Supporting Information St. Amant, Frazier, Newmeyer, Fruehauf and Read de Alaniz*
Direct Synthesis of Anilines and Nitrosobenzenes from PhenolsAndré H. St. Amant, Charles P. Frazier, Benjamin Newmeyer, Krista Fruehauf,and Javier Read de Alaniz
Department of Chemistry and Biochemistry, University of California,Santa Barbara, California 93106-9510, USA
Supporting Information - Table of Contents
Materials and Methods S2-S3
Synthesis of Phenol Starting Materials S4-S10
Synthesis of Anilines. S10-S14
Synthesis of Anilines from Mixed Ketal Quinones. S14-S17
Synthesis of Nitrosobenzenes S17-S18
References. S19
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra. S20-S43
Mixed Quinone Monoketal Data \& Modified Hammett Plot. S44-S45
Optimization Tables. S46

Materials and Methods. Unless stated otherwise, reactions were conducted under an atmosphere of N_{2} using reagent grade solvents. $\mathrm{MeOH}, \mathrm{EtOH}$, and iPrOH were stored over $3 \AA$ molecular sieves. All commercially obtained reagents were used as received. The phenols we prepared are reported in SI-1 to SI-15. Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 F254 pre-coated plates (0.25 mm) and visualized by exposure to UV light (254 nm) or stained with p-anisaldehyde or potassium permanganate. Flash column chromatography was performed using normal phase silica gel ($60 \AA, 0.040-0.063 \mathrm{~mm}$, Geduran). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian spectrometers (400,500 , or 600 MHz) and are reported relative to deuterated solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity, coupling constant (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Spectrometers (100, 125, or 150 MHz). Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift ($\delta \mathrm{ppm}$). Mass spectra were obtained from the UC Santa Barbara Mass Spectrometry Facility on a (Waters Corp.) GCT Premier high resolution Time-of-flight mass spectrometer with an electron ionization (EI) source.

General Procedure A: Reaction with 4-substituted phenols

PIDA ($0.71 \mathrm{~g}, 2.2 \mathrm{mmol}, 1.1$ equiv) was suspended in $\mathrm{MeOH}(10 \mathrm{~mL})$ and cooled on an ice bath. The phenol ($2.0 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and added dropwise over 1 min . The ice bath was removed and the reaction mixture was stirred for 30 min or until consumption of the starting material. The reagents $\mathrm{Et}_{3} \mathrm{~N}\left(2.5 \mathrm{~mL}, 18 \mathrm{mmol}, 9\right.$ equiv), $\mathrm{H}_{2} \mathrm{O}$ (1 mL), and ethyl glycinate hydrochloride ($1.95 \mathrm{~g}, 14 \mathrm{mmol}, 7$ equiv) were added sequentially and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ overnight or until consumption of the quinone. The solvent was evaporated, DCM (100 mL) was added then transferred to a separatory funnel. The organic layer was extracted with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 6 \times 10 \mathrm{~mL})$. The aqueous layers were combined, neutralized with saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(140 \mathrm{~mL})$, and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The yield was determined through ${ }^{1} \mathrm{H}$ NMR using an internal standard.

General Procedure B: Reaction with 4-unsubstituted phenols
PIDA ($1.35 \mathrm{~g}, 4.2 \mathrm{mmol}$, 2.1 equiv) was suspended in $\mathrm{MeOH}(10 \mathrm{~mL})$ and cooled on an ice bath. The phenol ($2.0 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and added dropwise over 1 min . The ice bath was removed and the reaction mixture was stirred for 30 min or until consumption of the starting material. The reagents $\mathrm{Et}_{3} \mathrm{~N}\left(2.5 \mathrm{~mL}, 18 \mathrm{mmol}, 9\right.$ equiv), $\mathrm{H}_{2} \mathrm{O}$ (1 mL), and ethyl glycinate hydrochloride ($1.95 \mathrm{~g}, 14 \mathrm{mmol}, 7$ equiv) were added sequentially and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ overnight or until consumption of the quinone. The solvent was evaporated, DCM (100 mL) was added then transferred to a separatory funnel. The organic layer extracted with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 6 \times 10 \mathrm{~mL})$. The aqueous layers were combined, neutralized with saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(140 \mathrm{~mL})$, and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The yield was determined through ${ }^{1} \mathrm{H}$ NMR using an internal standard.

General Procedure \mathbf{C} :
PIDA ($81 \mathrm{mg}, 0.25 \mathrm{mmol}$, 1 equiv) was suspended in $\mathrm{MeOH}(2.5 \mathrm{~mL})$ and cooled on an ice bath. Phenol ($0.25 \mathrm{mmol}, 1$ equiv) was added and the reaction mixture stirred at room temperature until consumption of the starting material ($\sim 30 \mathrm{~min}$). Pyridine ($40 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2$ equiv) then hydroxylammonium sulfate ($41 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv) were added and the reaction was stirred
until complete consumption of the quinone (overnight to 70 hr). The reaction was quenched with a saturated ammonium chloride solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 15:1 to 1:1) to yield the nitrosobenzene. Note: some of the nitrosobenzenes were found to be volatile, and care must be taken while removing solvent.

General Procedure for determining yield through ${ }^{1} \mathrm{H}$ NMR:
A known amount of dimethyl terephthalate (DMT) was weighed and added to the crude product. The mixture was dissolved in CDCl_{3} and a ${ }^{1} \mathrm{H}$ NMR experiment was performed (relaxation delay set to 40 s). To determine the yield the integration for DMT's aromatic peak ($8.09 \mathrm{ppm}, 4 \mathrm{H}$) is set to:
[4 * (mass DMT in mg) / 194.18] / (scale of reaction in mmol)

Gram-scale synthesis of 1:

PIDA ($6.76 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.05$ equiv) was suspended in $\mathrm{MeOH}(90 \mathrm{~mL})$ and cooled on an ice bath. 4-Methoxyphenol ($2.48 \mathrm{~g}, 20.0 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and added dropwise over 2 min . The ice bath was removed and the reaction mixture was stirred for 30 min . The reagents $\mathrm{Et}_{3} \mathrm{~N}\left(11 \mathrm{~mL}, 80 . \mathrm{mmol}, 4\right.$ equiv), $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and ethyl glycinate hydrochloride ($5.6 \mathrm{~g}, 40 . \mathrm{mmol}, 2$ equiv) were added sequentially and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ overnight. The solvent was evaporated until $\sim 20 \mathrm{~mL}$ remained. $\mathrm{DCM}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added and the pH was adjusted to $1-2$ with $\mathrm{HCl}_{\text {(conc) }}(\sim 7 \mathrm{~mL})$. The mixture was transferred to a separatory funnel and the layers separated. The aqueous layer's pH was adjusted to $7-8$ with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ then extracted with $\mathrm{DCM}(2 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, $2: 1 \rightarrow 1: 1$, with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $\mathbf{1}(1.41 \mathrm{~g}, 57 \%)$ as a flaky orange solid.

