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Abstract 

A Chebyshev pseudospectral method is presented in 
this paper for directly solving a generic optimal con- 
trol problem with state and control constraints. This 
method employs N t h  degree Lagrange polynomial ap- 
proxiniations for the state and control variables with 
the values of these variables at the Chebyshev-Gauss- 
Lobatto (CGL) points as the  expansion coefficients. 
This process yields a nonlinear programming problem 
(NLP) with the state and control values at the CGL 
points as unknown NLP parameters. Numerical ex- 
amples demonstrate this method yields more accurate 
results than those obtained from the traditional collo- 
cation methods. 

1 Introduction 

In recent years, direct solution methods have been used 
extensively in a variety of trajectory optimization prob- 
lems [l, lo]. Their advantage over indirect methods, 
which rely on solving the necessary conditions derived 
from Pontryagin’s minimum principle, is their wider ra- 
dius of convergence to an  optimal solution. In addition, 
since the necessary conditions do not have to  be de- 
rived, the direct methods can be quickly used to solve a 
number of practical trajectory optimization problems. 

Direct methods can be basically described as discretiz- 
ing the optimal control problem and then solving the 
resulting nonlinear programming problem (NLP) . The 
discretization is achieved by first dividing the  time in- 
terval into a prescribed number of subintervals whose 
endpoints are called nodes [lo]. The unknowns are the 
values of the controls and the states at these nodes, 
the state and control parameters. The cost function 
and the state equations can be expressed in terms of 
these parameters which effectively reduce the optimal 
control problem to  an  NLP that  can be solved by a 
standard nonlinear programming code. The  time his- 
tories of both the  control and the state variables can 
be obtained by using an  interpolation scheme. In most 
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collocation schemes, linear or cubic splines are used as 
the interpolating polynomials [8, 131. To impose the 
state differential equations, some form of integration 
scheme is used, among which the  most popular is the  
Simpson-Hermite scheme [8]. Gauss-Lobatto quadra- 
ture rules such as trapezoidal, Simpson’s or higher or- 
der rules with Jacobi polynomials as the  interpolant 
are also used for collocation [3, 91. 

Instead of using piecewisecontinuous polynomials as 
the  interpolant between prescribed subintervals, or- 
thogonal polynomials such as Legendre and Chebyshev 
polynomials can be used for approximating the con- 
trol and state variables [4]-[6], [12]. These polynomi- 
als are used extensively in spectral methods for solving 
fluid dynamics problems [2, 71, but their use in solv- 
ing optimal control problems has created a new way 
of transforming these problems to  NLP problems. One 
particular merit of the use of orthogonal polynomials is 
their close relationship to Gauss-type integration rules. 
This relationship can be used to derive simple rules for 
transforming the original optimal control problem to 
a system of algebraic equations. The efficiency and 
simplicity of these rules are best demonstrated in the  
spectral collocation (or pseudospectral) method that  
Elnagar et al. [4] and Fahroo and Ross [5, 61 have 
recently employed to solve a general class of optimal 
control problems. In their method, polynomial approx- 
imations of the state and control variables are consid- 
ered where Lagrange polynomials are the trial func- 
tions and the unknown coefficients are the values of 
the state and control variables at the Legendre-Gauss- 
Lobatto (LGL) nodes. With this choice of collocation 
points and properties of the Lagrange polynomials, the 
state equations and the possible state and control con- 
straints are readily transformed t o  algebraic equations. 
The state differential constraints are imposed by col- 
locating the functions at the LGL nodes and using a 
differentiation matrix which is obtained by taking the  
analytic derivative of the interpolating polynomials and 
collocating them at the  LGL points. In this sense, this 
method of imposing the state equations is in marked 
contrast to  the numerical integration techniques that  
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are used to  approximate the differential equations in 
other collocation schemes [8]-[lo]. 

Given the success of the Legendre pseudospectral 
method, we are encouraged to  check the effectiveness of 
using Chebyshev polynomials and Chebyshev-Gauss- 
Lobatto (CGL) points in the discretization method. 
Chebyshev polynomials have been widely used in en- 
gineering applications, and aside from their popularity 
have the added computational advantage in that their 
corresponding quadrature weights and CGL points can 
be  easily evaluated. On the other hand, the calculation 
of LGL points require the use of advanced numerical 
linear algebra techniques. In the  two numerical exam- 
ples presented in this paper, the results clearly show 
that Chebyshev polynomials are very effective in di- 
rect optimization techniques and offer superior results 
than the existing collocation methods. 

