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Abstract

Type I interferons (IFNs) play an important role in direct antiviral defense as well as linking the innate and adaptive immune
responses. On dendritic cells (DCs), IFNs facilitate their activation and contribute to CD8+ and CD4+ T cell priming. However,
the precise molecular mechanism by which IFNs regulate maturation and immunogenicity of DCs in vivo has not been
studied in depth. Here we show that, after in vivo stimulation with the TLR ligand poly IC, IFNs dominate transcriptional
changes in DCs. In contrast to direct TLR3/mda5 signaling, IFNs are required for upregulation of all pathways associated
with DC immunogenicity. In addition, metabolic pathways, particularly the switch from oxidative phosphorylation to
glycolysis, are also regulated by IFNs and required for DC maturation. These data provide evidence for a metabolic
reprogramming concomitant with DC maturation and offer a novel mechanism by which IFNs modulate DC maturation.
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Introduction

Dendritic cells (DCs) are the main antigen presenting cells for

initiating primary immune responses [1]. DCs patrol the blood-

stream and tissues to sense danger signals from bacteria, viruses, or

toxins. After exposure to such stimuli they undergo an extensive

maturation process, which results in the loss of phagocytic activity,

expression of co-stimulatory molecules, cytokine production, and

enhanced migration to draining lymph nodes, where they present

antigens to naive T cells. This intricate differentiation process is

essential for the induction of immunity, as DCs can generate

tolerance in the absence of ‘‘danger’’ signals [2].

The finding that pro-inflammatory cytokines upregulate HLA

and costimulatory molecules in vitro, led to the idea that a

cytokine cocktail (e.g., TNF-a, IL-1b, IL-6, PGE2) could be used

to mature DCs [3,4]. However, these DCs failed to produce IL-12,

exhibited weak immunogenicity, and thus are ineffective for

clinical use [5,6]. In contrast, DCs matured in response to TLR

agonist were shown to unleash more potent immune responses.

Reis e Sousa et al. [7,8] demonstrated that a robust Th1 response

required direct pattern recognition receptor (PRR) stimulation.

We reported previously that the synthetic dsRNA poly IC, a

TLR3 and MDA5 agonist, efficiently stimulates functional

maturation of DCs and confers immunogenicity, and its effect

was critically dependent on direct stimulation of the type I IFN

receptor [9]. Inflammatory cytokines are known to provide a third

signal for T cell activation [10]. However, little is known about

their specific signals provided for DC maturation.

Type I IFNs are potent anti-viral cytokines. The absence of type

I IFN signaling increases susceptibility to some virus infections as

demonstrated in IFNAR2/2 mice and in humans who harbour

natural mutations in the type I IFN signaling pathway [11,12].

This increased susceptibility is partially due to the expression of

interferon-stimulated genes (ISGs) that control viral infections

through a diverse range of direct antiviral effector functions [13],

but type I IFNs have also been implicated in the generation of

adaptive immunity. IFNs are known to promote clonal expansion

and survival of antigen-specific CD8+ T cells [14,15] and to induce

the maturation of dendritic cells, the critical antigen presenting

cells for initiating immunity [9]. We and others have shown that

IFNs promote the expression of co-stimulatory molecule, increase

DC migration, and facilitate cross-priming of CD8+ T cells and

PLOS Biology | www.plosbiology.org 1 January 2014 | Volume 12 | Issue 1 | e1001759



antigen presentation to CD4+ T cells [9,16–19]. While it has been

established that type I IFNs play an important role in DC

maturation, the biochemical pathways involved, and the exact

contribution of IFNs during this process, remain poorly understood.

In this study, we set out to examine the specific signals provided by

direct PRR or IFNs stimulation that are required for DCmaturation.

Using a mixed chimera model, we identified genes and biochemical

pathways that were governed exclusively by IFNs and made several

interesting findings. First, IFNs, and not PRR, dominate gene

expression changes induced in response to poly IC stimulation.

Second, under a normal inflammatory response and in the presence

of type I IFN, direct PRR stimulation is not required for DC

maturation. Third, IFNs control a wide variety of cellular processes.