4-Methoxy-2-methylphenol (SI-1): PIDA ($6.8 \mathrm{~g}, 21 \mathrm{mmol}, 2.1 \mathrm{eq}$) was added to $\mathrm{MeOH}(90$ mL) and cooled on an ice bath. o-Cresol ($1.08 \mathrm{~g}, 10.0 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in MeOH (10 mL) and added dropwise over 2 min with vigorous stirring. The ice bath was removed and the reaction mixture was stirred 30 min . The reaction mixture was cooled on an ice bath and zinc powder ($0.98 \mathrm{~g}, 15 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added in one portion. The reaction mixture was taken off of the ice bath and stirred 1 hr . The solvent was removed, $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the solution was transferred to a separatory funnel. The solution was washed with water (50 mL), then extracted with $\mathrm{NaOH}_{(\mathrm{aq})}(3 \mathrm{M}, 2 \times 20 \mathrm{~mL})$. The combined basic layers were acidified with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 140 \mathrm{~mL})$, then extracted with DCM (3 x 50 mL). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 6:1 $\rightarrow 4: 1$) to yield SI-1 ($0.546 \mathrm{~g}, 40 \%$) as white solid. Spectral data matched that of literature reported data. ${ }^{1} \mathrm{Rf}$ (Hexane:EtOAc, 4:1): 0.34; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.74-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{dd}, J=2.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (br. s., 1 H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

2-Ethyl-4-methoxyphenol (SI-2): PIDA ($2.1 \mathrm{~g}, 6.6 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added to MeOH (55 mL) and cooled on an ice bath. 2-Ethylphenol ($0.72 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in MeOH (5 mL) and added dropwise over 5 min with vigorous stirring. The reaction mixture was taken off of the ice bath, stirred for 1 hr , a second portion of PIDA ($1.9 \mathrm{~g}, 6.0 \mathrm{mmol}, 1 \mathrm{eq}$) was added and stirring continued for 30 min . The reaction mixture was cooled on an ice bath and zinc powder $(0.47 \mathrm{~g}, 7.2 \mathrm{mmol}, 1.2 \mathrm{eq})$ was added in one portion. The reaction mixture was taken off of the ice bath and stirred 1 hr . The reaction mixture was filtered through Celite ${ }^{\circledR}$ and the solvent removed. EtOAc $(50 \mathrm{~mL})$ and $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 50 \mathrm{~mL})$ were added, the solution was transferred to a separatory funnel and the layers separated. The aqueous layer was extracted again with EtOAc $(50 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 6:1) to yield SI-2 ($0.517 \mathrm{~g}, 57 \%$). Spectral data matched that of literature reported data. ${ }^{2}$ Rf (Hexane:EtOAc, 4:1): 0.41; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.75-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.61(\mathrm{~m}, 1$ H), 4.59 (br. s, 1 H), 3.77 (s, 3 H), 2.62 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.25 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

2-Isopropyl-4-methoxyphenol (SI-3): PIDA ($5.4 \mathrm{~g}, 17 \mathrm{mmol}, 2.1 \mathrm{eq}$) was added to MeOH (70 mL) and cooled on an ice bath. 2-Isopropylphenol ($1.1 \mathrm{~mL}, 8.0 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and added dropwise over 2 min with vigorous stirring. The reaction mixture was taken off of the ice bath, stirred for 30 min . The reaction mixture was cooled on an ice bath and zinc powder ($0.79 \mathrm{~g}, 12 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added in one portion. The reaction mixture was taken off of the ice bath and stirred 1 hr . The solvent was removed, $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 50$ mL) were added, the solution was transferred to a separatory funnel, and the layers separated. The aqueous layer was extracted again with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layers were combined and extracted with $\mathrm{NaOH}_{(\mathrm{aq})}(1 \mathrm{M}, 4 \times 20 \mathrm{~mL})$. The basic aqueous layers were combined, acidified with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 100 \mathrm{~mL})$, and extracted with $\mathrm{DCM}(2 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 6:1) to yield SI-3 ($0.50 \mathrm{~g}, 38 \%$) as a peach oil. Spectral data matched that of literature reported data. ${ }^{3} \mathrm{Rf}$ (Hexane:EtOAc, 4:1): 0.42; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=2.8,8.7$ Hz, 1 H), 4.37 (br. s., 1 H), 3.78 (s, 3 H), 3.19 ($\mathrm{spt}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.26 (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$) ppm.

4-Methoxy-2,6-dimethylphenol (SI-4): PIDA ($5.4 \mathrm{~g}, 17 \mathrm{mmol}, 2.1 \mathrm{eq}$) was added to MeOH (70 mL) and cooled on an ice bath. 2,6-Dimethylphenol ($0.98 \mathrm{~g}, 8.0 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and added dropwise over 2 min with vigorous stirring. The reaction mixture was taken off of the ice bath, stirred for 30 min . The reaction mixture was cooled on an ice bath and zinc powder ($0.79 \mathrm{~g}, 12 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added in one portion. The reaction mixture was taken off of the ice bath and stirred 1 hr . The solvent was removed, $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 50$ mL) were added, the solution was transferred to a separatory funnel, and the layers separated. The aqueous layer was extracted again with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layers were combined and extracted with $\mathrm{NaOH}_{(\mathrm{aq})}(1 \mathrm{M}, 2 \times 20 \mathrm{~mL})$. The basic aqueous layers were combined, acidified with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 50 \mathrm{~mL})$, and extracted with $\mathrm{DCM}(2 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, $15: 1 \rightarrow 9: 1)$ to yield SI-4 $(0.40 \mathrm{~g}, 33 \%)$ as a white powder. Spectral data matched that of literature reported data. ${ }^{4} \mathrm{Rf}$ (Hexane:EtOAc, 9:1): $0.23 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.56$ (s, 2 H), 4.23 (br. s, 1 H), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 2.24 (s, 6 H) ppm.