2 Problem Formulation 

Consider the following optimal control problem. Deter- 
mine the control function u(T), and the  corresponding 
state trajectory x(T), that minimize the Mayer cost 
function: 

J ( X , T f )  = M[X(Tf) ,Tfl  (1) 

47)  = f (X(T),U(T),T),  E b0,Tf l  ( 2 )  

+O[X(70),701 = 0, +f [X(Tf),Tfl = 0, (3) 

with x E Rn and U E Rm subject to the state dynamics 

and boundary conditions: 

where qo E R p  with p I n and +f E Rq with q 5 
n. Possible state and control inequality constraints are 
formulated as 

3 The Chebyshev Pseudospectral Method 

The Chebyshev pseudospectral method is one special 
case of a more general class of spectral methods [7]. 
The basic formulation of these methods involve two 
essential steps: One is to choose a finite dimensional 
space (usually a polynomial space) from which an ap- 
proximation to  the solution of the differential equation 
is made. The other step is to choose a projection opera- 
tor which imposes the differential equation in the finite 
dimensional space. One important feature of spectral 
met hods which distinguishes it from finiteelement or 
finite difference methods is that the underlying polyno- 
mial space is spanned by orthogonal polynomials which 
are infinitely differentiable global functions. Among 

examples of these orthogonal polynomials are Legen- 
dre and Chebyshev polynomials which are orthogonal 
on the interval [-1,1], with respect to an appropri- 
ate weight function (w(z) = 1 for Legendre polynomi- 

als, and W(Z) = ____ for Chebyshev polynomials 

of the first kind.) In the collocation methods, after 
choosing a polynomial approximation for a function, 
the requirement is t o  satisfy the differential equation 
exactly at some chosen nodes (or collocation nodes). In 
the orthogonal collocation methods, a given function 
is expanded in terms of orthogonal polynomials such 
that the expansion coefficients are exactly the values 
of the function at the  collocation points. Also, since 
an arbitrary choice of collocation points can give very 
poor results in interpolation, different Gauss quadra- 
ture points are chosen to give the best accuracy in in- 
terpolation of a function. These two important aspects 
(choice of orthogonal polynomials as the trial functions 
and Gauss quadrature points) of orthogonal or spectral 
collocation methods separate them from the other col- 
locat ion methods [SI-[ lo]. 

The basic idea behind the use of a Chebyshev 
pseudospectral method for solving the optimal control 
problem is to find global polynomial approximations for 
the state and control functions in terms of their values 
at the points. The time derivative of the approximate 
state vector, X N ( 7 ) ,  is expressed in terms of the ap- 
proximate state vector xN(-r) at the collocation points 
by the use of a differentiation matrix. In this manner, 
the optimal control problem is transformed to an NLP 
problem for the value of the states and the controls at 
the nodes. Since the problem presented in the  previ- 
ous section is formulated over the time interval [TO,T~], 
and the CGL points lie in the interval [-1,1], we use 
the following transformation to  express the problem in 

JK-3 

t E [ to , tN]  = [ -I ,  11: 

It follows that by using Equation (5) Equations (1-4) 
can be replaced by 

In most common Chebyshev collocation methods, the  
interpolation points in the interval [-1,11 are 

Id 
N 

 COS(-), 1 = O ,  ... N 
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which are the extrema of the N t h  order Chebyshev 
polynomial T N ( ~ ) .  The ith order Chebyshev polynomial 
is expressed by 

T,(t) = C O S ( ~ C O S - ~  t ) ,  i = 0,. . . , N 

which yields z(tl) = cos(%). To keep the first CGL 
point at -1 and the last node at 1,  we sort the nodes 
from (10) in our exposition and numerical implementa- 
tion. For approximating the continuous equations, we 
seek polynomial approximations of the  form 

N 

1=0 
N 

where, for 1 = 0,1, ..., N 

are the Lagrange polynomials of order N ,  with 

2 1=O,N 
ci = { 1 1 5 1 I N - 1 .  

It can be shown that 

From this property of +I it follows that 

XN(tl) = X(tl), U N ( t l )  = +l).  

To express the derivative x N ( t )  in terms of xN ( t )  at the 
collocation points t l ,  we differentiate (11) which results 
in a matrix multiplication of the following form: 

N 

x N  ( t l )  = Q k X ( t k ) ,  (14) 
k=O 

where Dlk are entries of the ( N  + 1) x ( N  + 1) differ- 
entiation matrix D 

15 1 = k I  N - 1, tl -- 
2(1 - t f )  

D := [&I := < 

1 = k = 0, 
2N2 + 1 

6 

To facilitate the NLP formulation, we simplify the no- 
tation using 

:= ~ ( t l ) ,  bl := ~ ( t l ) ,  

to rewrite (11)-(12) in the form: 

N N 

xN(t) = Cal#l(t), uN(t) = Cbl+l(t). (16) 
1 =o 1 =o 

For the derivative of the state vector xN ( t ) ,  collocated 
at the points tl, we rewrite (14) 

N 

dl = x N  ( t l )  = D l k a k .  (17) 
k=O 

Next, the cost function (6) is discretized: By evaluating 
the state functions in the cost function at the final CGL 
point, we have 

y(a,b,Tf) =M(XN(l) ,Tf)  =M(aN,Tf). (18) 

The state equations and the initial and terminal state 
conditions are discretized by first substituting (14)-(16) 
in (7) and collocating at the CGL nodes, tl. Using the 
notation for a and b, the  state equations are trans- 
formed into the following algebraic equations 

) f ( a k , b k )  - dk = 0, k = 0,. . . , N ,  Tf - 70 
(7 

where d k  is as defined in (17), and the initial conditions 
are 

+o(xN(-l)J-O) = @o(ao,To) = 0. 
The terminal state conditions are 

$f(XN(1) ,7f )  = @f(aN,Tf)  = 0.  

