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Direct three-dimensional patterning using nanoimprint lithography
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We demonstrated that nanoimprint lithograghifL ) can create three-dimensional patterns, sub-40
nm T-gates, and air-bridge structures, in a single step imprint in polymer and metal by lift-off. A
method based on electron beam lithography and reactive ion etching was developed to fabricate NIL
molds with three-dimensional protrusions. The low-cost and high-throughput nanoimprint
lithography for three-dimensional nanostructures has many significant applications such as
monolithic microwave integrated circuits and nanoelectromechanical systen200® American
Institute of Physics.[DOI: 10.1063/1.1375006

Conventional lithography creates two-dimensional pat-
terns in a resist film. To create three-dimensional patterns,
multiple lithography with alignment or single lithography 3
with multi-layer resists is required. For example, sub-quarter He
micron T-gates were fabricated by electron beam =
lithography—® or by its combination with photolithograph§
in a multilayer resist system. Another example that will ben-
efit from advantages of direct three-dimensional patterning is
the air-bridged structures widely used in monolithic micro-
wave integrated circuitMMIC)%°and nanoelectromechani-
cal system*~**(NEMS). For mass manufacturing, a cost ef-
fective three-dimensional nanofabrication technique is
preferable.

Nanoimprint lithography(NIL)*® has been used as a
sub-10 nm resolutidf patterning technology with low-cost
and high-throughput. Previously, NIL was used in patterning
planar nanostructures in resist. In this letter, we present the
demonstration of NIL in patterning three-dimensional nano-
structures, in particular with sub-40 nm metal T-gates and an
air-bridge structure.

The first step in our processing is to fabricate molds,
using electron beam lithography and reactive ion etching
(RIE). For making a T-gate mold, our approach is to make
T-shaped metal structures on mold surface first, and then
transfer them to upside down T-shaped mold protrusions.
The details of mold fabrication are shown schematically in
Fig. 1. A silicon wafer with a 420 nm thermal oxide was
used as mold substrate. To create three-dimensional open-
ings by one single step electron beam lithography, a bilayer
of electron sensitive resists was employed. It consisted of a
40 nm 950 000 molecular weight polymethyl methacrylate
(PMMA) bottom layer and 120 nm(RIMA-MAA ) copoly-
mer top layer. Each coating step was followed by a 30 min.
bake at 165 °C and atmosphere ambient. A 35 keV electron
beam was then used to define patterns according to the self-
aligned exposure scheme shown in Figa)2with T-gate
footprints having high dose exposure and top caps low dose
exposure. Since (RIMA-MAA ) has a higher exposure sen-
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FIG. 1. Schematic of T-gate mold fabrication for nanoimprint lithography:

sitivity, low dose exposuré0.2 nC/cm only opens trenches (1) pattern definition by electron beam lithographig) develop to create a
in PIMMA-MAA ) after development, while high dog&.0  three-dimensional resist openin(®) metal deposition(4) lift-off in ac-
etone,(5) RIE to transfer T-gate top cap to oxid@) Ni removal in nitric
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acid, (7) RIE to transfer T-gate footprint to oxide, arifl) Cr removal in
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FIG. 2. Electron beam exposure schemesgapfT-gate and(b) air-bridge.

For T-gate definition, high dose is used for exposing footprints and low dose
for top caps. For air-bridge, bridge posts and span receive high dose and low
dose exposure, respectively.

nC/cm opens trenches in both layers. T-shaped three-
dimensional openings were created i(MRIA-MAA )/
PMMA, after being developed in methanol/2-proponal
(volume ratio 1:) at room temperature. With the evaporation
of 10 nm chromium(Cr), 35 nm nickel(Ni), 15 nm chro-
mium, and lift-off in acetone, T-shaped metal masks were
created. Chromium serves as an etching mask, and nickel as
a sacrificial layer used to change the shape of metal mask in
the following process. Reactive ion etching with £HF, gas
chemistry was used twice to transfer these metal T-gates to
oxide. A wide rectangular oxide beaf-gate top capwas
formed by the first etching step. The nickel layer was then
dissolved in the diluted nitric acid, resulting in T-shaped
metal masks being transformed to narrow Cr stripes. After
the second etching step, a narrower oxide bé&gate foot-
print) was created on the wide rectangular oxide beam. An
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FIG. 3. A schematic of T-gate fabrication by nanoimprint lithograptiy:

FIG. 4. Metal T-gates with da) 40, (b) 90, and(c) 140 nm footprint,
fabricated by nanoimprint lithography and lift-off.

upside down T-shaped oxide protrusion was thus produced.
Finally Cr stripes were stripped off in chromium etchant
(CR-7). T-gates with different sized footprints were pat-
terned on one mold.

To make an air-bridge mold, the same processing as
above was used. Figurdl® shows the scheme for electron
beam lithography, with bridge posts receiving high dose ex-
posure and bridge span having low dose exposure. Air-
bridged metal masks standing on an oxide surface were cre-
ated after development, metal evaporati@r/Ni/Cr), and
lift-off. Two RIE steps were then used to transfer them to
upside down air-bridged oxide protrusions. The fabrication
of T-gate and air-bridge mold shows that free-standing metal
masks can also guarantee optimal etching anisotropy with an
optimized etching recipe being used.

and(2) imprint using a T-gate mold to create a three-dimensional opening in The molds were then used to imprint 520 nm thick

PMMA,; then separate mold from substratg) pattern transfer down to

PMMA through oxygen plasma to remove the residual PMMA at the trench1® 000 molecular weight PMMA spun on a silicon substrate.

bottom, (4) metal deposition, anb) lift-off in acetone.

After the residual PMMA at trench bottom is removed by
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ture processing are available. NIL is promising in making
NEMS elements, combined with surface micromachining
technique.

Our molds with three-dimensional protrusions were
made using conventional electron beam lithography, but they
can imprint three-dimensional nanostructures much faster
than conventional nanofabrication techniques. More impor-
tant, these molds can be used repeatedly, thus counteracting
processing efforts to fabricating them. Due to simplified pro-
cessing steps of making these three-dimensional nanostruc-
tures, low-cost and high-throughput are guaranteed when us-
ing NIL. Besides these advantages crucial for future mass
FIG. 5. Metal air-bridge structure fabricated by nanoimprint lithography a"dproduction, high resolution is maintained as well during im-
lift-off. . . L. .

printing, with the fabrication of sub-40 nm T-gates being an

example.
oxygen RIE, PMMA templates were transferred to metals by  In conclusion, we demonstrated the feasibility of sub-40
evaporation of titaniun{Ti) and gold(Au), and lift-off. Ti-  nm T-gates and air-bridge fabrication using nanoimprint li-

tanium promotes adhesion between gold and silicon sulthography at low-cost and high-throughput. Nanoimprint li-
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