In addition to pathways associated to DC maturation, e.g., antigen

processing, our study revealed an important role for IFNs in

regulating several metabolic switches essential for preservation of

cellular integrity. We show that direct IFNAR stimulation induces

hypoxia-inducible factor 1 (Hif1a) expression, which is responsible for

the metabolic transition from oxidative phosphorylation (OXPHOS)

to glycolysis and the prevention of DCs premature cell death.

Results

Type I IFN Dominates the Transcriptional Response to
Poly IC
PRRs have long been thought to confer immunogenicity by

inducing DC to undergo a series of phenotypic and functional

changes that consequently result in T cell immunity. However, as

demonstrated in our previous study, blocking type I IFN abolished

DCs’ immunogenicity conferred by poly IC stimulation [9]. This

indicates that the intracellular events downstream of IFNAR, upon

binding of type I IFN, differ from those downstream of PRR, and

furthermore are indispensible for initiation of immune response.

To differentiate the events directly resulting from IFNAR versus

PRR on DCs in vivo, we generated mixed chimeric mice in which

half of the bone marrow was derived from wild-type (WT) CD45.1

donors and the other half from PRR2/2 or IFNAR2/2 mice

(CD45.2). Such system allows us to evaluate the intrinsic difference

in DCs resulting from deficiency of respective receptor upon

exposure to the same WT inflammatory environment. Mice were

injected with 50 mg of poly IC intraperitoneally (IP) and 4 h later,

splenic DCs were harvested, sorted on the basis of the expression

of CD45.2 marker, and analyzed for gene expression by

microarray (Figure 1A). Two types of negative controls were

included. First, mixed chimera mice were injected with PBS to

evaluate WT versus knockout (KO) DC development and

maturation in the steady state. Second, PRR2/2 (MDA5/TLR3

double KO, which are the receptors for poly IC) mice were

stimulated with poly IC to evaluate whether impurities or other

substances in the adjuvant preparation could result in stimulation

through pathways independent of PRR. No statistically significant

gene-expression changes were detected between WT and KO

DCs in steady state (PBS DCs) or poly IC-stimulated DCs from

PRR2/2 mice. Similarly no differences were observed when

compared to poly IC-stimulated DCs with single or pooled

negative controls (Tables S1 and S2). Thus all negative controls

were pooled. Poly IC treatment led to change of 988 genes in WT

DCs (2-fold change and false discovery rate [FDR],0.05)

(Figure 1B and 1D). As early as 4 h post-stimulation, more than

700 genes were upregulated, whereas only 269 genes were

downregulated. Strikingly, the majority of these changes were

dependent on type I IFN and not PRR stimulation (Figure 1B–

1C). PRR2/2 DCs showed a similar profile than WT DCs except

for the expression of 26 genes, including all type I IFN cytokine

genes that required direct PRR stimulation in order to induce their

expression (Figure 1E; Table S1). In contrast, only 354 genes

changed their expression in IFNAR2/2 DCs after poly IC

(Figure 1D). These results confirm the importance of IFNs in

controlling the process of DC maturation.

Type I IFN Controls the Activation of Pathways
Associated with DC Maturation
Besides their well-known anti-viral function, it is increasingly

recognized that IFNs contribute to DC maturation. The dramatic

change in transcriptional profile downstream of IFNAR suggests

that IFNs affect molecular pathways that lead to immunogenicity.

To identify these pathways, we performed pathway analysis of the

transcriptional changes using gene set enrichment analysis (GSEA)

