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Abstract

Spiking neural networks (SNNs) that enables energy effi-
cient implementation on emerging neuromorphic hardware
are gaining more attention. Yet now, SNNs have not shown
competitive performance compared with artificial neural net-
works (ANNs), due to the lack of effective learning algo-
rithms and efficient programming frameworks. We address
this issue from two aspects: (1) We propose a neuron nor-
malization technique to adjust the neural selectivity and de-
velop a direct learning algorithm for deep SNNs. (2) Via
narrowing the rate coding window and converting the leaky
integrate-and-fire (LIF) model into an explicitly iterative ver-
sion, we present a Pytorch-based implementation method to-
wards the training of large-scale SNNs. In this way, we are
able to train deep SNNs with tens of times speedup. As a
result, we achieve significantly better accuracy than the re-
ported works on neuromorphic datasets (N-MNIST and DVS-
CIFAR10), and comparable accuracy as existing ANNs and
pre-trained SNNs on non-spiking datasets (CIFAR10). To our
best knowledge, this is the first work that demonstrates direct
training of deep SNNs with high performance on CIFAR10,
and the efficient implementation provides a new way to ex-
plore the potential of SNNs.

Introduction

Spiking neural networks, a sub-category of brain-inspired
computing models, use spatio-temporal dynamics to mimic
neural behaviors and binary spike signals to communi-
cate between units. Benefit from the event-driven process-
ing paradigm (computation occurs only when the unit re-
ceives spike event), SNNs can be efficiently implemented on
specialized neuromorphic hardware for power-efficient pro-
cessing, such as SpiNNaker (Khan et al. 2008), TrueNorth
(Merolla et al. 2014), and Loihi (Davies et al. 2018).

As well known, the powerful error backpropagation (BP)
algorithm and larger and larger model size enabled by
ANN-oriented programming frameworks (e.g. Tensorflow,
Pytorch) has boosted the wide applications of ANNs in
recent years. However, the rich spatio-temporal dynamics
and event-driven paradigm make SNNs much different from
conventional ANNs. Till now SNNs have not yet demon-
strated comparable performance to ANNs due to the lack
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of effective learning algorithms and efficient programming
frameworks, which greatly limit the network scale and ap-
plication spectrum (Tavanaei et al. 2018).

In terms of learning algorithms, three challenges exist for
training large-scale SNNs. First, the complex neural dynam-
ics in both spatial and temporal domains make BP obscure.
Specifically, the neural activities not only propagate layer by
layer in spatial domain, but also affect the states along the
temporal direction, which is more complicated than typical
ANNs. Second, the event-driven spiking activity is discrete
and non-differentiable, which impedes the BP implementa-
tion based on gradient descent. Third, SNNs are more sensi-
tive to parameter configuration because of binary spike rep-
resentation. Especially in the training phase, we should si-
multaneously ensure timely response for presynaptic stimu-
lus and avoid too many spikes that will probably degrade the
neuronal selectivity. Although previous work has proposed
many techniques to adjust firing rate, such as model-based
normalization (Diehl et al. 2015) and spike-based normal-
ization (Sengupta et al. 2018), all of them are specialized for
ANNs-to-SNNs conversion learning, not for the direct train-
ing of SNNs as considered in this paper.

In terms of programming frameworks, we lack suitable
platforms to support the training of deep SNNs. Although
there exist several platforms serving for simulating biolog-
ical features of SNNs with varied abstraction levels (Brette
et al. 2007; Carnevale and Hines 2006; Hazan et al. 2018),
little work is designed for training deep SNNs. Researchers
have to build application-oriented models from scratch and
the training speed is usually slow. On the other hand, emerg-
ing ANN-oriented frameworks can provide much better ef-
ficiency, especially for large models, hence a natural idea is
to map the SNN training onto these frameworks. However,
these frameworks are designed for aforementioned ANN al-
gorithms so that they cannot be directly applied to SNNs
because of the neural dynamic of spiking neurons.