4-Methoxy-3,5-dimethylphenol (SI-5): PIDA ($5.4 \mathrm{~g}, 17 \mathrm{mmol}, 2.1 \mathrm{eq}$) was added to MeOH (70 mL) and cooled on an ice bath. 3,5-Dimethylphenol ($0.98 \mathrm{~g}, 8.0 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and added dropwise over 2 min with vigorous stirring. The reaction mixture was taken off of the ice bath, stirred for 30 min . The reaction mixture was cooled on an ice bath and zinc powder ($0.79 \mathrm{~g}, 12 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added in one portion. The reaction mixture was taken off of the ice bath and stirred 1 hr . The solvent was removed, $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ were added, the solution was transferred to a separatory funnel, and the layers separated. The organic layer was extracted with $\mathrm{NaOH}_{(\mathrm{aq})}(1 \mathrm{M}, 2 \times 40 \mathrm{~mL})$. The basic aqueous layers were combined, acidified with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 100 \mathrm{~mL})$, and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 6:1) to yield SI-5 ($0.54 \mathrm{~g}, 44 \%$). Spectral data matched that of literature reported data. ${ }^{5} \mathrm{Rf}$ (Hexane:EtOAc, 4:1): 0.31; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.49(\mathrm{~s}, 2 \mathrm{H}), 4.45$ (br. s., 1 H), 3.68 (s, 3 H), 2.24 (s, 6 H) ppm.

4-methoxy-3-methylphenol (SI-6): PIDA ($6.8 \mathrm{~g}, 21 \mathrm{mmol}, 2.1 \mathrm{eq}$) was added to MeOH (100 mL) and cooled on an ice bath. m-Cresol ($1.05 \mathrm{~g}, 10.0 \mathrm{mmol}, 1 \mathrm{eq}$) was added dropwise over 2 min with vigorous stirring. The reaction mixture was taken off of the ice bath and stirred 30 min . The reaction mixture was cooled on an ice bath and zinc powder ($0.98 \mathrm{~g}, 15 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added in one portion. The reaction mixture was taken off of the ice bath and stirred 1 hr . The solvent was removed, $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the solution was transferred to a separatory funnel. The solution was washed with water $(50 \mathrm{~mL})$, then extracted with $\mathrm{NaOH}_{(\mathrm{aq})}(3 \mathrm{M}, 2 \times 20$ $\mathrm{mL})$. The combined basic layers were acidified with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 140 \mathrm{~mL})$ and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 4:1) to yield SI-6 ($0.77 \mathrm{~g}, 56 \%$). Spectral data matched that of literature reported data. ${ }^{6} \mathrm{Rf}$ (Hexane:EtOAc, 4:1): 0.26; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73$ - 6.59 (m, 3 H), 4.37 (br. s., 1 H), 3.79 (s, 3 H), 2.19 (s, 3 H) ppm.

3-Chloro-4-methoxyphenol (SI-7): PIDA ($5.4 \mathrm{~g}, 17 \mathrm{mmol}, 2.1 \mathrm{eq}$) was added to MeOH (70 mL) and cooled on an ice bath. 3-Chlorophenol ($1.03 \mathrm{~g}, 8.00 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and added dropwise over 2 min with vigorous stirring. The reaction mixture was taken off of the ice bath, stirred for 30 min . The reaction mixture was cooled on an ice bath and zinc powder ($0.79 \mathrm{~g}, 12 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added in one portion. The reaction mixture was taken off of the ice bath and stirred 1 hr . Another portion of zinc powder ($0.26 \mathrm{~g}, 4.0 \mathrm{mmol}, 0.5 \mathrm{eq}$) was added and the reaction stirred for 30 min . The solvent was removed, $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and water (50 mL) were added, the solution was transferred to a separatory funnel, and the layers separated. The organic layer was extracted again with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layers were combined and extracted with $\mathrm{NaOH}_{(\mathrm{aq})}(1 \mathrm{M}, 2 \times 40 \mathrm{~mL})$. The basic aqueous layers were combined, acidified with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 100 \mathrm{~mL})$, and extracted with DCM ($2 \times 50 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 6:1 $\rightarrow 4: 1$) to yield SI-7 (0.30 g, 24\%). Spectral data matched that of literature reported data. ${ }^{7} \mathrm{Rf}$ (Hexane:EtOAc, 4:1): 0.24; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.92(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=$ $3.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.50 (br. s., 1 H), 3.85 (s, 3 H) ppm.

3-Bromo-4-methoxyphenol (SI-8): PIDA ($5.4 \mathrm{~g}, 17 \mathrm{mmol}, 2.1 \mathrm{eq}$) was added to MeOH (70 mL) and cooled on an ice bath. 3-Bromophenol ($1.38 \mathrm{~g}, 8.00 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and added dropwise over 2 min with vigorous stirring. The reaction mixture was taken off of the ice bath, stirred for 30 min . The reaction mixture was cooled on an ice bath and zinc powder ($0.79 \mathrm{~g}, 12 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added in one portion. The reaction mixture was taken off of the ice bath and stirred 1 hr . The solvent was removed, $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and water (50 mL) were added, the solution was transferred to a separatory funnel, and the layers separated. The organic layer was extracted with $\mathrm{NaOH}_{(\mathrm{aq})}(1 \mathrm{M}, 2 \times 40 \mathrm{~mL})$. The basic aqueous layers were combined, acidified with $\operatorname{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 100 \mathrm{~mL})$, and extracted with DCM ($2 \times 50 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 6:1 $\rightarrow 4: 1$) to yield SI-8 (0.42 g, 26\%). Spectral data matched that of literature reported data. ${ }^{8} \mathrm{Rf}$ (Hexane:EtOAc, 4:1): 0.23; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.74(\mathrm{~m}, 2 \mathrm{H}), 4.57$ (br. s., 1 H), 3.85 ($\mathrm{s}, 3 \mathrm{H}$) ppm.

4-Isopropoxyphenol (SI-9): Sodium metal ($0.69 \mathrm{~g}, 30$. mmol, 1.5 eq) was added to EtOH (50 mL). The solution was stirred until complete reaction of the sodium (40 min). Hydroquinone (2.2 $\mathrm{g}, 20 . \mathrm{mmol}, 1 \mathrm{eq})$ and 2 -chloropropane ($2.7 \mathrm{~mL}, 30 . \mathrm{mmol}, 1.5 \mathrm{eq}$) were added and the reaction was heated to reflux overnight. The solvent was removed, DCM (100 mL) was added, and the solution was transferred to a separatory funnel. The organic layer was washed with $\mathrm{HCl}_{(\mathrm{aq})}(0.4$ $\mathrm{M}, 100 \mathrm{~mL}$) then brine ($2 \times 50 \mathrm{~mL}$). The organic layer was extracted with $\mathrm{NaOH}_{(\mathrm{aq})}(1 \mathrm{M}, 3 \times 10$ mL). The basic aqueous layers were combined, washed with DCM (30 mL), acidified with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 40 \mathrm{~mL})$, and extracted with $\mathrm{DCM}(2 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed to yield SI-9 (0.89 g, 29\%). Spectral data matched that of literature reported data. ${ }^{9} \mathrm{Rf}$ (Hexane:EtOAc, 2:1): $0.53 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.82-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{spt}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.31(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.