(FDR,0.25) [20]. Our analysis reveals that in response to poly IC

treatment, both WT and IFNAR2/2 DCs activated pathways

associated with general inflammation including NFkb, IL6, IL-15,
and IL10, indicating that stimulation from the inflammatory milieu

is independent of IFNAR (Figure 2A; Table S2). To corroborate

these findings, we first documented the systemic release of

inflammatory cytokines in mixed chimeras. After poly IC injection,

early production of TNF-a at 1 h and later release of IL-6 and IFN-

a at 6 h post injection were detected in mixed-chimera mice as

previously described for WT mice (Figure 2B) [9], indicating that

both DCs were exposed to same inflammatory milieu. To prove

cytokine stimulation of DCs, we evaluated the activation of STAT

(p-STAT) transcriptional factor by Phosphoflow analysis. As

expected p-STAT3 and p-STAT5, the signal transducers for IL-6,

IL-10, and IL-15 pathway among others, were detected in WT as

well IFNAR2/2 DCs, while only WT DCs showed STAT1

phosphorylation, the signature transducer for type I IFN pathway

(Figure 2C). Activation of STAT4, the transducer involved in IL-12

pathway was not detected in either WT or IFNAR2/2 DCs,

consistent with the absence of IL12p70 production by splenic DCs

in response to poly IC as previously described [9].

In stark contrast, IFNAR2/2 DCs failed to increase expression

of RIG-like helicase as well as other genes in the type I IFN

pathway, including genes encoding proteins implicated in the

Author Summary

Immune responses are orchestrated by a specialized cell
type called dendritic cells (DCs). In order to achieve
durable and robust immunity, DCs need to undergo an
intricate differentiation process known as maturation. This
process is poorly understood at the moment. Poly IC,
which mimics viral RNA and is an agonist for the viral
pattern recognition receptors (PRRs) that signal ‘‘danger’’
to the immune system, can induce full maturation of DCs
and it has been shown that this requires type I IFN
signaling. In this study we set out to examine the specific
signals provided by direct PRR or IFN stimulation that are
required for DC maturation. We found to our surprise that
type I IFN can regulate almost all steps of the DC’s
maturation process without requiring direct PRR involve-
ment. We also show that type I IFN regulates several
metabolic switches essential for preservation of DC
integrity: it stimulates the expression of the hypoxia-
inducible factor 1a (Hif1a), which controls the metabolic
shift from oxidative phosphorylation (used by resting cells
to generate energy) to aerobic glycolysis, a less efficient
but faster energy-producing process. This metabolic shift
was required to meet increased energy demands of
activated DCs and to prevent their premature death, thus
sustaining an immune response to viral infection.

Dendritic Cell Maturation by Type I IFNs
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major antiviral pathways such as the PKR and IFIT proteins, the

2–5A synthetase system (OAS2/3), and the Mx pathway (MX1/2)

(Table S2) [13]. Interestingly, in comparison to WT, INFAR2/2

DCs failed to activate many genes directly associated with DC

immunogenicity. These include genes involved in pathways of

antigen processing and presentation such as MHCII, tap, lamp2,

and DC-natural killer (NK) cross-talk, and IL15 production such

as Il18 and Il15 (Figure 2A and 2D; and Table S2). To confirm

this result, we studied HIV gag-specific immune priming in vivo.

Mixed-chimera mice were immunized with anti-DEC-HIV gag

and either poly IC or PBS. Four hours later, splenic DCs were

harvested, purified by cell sorting, and used for vaccination of

naı̈ve mice (intravenous [IV]). MHCII2/2 DCs were used as

negative control. As expected only poly IC–treated WT, and not

IFNAR2/2 or MHCII2/2 DCs, induced antigen-specific T cell

responses (Figure 2E). In addition, IFNAR2/2 DCs, despite being

stimulated by an inflammatory response in vivo, were unable to

produce cytokines that play an important role in T cell priming

and memory fate (Figure 2F). In summary, our data show that

IFNAR signaling plays an indispensible role in inducing DC’s

immunogenicity after poly IC treatment and raises an important

question. Is direct PRR stimulation required for DC immunoge-

nicity? To answer this question we generated mixed chimeric mice

in which half of the bone marrow was derived from MHCII2/2

donors and the other half from WT, PRR2/2, or IFNAR2/2

mice and analyzed gag-specific T cell responses after in vivo

vaccination. Despite the requirement of PRR signaling for the

production of type I IFNs (Figure 1E), under a fully induced

inflammatory response, direct PRR stimulation was not required

for DC maturation as previously believed (Figure 2G) [7]. In

addition, no differences were observed in T cell proliferation and

differentiation (unpublished data). IFN alpha A/D (universal type

I IFN) as stand-alone adjuvant was unable to prime T cells

(unpublished data) indicating that type I IFNs are essential but not

sufficient to mature DCs and other factors are required.

