cap M_{4}$. Furthermore, there are subgroups A_{1} and A_{2} of M not isomorphic to M with $\left(M_{1} \cap M_{2}\right) M \subset A_{1}$ and $\left(M_{3} \cap M_{4}\right) M \subset A_{2}$. It follows that there is $B \in T F$ with $M \oplus B=A_{1} \oplus A_{2}$, a rank 10 group in $T F$ that is not a Krull-Schmidt group.

References

[Arnold 72] Arnold, D. A duality for torsion-free modules of finite rank over a discrete valuation ring, Proc. Lond. Math. Soc. (3) 24 (1972), 204-216.
[Arnold 82] Arnold, D. Finite Rank Torsion-Free Abelian Groups and Rings, Lect. Notes in Math. 931, Springer-Verlag, New York, 1982. MR 84d:20002

[Arnold 00]	Arnold, D. Abelian Groups and Representations of Finite Partially Ordered Sets, CMS Books in Mathematics, Springer-Verlag, New York, 2000. MR 2001g:16030
[Arnold 01]	Arnold, D. Direct sum decompositions of torsion-free abelian groups of finite rank, Abelian Groups, Rings, and Modules (Proc. of 2000 Perth Conf.), Cont. Math., AMS, Providence, Rhode Island, 2001, 65-74. CMP 2001:09
[Arnold Dugas 00]	Arnold, D. and Dugas, M. Co-purely indecomposable modules over a discrete valuation ring, J. Pure and Appl. Alg. 161 (2001), 1-12.
[Arnold Lady 75]	Arnold, D. and Lady, E.L. Endomorphism rings and direct sums of torsionfree abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225-237. MR 54:5370
[Fuchs 73]	Fuchs, L. Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973. MR 50:2362
[Goldsmith May 99]	Goldsmith, B. and May, W. The Krull-Schmidt problem for modules over valuation domains, J. Pure and Appl. Alg. 140 (1999), 57-63. MR 2000d:13016
[Lady 75]	Lady, E.L. Nearly isomorphic torsion-free abelian groups, J. Alg. 35 (1975), 235-238. MR 51:5801
[Lady 77]	Lady, E.L. Splitting fields for torsion-free modules over discrete valuation rings, J. Alg. 49 (1977), 261-275. MR 58:22039
[Walker 64]	Walker, E.A. Quotient categories and quasi-isomorphisms of abelian groups, Proc. Colloq. Abelian Groups, Budapest, 1964, 147-162. MR 31:2327
[Warfield 72]	Warfield, R.B. Jr. Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36. MR 48:11218

Department of Mathematics, Baylor University, Waco, Texas 76798-7328
E-mail address: David_Arnold@baylor.edu

[^0]: Received by the editors October 4, 2000 and, in revised form, January 8, 2001.
 2000 Mathematics Subject Classification. Primary 20K15, 20 K 25.
 Key words and phrases. Krull-Schmidt groups, direct sum decompositions, local torsion-free abelian groups.

 This research was supported, in part, by the Baylor University Summer Sabbatical Program.