4-(4-Methoxybenzyloxy)phenol (SI-10): To a solution of 4-methoxybenzyl alcohol (1.25 mL , $10.0 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added thionyl chloride ($1.5 \mathrm{~mL}, 20 . \mathrm{mmol}, 2 \mathrm{eq}$) dropwise. The reaction mixture was stirred for 5 hr . Water $(20 \mathrm{~mL})$ was added carefully and the reaction mixture was stirred for 5 min then transferred to a separatory funnel. The layers were separated then the aqueous layer was extracted again with DCM ($2 \times 20 \mathrm{~mL}$). The organic layers were combined, washed with water (20 mL), then brine (20 mL). The organic layers was dried over MgSO_{4}, filtered, and the solvent removed to yield 4-methoxybenzyl chloride ($1.52 \mathrm{~g}, 97 \%$) as a clear and colorless oil.

The intermediate was suspended in acetone $(20 \mathrm{~mL})$, then hydroquinone $(2.2 \mathrm{~g}, 20$. $\mathrm{mmol}, 2 \mathrm{eq}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.4 \mathrm{~g}, 10 \mathrm{mmol}, 1 \mathrm{eq})$, and $\mathrm{NaI}(0.15 \mathrm{~g}, 1.0 \mathrm{mmol}, 0.1 \mathrm{eq})$ were added. The reaction mixture was stirred overnight, filtered through Celite ${ }^{\circledR}$ with acetone, and then the solvent was removed. EtOAc (50 mL) was added then transferred to a separatory funnel. The organic layer was washed with water and brine ($3 \times 50 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 3:1) to yield SI-10 (0.89 g , 39\% from 4-methoxybenzyl alcohol) as a crystalline peach solid. Spectral data matched that of literature reported data. ${ }^{10} \mathrm{Rf}$ (Hexane:EtOAc, 2:1): 0.38; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 8.90$ (s, 1 H), 7.36-7.30 (m, 2 H), 6.96-6.89 (m, 2 H), 6.84-6.76 (m, 2 H), 6.72-6.61 (m, 2 H), 4.89 ($\mathrm{s}, 2 \mathrm{H}$), 3.75 (s, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 158.8,151.2,151.2,129.4,129.3,115.8,115.7,113.7,69.5,55.0$ ppm.

4-(4-Nitrobenzyloxy)phenol (SI-11): Hydroquinone (2.2 g , 20. mmol, 2 eq) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.4 \mathrm{~g}$, $10 \mathrm{mmol}, 1 \mathrm{eq})$ were added to acetone (20 mL). 4-Nitrobenzyl bromide ($2.16 \mathrm{~g}, 10.0 \mathrm{mmol}, 1 \mathrm{eq}$) was added in portions and the reaction mixture was stirred overnight. The reaction mixture was filtered through Celite ${ }^{\circledR}$ with acetone, and then the solvent was removed. EtOAc (50 mL) was added then transferred to a separatory funnel. The organic layer was washed with water (3×50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 2:1 \rightarrow 1:1) to yield SI-11 (0.91 g, 37%) as a yellow powder. Rf (Hexane:EtOAc, $1: 1$): $0.51 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.60 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.88-6.84$ (m, 2 H), $6.81-6.77$ (m, 2 H), 5.13 (s, 2 H), 4.44 (s, 1 H) ppm; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 9.00$ (br. s., 1 H), 8.23 (d, $J=8.6 \mathrm{~Hz}, 2$ H), 7.67 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 151.7,150.7,146.9,145.6,128.1,128.0,123.5,115.8,68.6$ ppm; HRMS (EI) Exact mass cald. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4}[\mathrm{M}]^{+}: 245.0688$, found: 245.0679.

4-(2,2,2-Trifluoroethoxy)phenol (SI-12): Sodium metal ($2.3 \mathrm{~g}, 0.10 \mathrm{~mol}, 10 \mathrm{eq}$) was added to DMF (100 mL). 2,2,2-Trifluoroethanol ($7.3 \mathrm{~mL}, 0.10 \mathrm{~mol}, 10 \mathrm{eq}$) was added slowly, keeping the temperature $\sim 20^{\circ} \mathrm{C}$ with an ice bath. The solution was stirred for 1 hr , and then another portion of 2,2,2-trifluoroethanol ($3.7 \mathrm{~mL}, 50 \mathrm{mmol}, 5 \mathrm{eq}$) was added slowly. The solution was stirred at $60^{\circ} \mathrm{C}$ until complete reaction of the sodium (20 min). $\mathrm{CuI}(3.8 \mathrm{~g}, 20 . \mathrm{mmol}, 2 \mathrm{eq})$, and 4iodophenol ($2.2 \mathrm{~g}, 10 . \mathrm{mmol}, 1 \mathrm{eq}$) were added and the reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 6 hours. Most of the solvent was removed ($<30 \mathrm{~mL}$ remained) and water (100 mL) was added. The solution was filtered through Celite ${ }^{\circledR}$, acidified $(\mathrm{pH} \sim 1-2)$ with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, \sim 100 \mathrm{~mL})$, and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed. The residue was subjected to flash column chromatography (Hexane:EtOAc, 4:1 $\boldsymbol{\rightarrow}$ 3:1) to yield SI-12 ($0.14 \mathrm{~g}, 7 \%$). Spectral data matched that of literature reported data. ${ }^{11} \mathrm{Rf}$ (Hexane:EtOAc, 4:1): 0.25; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90-6.83$ (m, 2 H), 6.83-6.75 (m, 2 H), 4.58 (br. s., 1 H), 4.30 (q, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

4-Hydroxyphenyl acetate (SI-13): Hydroquinone ($2.2 \mathrm{~g}, 20 . \mathrm{mmol}, 2 \mathrm{eq}$) was added to AcOH $(5 \mathrm{~mL}) . \mathrm{Ac}_{2} \mathrm{O}(0.47 \mathrm{~g}, 5.0 \mathrm{mmol}, 0.5 \mathrm{eq})$ was added dropwise, the reaction mixture stirred for 30 \min at $110^{\circ} \mathrm{C}, \mathrm{Ac}_{2} \mathrm{O}(0.47 \mathrm{~g}, 5.0 \mathrm{mmol}, 0.5 \mathrm{eq})$ was added dropwise and the reaction mixture was stirred a further 1.5 hr at $110^{\circ} \mathrm{C}$. The solvent was removed and toluene (10 mL) was added. The solution was sonicated for 2 min , stirred for 5 min , filtered, and the solvent removed to yield SI-13 (1.3 g, 85\%). Spectral data matched that of literature reported data. ${ }^{12}{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.04$ (br. s., 1 H), 2.29 (s, 3 H) ppm.