In this paper, we propose a full-stack solution towards
faster, larger, and better SNNs from both algorithm and pro-
gramming aspects. We draw inspirations from the recent
work (Wu et al. 2018), which proposes the spatio-temporal
back propagation (STBP) method for the direct training of
SNNs, and significantly extend it to much deeper structure,
larger dataset, and better performance. We first propose the
NeuNorm method to balance neural selectivity and increase
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the performance. Then we improve the rate coding to fasten
the convergence and convert the LIF model into an explicitly
iterative version to make it compatible with a machine learn-
ing framework (Pytorch). As a results, compared to the run-
ning time on Matlab, we achieve tens of times speedup that
enables the direct training of deep SNNs. The best accuracy
on neuromorphic datasets (N-MNIST and DVS-CIFAR10)
and comparable accuracy as existing ANNs and pre-trained
SNNs on non-spiking datasets (CIFAR10) are demonstrated.
This work enables the exploration of direct training of high-
performance SNNs and facilitates the SNN applications via
compatible programming within the widely used machine
learning (ML) framework.

Related work
We aim to direct training of deep SNNs. To this end, we
mainly make improvements on two aspects: (1) learning al-
gorithm design; (2) training acceleration optimization. We
chiefly overview the related works in recent years.

Learning algorithm for deep SNNs. There exist three
ways for SNN learning: i) unsupervised learning such as
spike timing dependent plasticity (STDP); ii) indirect super-
vised learning such as ANNs-to-SNNs conversion; iii) di-
rect supervised learning such as gradient descent-based back
propagation. However, by far most of them limited to very
shallow structure (network layer less than 4) or toy small
dataset (e.g. MNIST, Iris), and little work points to direct
training deep SNNs due to their own challenges.

STDP is biologically plausible but the lack of global
information hinders the convergence of large models, es-
pecially on complex datasets (Timothe and Thorpe 2007;
Diehl and Matthew 2015; Tavanaei and Maida 2017).

The ANNs-to-SNNs conversion (Diehl et al. 2015; Cao,
Chen, and Khosla 2015; Sengupta et al. 2018; Hu et al.
2018) is currently the most successful method to model
large-scale SNNs. They first train non-spiking ANNs and
convert it into a spiking version. However, this indirect train-
ing help little on revealing how SNNs learn since it only im-
plements the inference phase in SNN format (the training is
in ANN format). Besides, it adds many constraints onto the
pre-trained ANN models, such as no bias term, only average
pooling, only ReLU activation function, etc. With the net-
work deepens, such SNNs have to run unacceptable simula-
tion time (100-1000 time steps) to obtain good performance.

The direct supervised learning method trains SNNs with-
out conversion. They are mainly based on the conventional
gradient descent. Different from the previous spatial back-
propagation (Lee, Delbruck, and Pfeiffer 2016; Jin, Li, and
Zhang 2018), (Wu et al. 2018) proposed the first backprop-
agation in both spatial and temporal domains to direct train
SNNs, which achieved state-of-the-art accuracy on MNIST
and N-MNIST datasets. However, the learning algorithm is
not optimized well and the slow simulation hinders the ex-
ploration onto deeper structures.

Normalization. Many normalization techniques have
been proposed to improve the convergence (Ioffe and
Szegedy 2015; Wu and He 2018). Although these methods
have achieved great success in ANNs, they are not suitable
for SNNs due to the complex neural dynamics and binary

spiking representation of SNNs. Furthermore, in terms of
hardware implementation, batch-based normalization tech-
niques essentially incur lateral operations across different
stimuluses which are not compatible with existing neuro-
morphic platforms (Merolla et al. 2014; Davies et al. 2018).
Recently, several normalization methods (e.g. model-based
normalization (Diehl et al. 2015), data-based normalization
(Diehl et al. 2015), spike-based normalization (Sengupta
et al. 2018)) have been proposed to improve SNN perfor-
mance. However, such methods are specifically designed for
the indirect training with ANNs-to-SNNs conversion, which
didn’t show convincing effectiveness for direct training of
SNNs targeted by this work.