IFNs Are Required for DC’s Metabolic Reprogramming
Our data revealed that over 900 genes changed their expression

in response to poly IC in a type I IFN-dependent manner as early

as 4 h. Similar findings were observed after 14 h stimulation when

the majority of gene expression changes were regulated by IFNs

(2-fold change and FDR,0.05) (Figure 3A). Surprisingly, a set of

genes that were absent in WT DCs, were found upregulated in

IFNAR2/2 DCs in response to inflammation after 14 h

(Figure 3A, arrows). To understand this group of genes that

appear to be suppressed by IFNAR signaling, we categorize these

genes and biochemical pathways using GSEA. Our analysis

revealed that the top pathways unregulated in IFNAR2/2 were

associated with cell metabolism, e.g., OXPHOS (Figure 3B; Table

S3), which was also evident after 4 h. Consistent with enhanced

OXPHOS and mitochondrial respiration, mitochondrial mem-

brane potential, an indicator of electron transport chain use, was

significantly increased in IFNAR2/2 versus WT DCs after poly IC

stimulation (Figure 4A) while mitochondrial mass was unchanged

(Figure 4B). To confirm the decline in mitochondrial activity we

used metabolic-flux analysis (Seahorse XF Analyser) to assess

mitochondrial respiration by measuring oxygen-consumption rate

(OCR) under basal conditions and after drug-induced mitochon-

drial stress [21]. Basal OCR was dramatically reduced in WT DCs

after poly IC stimulation compared to untreated DCs. In contrast,

Figure 1. DCs transcriptional response to poly IC is highly dependent on type I IFNs. (A) Bone marrow mixed-chimera mice were injected
with 50 mg poly IC IP. 4 h later, DCs were FACS sorted on the basis of CD45.2 expression and analyzed for gene expression with Illumina chips. Heat
map represent expression values (2-fold change and FDR,0.05) of poly IC-treated WT (green), PRR2/2 (pink) versus untreated DCs (blue) (B) or WT,
IFNAR2/2 (violet) versus untreated DCs (C). Each column represents an individual sample. The red and blue colors indicate high and low expression,
respectively. (D) Similar results can be observed when depicted as bar graphs, where upregulated genes are shown in red and downregulated ones in
green. (E) As in (B) but heat map represents expression values of genes belonging to type I IFN cytokines. Each column represents an individual
sample. Graph represents the numbers of genes up- or downregulated in WT, IFNAR2/2, and PRR2/2 DCs after poly IC stimulation.
doi:10.1371/journal.pbio.1001759.g001
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there was no significant difference between PBS and poly IC-

treated IFNAR2/2 DCs (Figure 4C). The sequential addition of

the mitochondrial ATP-synthase inhibitor (oligomycin), the mito-

chondrial uncoupler FCCP, and the mitochondrial complex inhi-

bitors antimycin-A and rotenone rotenone induced a characteristic

OCR ‘‘drift’’ over time in steady state WT and IFNAR2/2 DCs,

while OCR values were unchanged in poly IC-activated WT

DCs (Figure 4C). In stark contrast, PBS and poly IC-treated

IFNAR2/2 DCs showed similar changes in OCR values in

response to pharmacological perturbation of mitochondrial function

(Figure 4C). To determine weather reduced mitochondrial respira-

tion in poly IC-stimulated DCs is a result of a metabolic shift to

glycolysis, we analyzed the extracellular acidification rate (ECAR) as

an indicator of lactate production and glycolysis. Poly IC

stimulation of WT DCs resulted in an increase in glycolytic rate.

However and consistent with OCR, ECAR values were similar

between treated and un-treated IFNAR2/2 DCs (Figure 4D).