The control inequality constraints are approximated by 

g(xN(&), U N  (tk)) = g ( a k ,  b k )  I 0, = 0,.  . . , N.  

To summarize, the optimal control problem (6)-(9) is 
approximated by the following nonlinear programming 
problem: Find coefficients 

a = (%,ai,.  . . , a N ) ,  b = (bo, bi , .  . . , blv) 

and possibly the final time ~f to minimize 

T(a,b,Tf) = M(aN,Tf) (19) 

) f ( % b k , t k )  -dk = 0, (20) 

g ( a k , b k )  I 0, (21) 
+ O ( a o , T O )  = 0, (22) 

subject t o  the following constraints for k = 0,. . . , N : 

Tf - 70 
(7- 

@ f ( a N , T f )  = 0- (23) 

From the equations above, one can see the simplicity 
of the method which retains much of the  structure of 
the continuous problem. 
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I I Ji I IJi - JanaI I Np Method 
Analutic solution I 1.2533 I .~ 

Collocation (Simpson) 
Collocation (5th-degree-GL) 

Pseudospectral (CGL) 

4 Numerical  Examples 

1.253005 0.000295 33 
1.253183 0.0001 17 83 
1.253309 9.099e-06 33 

In this section, we present two numerical examples: one 
is the brachistochrone problem discussed in [3], and 
the other is the moon-landing problem [ll]. The first 
example demonstrates the efficiency of this technique 
while the second example shows that the discontinuities 
are adequately captured by this approach. 

4.1 Example 1: Brachis tochrone 
In this well-known problem, the control problem is for- 
mulated as finding the shape of a wire so that a bead 
sliding on the wire will reach a given horizontal dis- 
placement in minimum time. No frictional forces are 
considered and the gravity force is uniform. The prob- 
lem is then to minimize rf subject to the equations 

X = G c O s e ,  

with boundary conditions 

~(0) = y(0) = 0, " ( T f )  = 0.5. (26) 

The control, angle 8, is the slope of the wire as a func- 
tion of time. The analytic solutions to this problem are 
the equations of a cycloid 

z(t)  = ( g ' f )  (t - zf sin{.rr[l - (.)I}) , (27) 
71 T Tf 

and 

The optimal control (angle) is given by the following 
expression: 

For the value of g = 1, the  minimum time is rf = 
1.2533. 

For discretization of the problem, the Chebyshev 
pseudospectral method was used with NPSOL as the 
NLP solver. In Table 1, we show the minimum cost 
function obtained from our method with the Simpson 
collocation method and a fifth-degree Gauss-Lobatto 
method from [3], for N = 11. It is evident that even for 
a low number degree of discretization (and number of 
NLP variables), the Chebyshev method gives superior 
results than either of the other collocation methods. 

In Figures 1 and 2, we show the time histories of the 
state and control variables against the analytic solu- 
tions for the same number N = 11. The graphs 
clearly demonstrate the accuracy of the results from 
the Chebyshev collocation method. 

Table 1: Comparison of cost functions from different Col- 
location Methods for N = 11 

I 
411 O 0 2  0 1  OS 0 1  I I2 I 4  

h 

Figure 1: The time history of x and y 

Figure.2: The time history of control 8 

4.2 Example  2: Moon-Landing 
The control problem is formulated as maximizing the 
final mass and hence minimizing 

subject to the equations of motion 

where the state variables h, ,U and m are altitude, 
speed and mass, respectively. The control is provided 
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Figure 3: The time history of m and control T 

by the  thrust, T which is bounded by 

0 I T I T’az. 

The other parameters in the problem are 9, the gravity 
of moon (or any planet without an atmosphere) and 
I sp ,  the  specific impulse of the propellent. Given any 
set of initial conditions ho, vo and mo, the normalized 
parameters for the problem were chosen as 

Therefore, we have the following normalized initial con- 
ditions: 

h(0) = 1.0, ~ ( 0 )  = -0.05, m(0) = 1.0. (34) 

For soft landing, we must have 

h(7f )  = 0, v ( T ~ )  = 0. (35) 

This problem has at most one switch in the control 
variable [Ill and the results are displayed in Figure 3. 
It is clear that  the method has adequately captured 
the optimal bang-bang structure of the control with 
one switch. 

5 Conclusions 

The simplicity and efficiency of the Chebyshev 
pseudospectral method allows one to perform rapid and 
accurate trajectory optimization. A low degree of dis- 
cretization appears t o  be sufficient to generate good 
results. Thus, it is apparent that the technique has a 
high potential for use in optimal guidance algorithms 
that require corrective maneuver from the perturbed 
trajectory. In any cme, reference optimal paths can be 
easily generated and the numerical examples indicate 
that the  converged solutions are indeed optimal. Fur- 
ther tests and analysis are necessary to investigate the 
stability and accuracy of the method. 
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