SNN programming frameworks. There exist several
programming frameworks for SNN modeling, but they have
different aims. NEURON (Carnevale and Hines 2006) and
Genesis (Bower and Beeman 1998) mainly focus on the
biological realistic simulation from neuron functionality to
synapse reaction, which are more beneficial for the neuro-
science community. BRIAN2 (Goodman and Brette 2009)
and NEST (Gewaltig and Diesmann 2007) target the simu-
lation of larger scale SNNs with many biological features,
but not designed for the direct supervised learning for high
performance discussed in this work. BindsNET (Hazan et
al. 2018) is the first reported framework towards combining
SNNs and practical applications. However, to our knowl-
edge, the support for direct training of deep SNNs is still
under development. Furthermore, according to the statis-
tics from ModelDB 1, in most cases researchers even sim-
ply program in general-purpose language, such as C/C++
and Matlab, for better flexibility. Besides the different aims,
programming from scratch on these frameworks is user un-
friendly and the tremendous execution time impedes the de-
velopment of large-scale SNNs. Instead of developing a new
framework, we provide a new solution to establish SNNs by
virtue of mature ML frameworks which have demonstrated
easy-to-use interface and fast running speed.

Approach

In this section, we first convert the LIF neuron model into
an easy-to-program version with the format of explicit it-
eration. Then we propose the NeuNorm method to adjust
the neuronal selectivity for improving model performance.
Furthermore, we optimize the rate coding scheme from en-
coding and decoding aspects for faster response. Finally, we
describe the whole training and provide the pseudo codes for
Pytorch.

Explicitly iterative LIF model

LIF model is commonly used to describe the behavior of
neuronal activities, including the update of membrane po-
tential and spike firing. Specifically, it is governed by

τ
du

dt
= −u+ I, u < Vth (1)

fire a spike & u = ureset, u ≥ Vth (2)

1ModelDB is an open website for storing and sharing computa-
tional neuroscience models.
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where u is the membrane potential, τ is a time constant,
I is pre-synaptic inputs, and Vth is a given fire threshold.
Eq. (1)-(2) describe the behaviors of spiking neuron in a
way of updating-firing-resetting mechanism (see Fig. 1a-b).
When the membrane potential reaches a given threshold, the
neuron will fire a spike and u is reset to ureset; otherwise,
the neuron receives pre-synapse stimulus I and updates its
membrane potential according to Eq. (1).

Figure 1: Illustration of iterative LIF. Spike communica-
tion between neurons; (b) The update of membrane potential
according to Eq. (1)-Eq. (2); (c) Iterative LIF described by
Eq. (5)-Eq. (6).

The above differential expressions described in continu-
ous domain are widely used for biological simulations, but
it is too implicit for the implementations on mainstream ML
frameworks (e.g. Tensorflow, Pytorch) since the embedded
automatic differentiation mechanism executes codes in a dis-
crete and sequential way (Paszke et al. 2017). Therefore, it
motivates us to convert Eq. (1)-(2) into an explicitly iterative
version for ensuring computational tractability. To this end,
we first use Euler method to solve the first-order differential
equation of Eq. (1), and obtain an iterative expression

u
t+1 = (1−

dt

τ
)ut +

dt

τ
I. (3)

We denote the factor (1 − dt
τ
) as a decay factor kτ1 and

expand the pre-synaptic input I to a linearing summation∑
j Wjo(j). The subscript j indicates the index of pre-

synapse and o(j) denotes the corresponding pre-synaptic
spike which is binary (0 or 1). By incorporating the scaling

effect of dt
τ

into synapse weights W , we have

u
t+1 = kτ1u

t +
∑

j

Wjo(j). (4)

Next we add the firing-and-resetting mechanism to Eq.
(4). By assuming ureset = 0 as usual, we get the final update
equations as below

u
t+1,n+1

(i) = kτ1u
t,n+1

(i)(1 − o
t,n+1

(i)) +

l(n)∑

j=1

w
n
ijo

t+1,n
(j), (5)

o
t+1,n+1

(i) = f(u
t+1,n+1

(i) − Vth), (6)

where n and l(n) denote the n-th layer and its neuron num-
ber, respectively, wij is the synaptic weight from the j-th
neuron in pre-layer (n) to the i-th neuron in the post-layer
(n + 1). f(·) is the step function, which satisfies f(x) = 0
when x < 0, otherwise f(x) = 1 . Eq (5)-(6) reveal that fir-
ing activities of ot,n+1 will affect the next state ot+1,n+1 via
the updating-firing-resetting mechanism (see Fig. 1c). If the

neuron emits a spike at time step t, the membrane potential
at t + 1 step will clear its decay component kτ1ut via the

term (1− o
t,n+1
j ), and vice versa.