This finding indicates that DC activation with poly IC induces

several metabolic changes most likely to preserve cell integrity

while supporting the bioenergetically demanding processes of

migration, cytokine secretion, and other effector functions and this

process is regulated by type I IFNs. Recently, Pearce and colleagues

showed that commitment to glycolysis on DCs was mediated by NO

inhibition of OXPHOS [22]. However, this mechanism was limited

to inflammatory monocyte-derived DCs and, consistent with their

data, we could not detect iNOS production after poly IC stimulation

or decreased mitochondrial membrane potential in the presence of

the NOS inhibitor S-ethyl-isothiourea (SEITU) (Figure 4E and 4F).

However, we could detect decreased expression of the Hif1 in

IFNAR2/2 versus WT DCs (Figure 4G), which was shown to

Figure 2. Impaired antigen presentation by IFNAR2/2 DCs. Bone marrow mixed-chimera mice were injected with 50 mg poly IC IP. 4 h later,
purified DCs were analyzed for gene expression with Illumina chips. (A) Pathway analysis was performed using GSEA. Graph represents the top ten
pathways upregulated in WT DCs after poly IC stimulation (FDR,0.25) and the correspondent pathways in IFNAR2/2 DCs. Bars indicate the percent of
core enrichment genes for each set (defined as those genes ranked before or at the peak of the enrichment score). Significant pathways (FDR,0.25)
are indicated with *. (B) WT/IFNAR2/2 mixed chimera mice were treated IP with 50 mg poly IC. At different time points, IL-6, TNF-a, and IFN-a were
analyzed in serum. Error bars indicate the mean 6 SD (n= 4). (C) Mixed chimera mice were treated IP with 50 mg poly IC. At different time points,
activation of STATs transcriptional factors was evaluated by intracellular staining of the phosphorylated active form by Phospho Flow. Histograms are
representative of three independent experiments. (D) Heat maps represent expression values of genes belonging to the type I IFN, cytokines/
chemokines, and antigen presentation pathways. Each column represents an individual sample (six mice pooled). WT DCs are indicated in green,
IFNAR2/2 in orange, and untreated DCs in blue. (E) Poly IC-treated WT, IFNAR2/2, and MHCII2/2 DCs were pulsed in vivo with DEC-p24 antigen and
adoptively transferred into naı̈ve mice. Antigen-specific response was evaluated by intracellular cytokines after prime-boost. Graph represents the
percentage of CD3+ CD4+ T cells producing IFN-c. Means 6 SD are shown of three independent experiments with a total of nine mice. (F) WT/
IFNAR2/2 mixed-chimera mice were stimulated with poly IC in vivo. 4 h later, WT and IFNAR2/2 DCs were purified by cell sort and plated at 16105

cells/well in a round-bottomed 96 well. Supernatants were collected after 18 h and cytokine production was evaluated by multiplex ELISA. Bars
represent the mean6 SD from three independent experiments. (G) Mixed-chimera mice were vaccinated with 5 mg a-DEC-p24 along with 50 mg poly
IC and 25 mg of aCD40 mAb IP Two weeks later, IFN-c secretion in gated CD3+ CD4+ T cells from spleen, was measured in response to gag p24
peptide mix or control gag p17 peptide mix. Bars represent the mean 6 SD from two experiments with six mice total.
doi:10.1371/journal.pbio.1001759.g002