4-Ethoxyphenol (SI-14) \& 4-Methoxyphenol (SI-15): PIDA ($0.71 \mathrm{~g}, 2.2 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added to $\mathrm{MeOH}(10 \mathrm{~mL})$ and cooled on an ice bath. 4-Ethoxyphenol ($0.28 \mathrm{~g}, 2.0 \mathrm{mmol}, 1 \mathrm{eq}$) dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added dropwise over 2 min with vigorous stirring. The reaction mixture was taken off of the ice bath and stirred 30 min . The reaction mixture was cooled on an ice bath and zinc powder ($0.20 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added in one portion. The reaction mixture was taken off of the ice bath and stirred 1 hr . The solvent was removed, $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the solution was transferred to a separatory funnel. The solution was washed with water $(50 \mathrm{~mL})$, then extracted with $\mathrm{NaOH}_{(\mathrm{aq})}(3 \mathrm{M}, 40 \mathrm{~mL})$. The basic layer was acidified with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 140 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed yielding SI-14 (53\%) and SI-15 (28\%) (determined through ${ }^{1} \mathrm{H}$ NMR using an internal standard). Spectral data matched that of authentic samples.

4-Methoxyaniline (2): Obtained using General Procedure A from 4-methoxyphenol (85\%) or General Procedure B from phenol (44\%). Spectral data matched that of literature reported data. ${ }^{13}$ ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.68(\mathrm{td}, J=3.4,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{td}, J=3.4,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.66$ (s, 3 H), 3.34 (br. s., 2 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,139.9,115.9,114.3,55.1$ ppm.

4-Methoxy-N-methylaniline (7): Obtained using General Procedure A from 4-methoxyphenol using sarcosine ethyl ester hydrochloride (44\%). The second step was stirred at $40^{\circ} \mathrm{C}$ overnight, then at reflux for 5 hr . Spectral data matched that of literature reported data. ${ }^{14}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) 3.16$ (br. s., 1 H), 2.71 ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.6,143.4,114.5,113.2,55.4,31.2$ ppm.

4-Methoxy-2-methylaniline (8): Obtained using General Procedure A from SI-1 (93\%) or General Procedure B from 2-methylphenol (56\%). Spectral data matched that of literature reported data. ${ }^{15}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.68-6.53(\mathrm{~m}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.35$ (br. s., 2 H), $2.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.0,138.0,123.4,115.8,115.5,111.6$, 55.1, 17.1 ppm .

2-Ethyl-4-methoxyaniline (9): Obtained using General Procedure A from SI-2 (73\%) or General Procedure B from 2-ethylphenol (55\%). Spectral data matched that of literature reported data.$^{16}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.62-6.56(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{br}$. s., 2 H), $2.47(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 152.5, 137.4, 129.4, 116.0, 114.1, 111.3, 55.2, 23.9, 12.7 ppm.

2-Isopropyl-4-methoxyaniline (10): Obtained using General Procedure A from SI-3 (65\%) or General Procedure B from 2-isopropylphenol (65\%). The second step was performed at $60{ }^{\circ} \mathrm{C}$. Spectral data matched that of literature reported data. ${ }^{17}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.70(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.51(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{br} . \mathrm{s} ., 2 \mathrm{H}), 2.86(\mathrm{spt}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$1.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,136.8,133.6,116.5,111.7$, 110.9, 55.3, 27.6, 22.0 ppm .

4-Methoxy-3,5-dimethylaniline (12): Obtained using General Procedure A from SI-5 (66\%). The second step required 2 days to react to completion. Spectral data matched that of literature reported data. ${ }^{18}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.33$ (s, 2 H), 3.65 (s, 3 H), 3.46 (br. s., 2 H), 2.20 ($\mathrm{s}, 6 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,142.0,131.0,115.0,59.6,15.8 \mathrm{ppm}$.

4-Methoxy-3-methylaniline (13): Obtained using General Procedure A from SI-6 (78\%). Spectral data matched that of literature reported data. ${ }^{19}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.63(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51-6.43(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{br} . \mathrm{s} ., 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.4,139.5,126.9,118.0,112.6,111.1,55.4,15.8 \mathrm{ppm}$.

3-Chloro-4-methoxyaniline (14): Obtained using General Procedure A at 1 mmol scale from SI-7 (57\%) or General Procedure B from 3-chlorophenol (20\%). Spectral data matched that of an authentic sample. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.72-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{dd}, J=2.5,8.8 \mathrm{~Hz}, 1$ H), 3.73 (s, 3 H), 3.38 (br. s., 2 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.6,140.8$, 122.6, 116.9, 114.0, 113.7, 56.6 ppm .

3-Bromo-4-methoxyaniline (15): Obtained using General Procedure A from SI-8 (64\%). Spectral data matched that of literature reported data. ${ }^{20} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{~d}, J$
$=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=2.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.33$ (br. s., 2 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.1,141.1,119.5,114.5,113.2,111.6,56.4 \mathrm{ppm}$.

p-Toluidine (17a) and 2-methoxy-4-methylaniline (17b): Obtained using General Procedure A from p-cresol giving 17a (59\%) and 17b (11\%). The second step required 2 days to react to completion. Spectral data matched that of literature reported data. ${ }^{21,22} \mathbf{1 7 a}:{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.69$ (br. s., 2 H), 2.26 (s, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.7, 129.3, 126.9, 114.8, $20.0 \mathrm{ppm} .17 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.65-6.61(\mathrm{~m}, 3 \mathrm{H}$, overlaps with $\mathbf{1 7 a}$), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.69$ (br. s., 2 H , overlaps with 17a), 2.30 (s, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.9,133.2,127.4,120.8,114.6$, 111.1, 54.9, 20.5 ppm .

4-tert-Butylaniline (18a) and 4-tert-butyl-2-methoxyaniline (18b): Obtained using General Procedure A with 1.5 equivalents of PIDA from 4-tert-butylphenol. The residue was subjected to flash column chromatography (Hexane:EtOAc, 4:1, with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) yielding 18a (20%) as a clear and colorless oil and 18b (19\%) as a white solid. Spectral data matched that of literature reported data. ${ }^{23,}{ }^{24}$ 18a: Rf (Hexane:EtOAc, 4:1): 0.30; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.21$ (m, 2 H), $6.70-6.66(\mathrm{~m}, 2 \mathrm{H}), 3.60\left(\mathrm{~s} ., 2 \mathrm{H}\right.$), 1.33 (br. s., 9 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.7, 141.3, 126.0, 114.9, 33.8, 31.5 ppm. 18b: Rf (Hexane:EtOAc, 4:1): 0.36; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=2.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1$ H), 3.89 (s, 3 H), 3.72 (br. s., 2 H), 1.33 (s, 9 H) ppm; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0$, $141.8,133.6,117.6,114.7,108.2,55.5,34.2,31.6 \mathrm{ppm}$.

tert-Butyl 4-aminophenylcarbamate (19): Obtained using General Procedure A from tert-butyl 4-hydroxyphenylcarbamate. The residue was subjected to flash column chromatography (Hexane:EtOAc, 2:1, with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield 19 (34\%) as a flaky white solid. Spectral data matched that of literature reported data. ${ }^{25} \mathrm{Rf}$ (Hexane:EtOAc, 2:1): 0.16; ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 7.14$ (br. d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.67-6.61$ (m, 2 H), 6.26 (br. s., 1 H), 3.57 (br. s., 2 H),
1.51 (s, 9 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3,142.3,129.6,120.9,115.5,79.9,28.3$ ppm.