Through Eq. (5)-(6), we convert the implicit Eq. (1)-(2)
into an explicitly version, which is easier to implement on
ML framework. We give a concise pseudo code based on
Pytorch for an explicitly iterative LIF model in Algorithm 1.

Algorithm 1 State update for an explicitly iterative LIF neu-
ron at time step t+ 1 in the (n+ 1)-th layer.

Require: Previous potential ut,n+1 and spike output ot,n+1, cur-
rent spike input ot+1,n, and weight vector W

Ensure: Next potential ut+1,n+1 and spike output ot+1,n+1

Function StateUpdate(W ,ut,n+1, ot,n+1, ot+1,n)
1: ut+1,n+1 = kτ1u

t,n+1(1− ot,n+1) +Wot+1,n;
2: ot+1,n+1 = f(ut+1,n+1 − Vth)
3: return ut+1,n+1, ot+1,n+1

Neuron normalization (NeuNorm)

Considering the signal communication between two convo-
lutional layers, the neuron at the location (i, j) of the f -th
feature map (FM) in the n-th layer receives convolutional
inputs I , and updates its membrane potential by

u
t+1,n+1
f

(i, j) = kτ1u
t,n+1
f

(i, j)(1 − o
t,n+1
f

(i, j)) + I
t+1,n+1
f

(i, j),

(7)

I
t+1,n+1
f

(i, j) =
∑

c

W
n
c,f ⊛ o

t+1,n
c (R(i, j)), (8)

where Wn
c,f denotes the weight kernel between the c-th FM

in layer n and the f -th FM in layer n + 1, ⊛ denotes the
convolution operation, and R(i, j) denotes the local recep-
tive filed of location (i, j).

An inevitable problem for training SNNs is to balance the
whole firing rate because of the binary spike communication
(Diehl et al. 2015; Wu et al. 2018). That is to say, we need to
ensure timely and selective response to pre-synaptic stimu-
lus but avoid too many spikes that probably harm the effec-
tive information representation. In this sense, it requires that
the strength of stimulus maintains in a relatively stable range
to avoid activity vanishing or explosion as network deepens.

Observing that neurons respond to stimulus from different
FMs, it motivates us to propose an auxiliary neuron method
for normalizing the input strength at the same spatial loca-
tions of different FMs (see Fig. 2). The update of auxiliary
neuron status x is described by

x
t+1,n(i, j) = kτ2x

t,n(i, j) +
v

F

∑

f

o
t+1,n
f (i, j), (9)

where kτ2 denotes the decay factor, v denotes the constant
scaling factor, and F denotes the number of FMs in the n-th
layer. In this way, Eq.(9) calculates the average response to
the input firing rate with momentum term kτ2x

t,n(i, j). For
simplicity we set kτ2 + vF = 1.

Next we suppose that the auxiliary neuron receives the
lateral inputs from the same layer, and transmits signals to
control the strength of stimulus emitted to the next layer
through trainable weights Un

c , which has the same size as
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Figure 2: Illustration of NeuNorm. Blue squares represent
the normal neuronal FMs, and orange squares represents the
auxiliary neuronal FMs. The auxiliary neurons receive lat-
eral inputs (solid lines), and fire signals (dotted lines) to con-
trol the strength of stimulus emitted to the next layer.

the FM. Hence, the inputs I of neurons in the next layer can
be modified by

I
t+1,n+1
f (i, j) =

∑

c

W
n
c,f ⊛ (ot+1,n

c (R(i, j))− ...

U
n
c (R(i, j)) · xt+1,n(R(i, j))). (10)

Inferring from Eq. (10), NeuNorm method essentially
normalize the neuronal activity by using the input statistics
(moving average firing rate). The basic operation is sim-
ilar with the zero-mean operation in batch normalization.
But NeuNorm has different purposes and different data pro-
cessing ways (normalizing data along the channel dimen-
sion rather than the batch dimension). This difference brings
several benefits which may be more suitable for SNNs.
Firstly, NeuNorm is compatible with neuron model (LIF)
without additional operations and friendly for neuromor-
phic implementation. Besides that, NeuNorm is more bio-
plausible. Indeed, the biological visual pathways are not in-
dependent. The response of retina cells for a particular lo-
cation in an image is normalized across adjacent cell re-
sponses in the same layer (Carandini and Heeger 2012;
Mante, Bonin, and Carandini 2008). And inspired by these
founding, many similar techniques for exploiting channel
features have been successfully applied to visual recogni-
tion, such as group normalization (GN) (Wu and He 2018),
DOG (Daral 2005) and HOG (Daral 2005). For example,
GN divides FMs of the same layer into several groups and
normalizes the features within each group also along chan-
nel dimension.

Encoding and decoding schemes

To handle various stimulus patterns, SNNs often use abun-
dant coding methods to process the input stimulus. For vi-
sual recognition tasks, a popular coding scheme is rate cod-
ing. On the input side, the real-valued images are converted
into a spike train whose fire rate is proportional to the pixel
intensity. The spike sampling is probabilistic, such as fol-
lowing a Bernoulli distribution or a Poisson distribution. On
the output side, it counts the firing rate of each neuron in
the last layer over given time windows to determine network
output. However, the conventional rate coding suffers from
long simulation time to reach good performance. To solve
this problem, we take a simpler coding scheme to accelerate
the simulation without compromising the performance.

Encoding. One requirement for long simulation time is
to reduce the sampling error when converting real-value in-
puts to spike signals. Specifically, given the time window
T , a neuron can represent information by T + 1 levels of
firing rate, i.e. {0, 1

T
, ..., 1} (normalized). Obviously, the

rate coding requires sufficient long window to achieve sat-
isfactory precision. To address this issue, we assign the first
layer as an encoding layer and allow it to receive both spike
and non-spike signals (compatible with various datasets). In
other words, neurons in the encoding layer can process the
even-driven spike train from neuromorphic dataset naturally,
and can also convert real-valued signals from non-spiking
dataset into spike train with enough precision. In this way,
the precision is remained to a great extent without depending
much on the simulation time.

Decoding. Another requirement for long time window is
the representation precision of network output. To alleviate
it, we adopt a voting strategy (Diehl and Matthew 2015) to
decode the network output. We configure the last layer as
a voting layer consisting of several neuron populations and
each output class is represented by one population. In this
way, the burden of representation precision of each neuron
in the temporal domain (firing rate in a given time windows)
is transferred much to the spatial domain (neuron group cod-
ing). Thus, the requirement for long simulation time is sig-
nificantly reduced. For initialization, we randomly assign a
label to each neuron; while during training, the classifica-
tion result is determined by counting the voting response of
all the populations.

In a nutshell, we reduce the demand for long-term window
from above two aspects, which in some sense extends the
representation capability of SNNs in both input and output
sides. We found similar coding scheme is also leveraged by
previous work on ANN compression (Tang, Hua, and Wang
2017; Hubara, Soudry, and Ran 2016). It implies that, re-
gardless of the internal lower precision, maintaining the first
and last layers in higher precision are important for the con-
vergence and performance.

Overall training implementation

We define a loss function L measuring the mean square er-
ror between the averaged voting results and label vector Y
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within a given time window T

L =∥ Y −
1

T

T∑

t=1

Mo
t,N ∥22, (11)

where ot,N denotes the voting vector of the last layer N at
time step t. M denotes the constant voting matrix connecting
each voting neuron to a specific category.

From the explicitly iterative LIF model, we can see that
the spike signals not only propagate through the layer-by-
layer spatial domain, but also affect the neuronal states
through the temporal domain. Thus, gradient-based train-
ing should consider both the derivatives in these two do-
mains. Based on this analysis, we integrate our modified
LIF model, coding scheme, and proposed NeuNorm into the
STBP method (Wu et al. 2018) to train our network. When
calculating the derivative of loss function L with respect to
u and o in the n-th layer at time step t, the STBP propagates

the gradients ∂L

∂o
t,n+1
i

from the (n + 1)-th layer and ∂L

∂o
t+1,n
i

from time step t+ 1 as follows

∂L

∂o
t,n
i

=

l(n+1)∑

j=1

∂L

∂o
t,n+1
i

∂o
t,n+1
j

∂o
t,n
i

+
∂L

∂o
t+1,n
i

∂o
t+1,n
i

∂o
t,n
i

, (12)