Entry 1: 4-Isopropoxyaniline (24) and 4-methoxyaniline (2): Obtained using General Procedure A from SI-9 giving a mixture of 24 (75\%) ${ }^{26}$ and 2 (10\%). Spectral data matched that of literature reported data. 24: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.72-6.63(\mathrm{~m}, 2 \mathrm{H}$, overlaps with 2), $6.59-6.48(\mathrm{~m}, 2 \mathrm{H}$, overlaps with 2), 4.29 ($\mathrm{spt}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (br. s., 2 H , overlaps with 2), $1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,140.1,117.3$, 115.8, 70.5, 21.7 ppm .

Entry 2: 4-Ethoxyaniline (25) and 4-methoxyaniline (2): Obtained using General Procedure A from 4-ethoxyphenol giving a mixture of $\mathbf{2 5}(72 \%)^{27}$ and $2(21 \%)$. Spectral data matched that of literature reported data. 25: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$, overlaps with 2), 6.57 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$, overlaps with 2), $3.90(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.43 (br. s., 2 H , overlaps with 2), 1.33 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5,139.8,115.9,115.2$, $63.6,14.6 \mathrm{ppm}$.

Entry 3: 4-(4-Methoxybenzyloxy)aniline (26) and 4-methoxyaniline (2): Obtained using General Procedure A from SI-10 giving a mixture of 26 (37\%) ${ }^{28}$ and 2 (45\%). Spectral data matched that of literature reported data. 26: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (d, $J=8.2 \mathrm{~Hz}, 2$ H), $6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.60(\mathrm{~m}, 2 \mathrm{H}$, overlaps with 2), $4.90(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.32$ (br. s., 2 H , overlaps with 2) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,151.7,139.8,129.3,129.1,116.2,115.8,113.7,70.3,55.1 \mathrm{ppm}$.

Entry 4: 4-(Benzyloxy)aniline (27) and 4-methoxyaniline (2): Obtained using General Procedure A from 4-benzyloxyphenol giving a mixture of 27 (33\%) ${ }^{29}$ and 2 (52\%). Spectral data matched that of literature reported data. 27: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.23(\mathrm{~m}, 5 \mathrm{H})$, 6.78 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.56 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$, overlaps with 2), 4.92 (s, 2 H), 3.33 (br. s., 2 H, overlaps with 2) ppm; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.2,140.1,137.1,128.0,127.3$, 127.0, 115.8, 115.5, 70.1 ppm .

Entry 5: 4-(4-Nitrobenzyloxy)aniline (28) and 4-methoxyaniline (2): Obtained using General Procedure A from SI-11 giving a mixture of $28(5 \%)^{30}$ and 2 (57\%). Spectral data matched that of literature reported data. 19: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.18$ (br. s., 2 H , overlaps with 2) ppm; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 8.23$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67 (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54-6.49(\mathrm{~m}, 2 \mathrm{H}$, overlaps with 1), 5.11 ($\mathrm{s}, 2 \mathrm{H}$), 4.64 (s, 2 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2,148.4,145.0,140.6,127.5,123.7,116.4,115.9$, 69.3 ppm .

Entry 6: 4-Methoxyaniline (1): Obtained using General Procedure A from SI-12 at 0.5 mmol scale giving $2(76 \%)$ as the sole product. Spectral data matched that of literature reported data.

Entry 7: 4-Methoxyaniline (1): Obtained using General Procedure A from SI-13 giving 2 (21%) as the sole product. Spectral data matched that of literature reported data.

Entry 8: 4-(Benzyloxy)aniline (27): Obtained using General Procedure A from 4benzyloxyphenol at 0.5 mmol scale. The first step was performed in 2,2,2-trifluoroethanol (TFE), the second step was performed in TFE:methanol (1:1) at room temperature, giving 27 (44%) as the sole product. Spectral data matched that of literature reported data.

2
Entry 9: 4-Methoxyaniline (2): Obtained using General Procedure A from 4-methoxyphenol at 0.5 mmol scale. Both steps of the reaction were performed in TFE, giving 2 (43\%) as the sole product. Spectral data matched that of literature reported data.

Entry 10: 4-Methoxyaniline (2) \& 4-Ethoxyaniline (25): Obtained using General Procedure A from 4-methoxyphenol with the reaction performed in ethanol giving a mixture of 2 (16\%) and 25 (67\%). Spectral data matched that of literature reported data.

Entry 11: 4-Ethoxyaniline (25): Obtained using General Procedure A from 4-ethoxyphenol with the reaction performed in ethanol giving 25 (82%). Spectral data matched that of literature reported data.

Entry 12: 4-Methoxyaniline (2) and 4-isopropoxyaniline (24): Obtained using General Procedure A from 4-methoxyphenol with the reaction performed in isopropanol giving a mixture of $24(11 \%)$ and $2(5 \%)$. There were significant solubility issues in both steps of the reaction. Spectral data matched that of literature reported data.

1-Methoxy-4-nitrosobenzene (32): Obtained using General Procedure C from 4-methoxyphenol giving 32 (79\%). Spectral data matched that of literature reported data. ${ }^{31}{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,164.0,124.4,113.9,56.0 \mathrm{ppm}$.

2-Methoxy-1,3-dimethyl-5-nitrosobenzene (34): Obtained using General Procedure C from SI5 giving 34 (35%). The second step required 48 hr to react to completion. Spectral data matched that of literature reported data. ${ }^{32}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.39$ (s, 6 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,163.6,132.0,122.5,59.7,16.3 \mathrm{ppm}$; HRMS (EI) Exact mass cald. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 165.0790$, found: 165.0788.

1-Methoxy-2-methyl-4-nitrosobenzene (35): Obtained using General Procedure C from SI-6 giving $35(77 \%)$. The second step required 70 hr to react to completion. Spectral data matched that of literature reported data. ${ }^{32}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17$ (br. d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (br. s., 1 H), $7.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.96(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,163.8,127.5,127.0,120.1,109.1,56.1,16.2$ ppm; HRMS (EI) Exact mass cald. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 151.0633 , found: 151.0632.