∂L

∂u
t,n
i

=
∂L

∂o
t,n
i

∂o
t,n
i

∂u
t,n
i

+
∂L

∂o
t+1,n
i

∂o
t+1,n
i

∂u
t,n
i

. (13)

A critical problem in training SNNs is the non-
differentiable property of the binary spike activities. To
make its gradient available, we take the rectangular function
h(u) to approximate the derivative of spike activity (Wu et
al. 2018). It yields

h(u) =
1

a
sign(|u− Vth| <

a

2
), (14)

where the width parameter a determines the shape of h(u).
Theoretically, it can be easily proven that Eq. (14) satisfies

lim
a→0+

h(u) =
df

du
. (15)

Based on above methods, we also give a pseudo code for
implementing the overall training of proposed SNNs in Py-
torch, as shown in Algorithm 2.

Experiment

We test the proposed model and learning algorithm on both
neuromorphic datasets (N-MNIST and DVS-CIFAR10) and
non-spiking datasets (CIFAR10) from two aspects: (1) train-
ing acceleration; (2) application accuracy. The dataset intro-
duction, pre-processing, training detail, and parameter con-
figuration are summarized in Appendix.

Network structure

Tab. 1 and Tab. 2 provide the network structures for accel-
eration analysis and accuracy evaluation, respectively. The
structure illustrations of what we call AlexNet and CIFAR-
Net are also shown in Appendix, which are for fair compar-
ison to pre-trained SNN works with similar structure and to
demonstrate comparable performance with ANNs, respec-
tively. It is worth emphasizing that previous work on direct

Algorithm 2 Training codes for one iteration.

Require: Network inputs {Xt}Tt , class label Y , parameters and

states of convolutional layers ({W l, U l , u0,l, o0,l}N1
l=1) and

fully-connected layers ({W l, u0,l, o0,l}N2
l=1), simulation win-

dows T , voting matrix M // Map each voting neuron to label.
Ensure: Update network parameters.

Forward (inference):
1: for t = 1 to T do
2: ot,1← EncodingLayer(Xt)
3: for l = 2 to N1 do
4: xt,l−1← AuxiliaryUpdate(xt−1,l−1, ot,l−1) // Eq. (9).

5: (ut,l, ot,l) ← StateUpdate(W l−1, ut−1,l, ot−1,l,
ot,l−1, U l−1, xt,l−1) // Eq. (6)-(7), and (9)-(10)

6: end for
7: for l = 1 to N2 do
8: (ut,l, ot,l)← StateUpdate(W l−1, ut−1,l, ot−1,l, ot,l−1)

// Eq. (5)-(6)
9: end for

10: end for

Loss:
11: L← ComputeLoss(Y , M , ot,N2 ) // Eq. (11).

Backward:
12: Gradient initialization: ∂L

∂oT+1,∗ = 0.
13: for t = T to 1 do
14: ∂L

∂ot,N2
← LossGradient(L,M, ∂L

∂ot+1,N2
)

// Eq. (5)-(6), and (11)-(13).
15: for l = N2 − 1 to 1 do
16: ( ∂L

∂ot,l
, ∂L

∂ut,l , ∂L

∂W l ) ← BackwardGradient( ∂L

∂ot,l+1 ,
∂L

∂ot+1,l ,W
l) // Eq. (5)-(6), and (12)-(13).

17: end for
18: for l = N1 to 2 do
19: ( ∂L

∂ot,l
, ∂L

∂ut,l , ∂L

∂W l−1 , ∂L

∂Ul−1 ) ← BackwardGradient(
∂L

∂ot,l+1 , ∂L

∂ot+1,l ,W
l−1, U l−1)

// Eq. (6)-(7), (9)-(10), and (12)-(13).
20: end for
21: end for

22: Update parameters based on gradients.

Note: All the parameters and states with layer index l in the
N1 or N2 loop belong to the convolutional or fully-connected
layers, respectively. For clarity, we just use the symbol of l.

training of SNNs demonstrated only shallow structures (usu-
ally 2-4 layers), while our work for the first time can imple-
ment a direct and effective learning for larger-scale SNNs
(e.g. 8 layers).

Training acceleration

Runtime. Since Matlab is a high-level language widely used
in SNN community, we adopt it for the comparison with our
Pytorch implementation. For fairness, we made several con-
figuration restrictions, such as software version, parameter
setting, etc. More details can be found in Appendix.

Fig. 3 shows the comparisons about average runtime per
epoch, where batch size of 20 is used for simulation. Py-
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Table 1: Network structures used for training acceleration.
Neuromorphic Dataset

Small 128C3(Encoding)-AP2-128C3-AP2-512FC-Voting
Middle 128C3(Encoding)-128C3-AP2-256-AP2-1024FC-Voting
Large 128C3(Encoding)-128C3-AP2-384C3-384C3-AP2-

1024FC-512FC-Voting

Non-spiking Dataset
Small 128C3(Encoding)-AP2-256C3-AP2-256FC-Voting
Middle 128C3(Encoding)-AP2-256C3-512C3-AP2-512FC-Voting
Large 128C3(Encoding)-256C3-AP2-512C3-AP2-1024C3-512C3-

1024FC-512FC-Voting

Table 2: Network structures used for accuracy evaluation.
Neuromorphic Dataset

Our model 128C3(Encoding)-128C3-AP2-128C3-256C3-AP2-
1024FC-Voting

Non-spiking Dataset
AlexNet 96C3(Encoding)-256C3-AP2-384C3-AP2-384C3-

256C3-1024FC-1024FC-Voting
CIFARNet 128C3(Encoding)-256C3-AP2-512C3-AP2-1024C3-

512C3-1024FC-512FC-Voting

torch is able to provide tens of times acceleration on all three
datasets. This improvement may be attributed to the special-
ized optimizations for the convolution operation in Pytorch.
In contrast, currently these optimizations have not been well
supported in most of existing SNN platforms. Hence build-
ing spiking model may benefit a lot from DL platform.

Figure 3: Average runtime per epoch.

Network scale. If without acceleration, it is difficult to
extend most existing works to large scale. Fortunately, the
fast implementation in Pytorch facilitates the construction of
deep SNNs. This makes it possible to investigate the influ-
ence of network size on model performance. Although it has
been widely studied in ANN field, it has yet to be demon-
strated on SNNs. To this end, we compare the accuracy un-
der different network sizes, shown in Fig. 4. With the size
increases, SNNs show an apparent tendency of accuracy im-
provement, which is consistent with ANNs.

Simulation length. SNNs need enough simulation steps
to mimic neural dynamics and encode information. Given
simulation length T , it means that we need to repeat the in-
ference process T times to count the firing rate. So the net-
work computation cost can be denoted as O(T ). For deep
SNNs, previous work usually requires 100 even 1000 steps
to reach good performance (Sengupta et al. 2018), which
brings huge computational cost. Fortunately, by using the
proposed coding scheme in this work, the simulation length

Figure 4: Influence of network scale. Three different net-
work scales are defined in Tab.1.

can be significantly reduced without much accuracy degra-
dation. As shown in Fig. 5, although the longer the simu-
lation windows leads to better results, our method just re-
quires a small length (4 − 8) to achieve satisfactory results.
Notably, even if extremely taking one-step simulation, it can
also achieve not bad performance with significantly faster
response and lower energy, which promises the application
scenarios with extreme restrictions on response time and en-
ergy consumption.

Figure 5: Influence of simulation length on CIFAR10.

Application accuracy

Neuromorphic datasets. Tab. 3 records the current state-of-
the-art results on N-MNIST datasets. (Li 2018) proposes a
technique to restore the N-MNIST dataset back to the static
MNIST, and achieves 99.23% accuracy using non-spiking
CNNs. Our model can naturally handle raw spike streams
using direct training and achieves significantly better accu-
racy. Furthermore, by adding NeuNorm technique, the accu-
racy can be improved up to 99.53%.