2-Chloro-1-methoxy-4-nitrosobenzene (36): Obtained using General Procedure C from SI-7 giving 36 (48%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31$ (br. d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (br. s., 1 H), $7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,160.7,127.1$, 124.3, 119.5, 111.0, 56.9 ppm ; HRMS (EI) Exact mass cald. for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClNO}_{2}[\mathrm{M}]^{+}: 171.0087$, found: 171.0091.

2-Bromo-1-methoxy-4-nitrosobenzene (37): Obtained using General Procedure C from SI-8 giving 37 (59\%). The second step required 29 hr to react to completion. Spectral data matched that of literature reported data. ${ }^{32}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31$ (br. d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73 $(\mathrm{s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7$, $161.4,127.5,122.9,113.3,110.9,57.0 \mathrm{ppm}$; HRMS (EI) Exact mass cald. for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BrNO}_{2}[\mathrm{M}]^{+}$: 214.9582, found: 214.9584 .

1-Isopropoxy-4-nitrosobenzene (38) and 1-methoxy-4-nitrosobenzene (32): Obtained using General Procedure C from SI-9 giving a mixture of 38 ($47 \%)^{31}$ and 32 (9\%). Spectral data matched that of literature reported data for 38. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91$ (br. s., 2 H , overlaps with 20), 6.98 (d, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.74 ($\mathrm{spt}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.41 (d, $J=6.2 \mathrm{~Hz}, 6 \mathrm{H}$) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,163.9,124.4,115.0,71.0,21.9 \mathrm{ppm}$.

1. Mori, T.; Grimme, S.; Inoue, Y., A. J. Org. Chem. 2007, 72, 6998-7010.
2. Eisch, J. J.; Galle, J. E.; Piotrowski, A.; Tsai, M. R. J. Org. Chem. 1982, 47, 5051-5056.
3. Chang, J.; Wang, S.; Shen, Z.; Huang, G.; Zhang, Y.; Zhao, J.; Li, C.; Fan, F.; Song, C. Tetrahedron Lett. 2012, 53, 6755-6757.
4. Punna, S.; Meunier, S.; Finn, M. G. Org. Lett. 2004, 6, 2777-2779.
5. Nakamura, R.; Obora, Y.; Ishii, Y. Chem. Comm. 2008, 3417-3419.
6. Vyvyan, J. R.; Loitz, C.; Looper, R. E.; Mattingly, C. S.; Peterson, E. A.; Staben, S. T. S. J. Org. Chem. 2004, 69, 2461-2468.
7. Chuang, K. V.; Navarro, R.; Reisman, S. E. Chem. Sci. 2011, 2, 1086-1089.
8. Zhu, X.; Plunkett, K. N. J. Org. Chem. 2014, 79, 7093-7102.
9. Gu, Y. G.; Weitzberg, M.; Clark, R. F.; Xu, X.; Li, Q.; Zhang, T.; Hansen, T. M.; Liu, G.; Xin, Z.; Wang, X.; Wang, R.; McNally, T.; Camp, H.; Beutel, B. A.; Sham, H. L. J. Med. Chem. 2006, 49, 3770-3773.
10. Sajiki, H.; Hirota, K. Chem. Pharm. Bull. 2003, 51, 320-324.
11. Dichiarante, V.; Salvaneschi, A.; Protti, S.; Dondi, D.; Fagnoni, M.; Albini, A. J. Am. Chem. Soc. 2007, 129, 15919-15926.
12. Belyanin, M. L.; Stepanova, E. V.; Ogorodnikov, V. D. Carbohydr. Res. 2012, 363, 66-72.
13. Maddani, M. R.; Moorthy, S. K.; Prabhu, K. R. Tetrahedron 2010, 66, 329-333.
14. Zou, Q.; Wang, C.; Smith, J.; Xue, D.; Xiao, J. Chem. Eur. J. 2015, 21, 9656-9661.
15. Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. J. Org. Chem. 2009, 74, 4542-4546.
16. WO, 030469, 2009.
17. Bartoli, G.; Bosco, M.; Dal Pozzo, R.; Petrini, M. Tetrahedron 1987, 43, 4221-4226.
18. Cheemala, M. N.; Knochel, P. Org. Lett. 2007, 9, 3089-3092.
19. Knölker, H.-J.; Bauermeister, M.; Pannek, J.-B.; Wolpert, M. Synthesis 1995, 1995, 397-408.
20. Mitchell, H.; Leblanc, Y. J. Org. Chem. 1994, 59, 682-687.
21. Cantillo, D.; Baghbanzadeh, M.; Kappe, C. O. Angew. Chem. Int. Ed. 2012, 51, 10190-10193.
22. Okuyama, M.; Laman, H.; Kingsbury, S. R.; Visintin, C.; Leo, E.; Eward, K. L.; Stoeber, K.; Boshoff, C.; Williams, G. H.; Selwood, D. L. Nat. Methods 2007, 4, 153-159.
23. Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 10028-10029.
24. Buckingham, F.; Calderwood, S.; Checa, B.; Keller, T.; Tredwell, M.; Collier, T. L.; Newington, I. M.; Bhalla, R.; Glaser, M.; Gouverneur, V., Oxidative fluorination of N-arylsulfonamides. J. Fluorine Chem. 2015, 180, 33-39.
25. Schulze Isfort, C.; Kreickmann, T.; Pape, T.; Fröhlich, R.; Hahn, F. E. Chem. Eur. J. 2007, 13, 23442357.
26. Stylianides, N.; Danopoulos, A. A.; Pugh, D.; Hancock, F.; Zanotti-Gerosa, A. Organomet. 2007, 26, 5627-5635.
27. Kim, J. H.; Park, J. H.; Chung, Y. K.; Park, K. H. Adv. Syn. Catal. 2012, 354, 2412-2418.
28. Cui, H.; Carrero-Lérida, J.; Silva, A. P. G.; Whittingham, J. L.; Brannigan, J. A.; Ruiz-Pérez, L. M.; Read, K. D.; Wilson, K. S.; González-Pacanowska, D.; Gilbert, I. H. J. Med. Chem. 2012, 55, 10948-10957.
29. Cheung, C. W.; Surry, D. S.; Buchwald, S. L. Org. Lett. 2013, 15, 3734-3737.
30. Servinis, L.; Henderson, L. C.; Andrighetto, L. M.; Huson, M. G.; Gengenbach, T. R.; Fox, B. L. J. Mater. Chem. A 2015, 3, 3360-3371.
31. Prakash, G. K. S.; Gurung, L.; Schmid, P. C.; Wang, F.; Thomas, T. E.; Panja, C.; Mathew, T.; Olah, G. A. Tetrahedron Lett. 2014, 55, 1975-1978.
32. Bosch, E.; Kochi, J. K. J. Org. Chem. 1994, 59, 5573-5586.
33. Nakagawa, Y.; Uehara, K.; Mizuno, N. Inorg. Chem. 2005, 44, 9068-9075.
34. Yin, Z.; Zhang, J.; Wu, J.; Green, R.; Li, S.; Zheng, S. Org. Biomol. Chem. 2014, 12, 2854-2858.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) SI-1