Tab. 4 further compares the accuracy on DVS-CIFAR10
dataset. DVS-CIFAR10 is more challenging than N-MNIST
due to the larger scale, and it is also more challenging than
non-spiking CIFAR10 due to less samples and noisy en-
vironment (Dataset introduction in Appendix). Our model
achieves the best performance with 60.5%. Moreover, ex-
perimental results indicate that NeuNorm can speed up the
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Table 3: Comparison with existing results on N-MNIST.
Model Method Accuracy

(Neil, Pfeiffer, and Liu 2016) LSTM 97.38%
(Lee, Delbruck, and Pfeiffer 2016) Spiking NN 98.74%

(Wu et al. 2018) Spiking NN 98.78%
(Jin, Li, and Zhang 2018) Spiking NN 98.93%

(Neil and Liu 2016) Non-spiking CNN 98.30%
(Li 2018) Non-spiking CNN 99.23%

Our model without NeuNorm 99.44%
Our model with NeuNorm 99.53%

Table 4: Comparison with existing results on DVS-
CIFAR10.

Model Method Accuracy

(Orchard et al. 2015) Random Forest 31.0%
(Lagorce et al. 2017) HOTS 27.1%
(Sironi et al. 2018) HAT 52.4%
(Sironi et al. 2018) Gabor-SNN 24.5%

Our model without NeuNorm 58.1%
Our model with NeuNorm 60.5%

convergence.Without NeuNorm the required training epochs
to get the best accuracy 58.1% is 157, while its reduced to
103 with NeuNorm.

Non-spiking dataset. Tab. 5 summarizes the results of
existing state-of-the-art results and our CIFARNet on CI-
FAR10 dataset. Prior to our work, the best direct training
method only achieves 75.42% accuracy. Our model is signif-
icantly better than this result, with 15% improvement (reach-
ing 90.53%). We also make a comparison with non-spiking
ANN model and other pre-trained works (ANNs-to-SNNs
conversion) on the similar structure of AlexNet, wherein our
direct training of SNNs with NeuNorm achieves slightly bet-
ter accuracy.

Table 5: Comparison with existing state-of-the-art results on
non-spiking CIFAR10.

Model Method Accuracy

(Panda and Roy 2016) Spiking NN 75.42%
(Cao, Chen, and Khosla 2015) Pre-trained SNN 77.43%

(Rueckauer et al. 2017) Pre-trained SNN 90.8%
(Sengupta et al. 2018) Pre-trained SNN 87.46%

Baseline Non-spiking NN 90.49%
Our model without NeuNorm 89.83%
Our model with NeuNorm 90.53%

Table 6: Comparison with previous results using similar
AlexNet struture on non-spiking CIFAR10.

Model Method Accuracy

(Hunsberger and Eliasmith 2015) Non-spiking NN 83.72%
(Hunsberger and Eliasmith 2015) Pre-trained SNN 83.52%

(Sengupta et al. 2018) Pre-trained SNN 83.54%

Our model — 85.24%

Furthermore, to visualize the differences of learning with
or without NeuNorm, Fig. 6 shows the average confusion
matrix of network voting results on CIFAR10 over 500 ran-
domly selected images. Each location in the 10×10 tiles
is determined by the voting output and the actual labels.

Figure 6: Confusion matrix of voting output with or with-
out NeuNorm. High values along the diagonal indicate cor-
rect recognition whereas high values anywhere else indicate
confusion between two categories.

High values along the diagonal indicate correct recognition
whereas high values anywhere else indicate confusion be-
tween two categories. It shows that using NeuNorm brings
a clearer contrast (i.e. higher values along the diagonal),
which implies that NeuNorm enhances the differentiation
degree among the 10 classes. Combining the results from
Tab. 3-5, it also confirms the effectiveness of proposed Ne-
uNorm for performance improvement.

Conclusion

In this paper, we present a direct training algorithm for
deeper and larger SNNs with high performance. We propose
the NeuNorm to effectively normalize the neuronal activ-
ities and improve the performance. Besides that, we opti-
mize the rate coding from encoding aspect and decoding as-
pect, and convert the original continuous LIF model to an
explicitly iterative version for friendly Pytorch implementa-
tion. Finally, through tens of times training accelerations and
larger network scale, we achieve the best accuracy on neu-
romorphic datasets and comparable accuracy with ANNs on
non-spiking datasets. To our best knowledge, this is the first
time report such high performance with direct training on
SNNs. The implementation on mainstream ML framework
could facilitate the SNN development.
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