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) SI-3

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) SI-5

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) SI-7

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) SI-9

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) SI-11

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 13 (with internal standard)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 17a \& 17b (with internal standard)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 18a \& 18b (with internal standard)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Entry 1: $\mathbf{1 5} \& 1$ (with internal standard)

NMR (400 MHz, CDCl_{3}) Entry 2: 25 \& 2 (with internal standard) ${ }^{1} \mathrm{H}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Entry 3: 26 \& 2 (with internal standard)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Entry 4: 27 \& 2 (with internal standard)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Entry 5: 28 \& 2 (with internal standard)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Entry 9: 2 (with internal standard)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 34

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 35$

Scheme 1:

Mixed quinone monoketals in the synthesis of anilines:

Phenol Derivative $20 \text { (R) }$	pKa ROH in MeCN at $298 K^{33}$	$\begin{gathered} \sigma_{\mathrm{ROH}} \\ (\mathrm{pKa} \mathrm{MeOH}-\text { pKa ROH) } \end{gathered}$	22 (R) (\%)	$23 \text { (Me) }$ (\%)	Alkoxide Retention $22 /(22+23)$
iPr	16.6	-1.50	75	10	0.88
Et	15.9	-0.80	72	21	0.77
$4-O M e-B n$	15.6	-0.50	37	45	0.45
Bn	15.4	-0.30	33	52	0.39
$4-\mathrm{NO}_{2}-\mathrm{Bn}$	14.9	0.20	5	57	0.08

Scheme 2:

Mixed quinone monoketals in the synthesis of ortho-chlorophenols (Zheng et. al.) ${ }^{34}$

Quinone Derivative 39 (R)	pKa ROH in MeCN at $298 K^{33}$	σ_{ROH} $(\mathrm{pKa} \mathrm{MeOH}-\mathrm{pKa} \mathrm{ROH})$	$\mathbf{4 0 (R)}$ $(\%)$	$\mathbf{4 1}(\mathrm{Me})$ $(\%)$	Alkoxide Retention $\mathbf{4 0} /(\mathbf{4 0}+\mathbf{4 1)}$
iPr	16.6	-1.50	75	10	0.88
Et	15.9	-0.80	66	19	0.78

Scheme 3:

Mixed quinone monoketals in the synthesis 4-alkoxyphenols:

Phenol Derivative $42 \text { (R) }$	pKa ROH in MeCN at $298 K^{33}$	$\begin{gathered} \sigma_{\mathrm{ROH}} \\ \text { (pKa MeOH - pKa ROH) } \end{gathered}$	$\begin{gathered} 44 \text { (R) } \\ (\%) \end{gathered}$	$45 \text { (Me) }$ (\%)	Alkoxide Retention $44 /(44+45)$
Et	15.9	-0.80	53	28	0.65

Modified Hammett Plot:

Optimization Table S1: Initial amine scope.

Entry	Solvent	Water	Nitrogen Source	Base	Temp	Yield (\%)
1	neat	N / A	BnNH_{2}	$\mathrm{~N} / \mathrm{A}$	$100^{\circ} \mathrm{C}$	Decomp
2	CHCl_{3}	$\mathrm{~N} / \mathrm{A}$	$\mathrm{BnNH}_{2}(1.2 \mathrm{eq})$	$\mathrm{Et}_{x} \mathrm{~N}$ $(2.4 \mathrm{eq})$	Reflux	No Reaction
3	CHCl_{3}	$\mathrm{~N} / \mathrm{A}$	Diethyl Aminomalonate $\mathrm{HCl}(2 \mathrm{eq})$	$\mathrm{Et} \mathrm{N}_{\mathrm{x}}$ $(2.4 \mathrm{eq})$	$5^{\circ} \mathrm{C}$	No Reaction
4	MeOH	5%	$\mathrm{H}-\mathrm{Gly}-\mathrm{OEt} \cdot \mathrm{HCl}(7 \mathrm{eq})$	$\mathrm{Et} \mathrm{N}_{3} \mathrm{~N}$ $(6 \mathrm{eq})$	Reflux	76%

Optimization Table S2: One-pot scope.

Phenol 4-Methoxyphenol

Entry	Starting Material	Solvent	PIDA	Water	Nitrogen Source	Base	Temp	Yield (\%)
1	Phenol	MeOH then $\mathrm{MeOH}: \mathrm{EtOH}$ (1:1)	2.1 eq	5\%	H-Gly-OEt•HCl (3 eq)	$\begin{gathered} \mathrm{NaHCO}_{3} \\ (2.6 \mathrm{eq}) \end{gathered}$	Reflux	35\%
2	Phenol	MeOH	2.1 eq	5\%	H-Gly-OEt•HCl (7eq)	$\begin{gathered} \mathrm{NaHCO}_{3} \\ (6 \mathrm{eq}) \end{gathered}$	Reflux	43\%
3	Phenol	MeOH	2.1 eq	5\%	H-Gly-OEt•HCl (7eq)	$\begin{gathered} \mathrm{Et}_{3} \mathrm{~N} \\ (9 \mathrm{eq}) \\ \hline \end{gathered}$	Reflux	42\%
4*	Phenol	MeOH	2.1 eq	5\%	H-Gly-OEt•HCl (7 eq)	$\begin{gathered} \mathrm{Et}_{3} \mathrm{~N} \\ (9 \mathrm{eq}) \end{gathered}$	$40^{\circ} \mathrm{C}$	44\%
5	4-Methoxyphenol	MeOH	1.05 eq	5\%	H-Gly-OEt•HCl (2 eq)	$\begin{gathered} \mathrm{Et}_{3} \mathrm{~N} \\ (4 \mathrm{eq}) \\ \hline \end{gathered}$	$40^{\circ} \mathrm{C}$	57\%
6*	4-Methoxyphenol	MeOH	1.1 eq	5\%	$\begin{gathered} \text { H-Gly-OEt } \cdot \mathrm{HCl} \\ (7 \mathrm{eq}) \\ \hline \end{gathered}$	$\begin{gathered} E t_{3} N \\ (9 \mathrm{eq}) \end{gathered}$	$40^{\circ} \mathrm{C}$	85\%

*Entries 4 and 6 were used for General Procedures \mathbf{B} and \mathbf{A} respectively