Figure 3. Altered metabolic response in IFNAR2/2 DCs. (A) Bone marrow mixed-chimera mice were injected with 50 mg poly IC IP. 14 h later,
DCs were FACS sorted based on CD45.2 expression and analyzed for gene expression with Illumina chips. Heat map represents expression values (2-
fold change and FDR,0.05) of poly IC-treated WT (green), IFNAR2/2 (orange) versus untreated DCs (blue). Each column represents an individual
sample. (B) Pathway analysis was performed using GSEA (FDR,0.25). Table represents the top ten pathways upregulated in IFNAR2/2 versus WT DCs.
doi:10.1371/journal.pbio.1001759.g003
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Figure 4. Changes in mitochondrial function after poly IC stimulation. WT/IFNAR bone marrow mixed-chimera mice were injected with
50 mg poly IC IP. 14 h later, spleen were harvested and incubated with the membrane potential-dependent stain MitoTracker Red CMXRos (A) or
MitoTracker Green FM (B) for 20 min at 37uC. Cell staining was evaluated in CD11c+MHCII+B2202DX52 DCs by flow cytometry. Histogram is
representative of three independent experiments. (C) As (A) and (B) but after 14 h, CD11c+MHCII+B2202DX52 DCs were sorted and seeded in a
Seahorse XF-24 analyzer. OCR was determined in real time after the addition oligomycin, FCCP, and antimycin-A/rotenone. (D) ECAR values. Data
represent means 6 SD of quadruplicates. Data are representative of three experiments. (E) WT mice were injected with 50 mg poly IC IP 18 h later
intracellular expressions of iNOS was evaluated by FACS. As positive control, monocyte-derived DCs were stimulated with LPS. Histogram are
representative of three independent experiments. (F) As in (A), but WT were injected with 50 mg poly IC IP, spleen was harvested 4 h later and further
incubated in the presence of SEITU ON. Histogram is representative of three independent experiments. (G) Chimera mice were stimulated with poly

Dendritic Cell Maturation by Type I IFNs
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regulate commitment to glycolysis in other systems [23,24]. These

results show an association between IFNs and the control of

metabolic pathways on DCs and suggest that this process can be

regulated by Hif1a.

Metabolic Switch to Glycolysis Is Regulated by Hif1a and
Is Required for DC Immunogenicity
Hif1 functions as a master regulator of oxygen homeostasis,

reduces oxygen consumption, and inhibits the generation of

reactive oxygen species (ROS) from mitochondria, by switching

glucose metabolism from OXPHOS to glycolysis. Hif1a is usually

activated in response to hypoxia, but expression can be induced by

TLR stimulation, though mechanism and consequence remain

unclear [25]. To address the role of IFNAR signaling as a link

between TLR stimuli, Hif1a upregulation, and metabolic repro-

gramming, we generated mice with conditional deletion of Hif1a
in DCs by crossing Hif1aflox/2 with CD11c-Cre mice. Mice were

healthy and showed no difference in DC numbers and activation

markers in steady state compared to control DCs (unpublished

data). We did not detect any difference between Hif1aflox/flox and
Hif-1a+/2, therefore Hif-1a+/2 mice were used as controls.

Consistent with IFNAR2/2 DCs and supporting its role in

controlling glycolytic switch, mitochondrial respiration, as assayed

by real-time analysis of OCR, was restored in Hif1a2/2 DCs

(Figure 5A). In addition, poly IC-stimulated Hif1a2/2 DCs

displayed ECAR levels comparable to resting DCs (Figure 5B).

Likewise, mitochondrial membrane potential, as well as total

mitochondrial mass in Hif1a2/2 DCs, was unchanged after poly

IC stimulation (Figure 5C). ROS are the natural by-products of

mitochondrial respiration [26]; therefore, glycolytic switch may

protect cells from oxidative stress and increase life span

significantly. To test whether inhibition of Hif1a could result in

high levels of ROS, we stained cells with CellROX Deep Red, a

non-fluorescent reagent that becomes fluorescent upon oxidation

by reactive oxygen. Relative to control DCs, Hif1a2/2 DCs

demonstrated increased fluorescence staining after TLR stimula-

tion (Figure 5D). To determine the impact of Hif1a knockdown on

the cellular energy balance, ATP levels were measured after poly

IC stimulation in vivo (Figure 5E). A modest increased in ATP

levels were observed in WT DCs after poly IC stimulation,

indicating that increased glycolytic rate was sufficient to sustain the

ATP pool. In contrast, ATP levels were significantly lower in

Hif1a2/2 DCs. ATP is necessary to maintain cell homeostasis and

to promote cell survival since loss of intracellular ATP results in

cell necrosis or apoptosis [27]. Indeed, we could detect increased

cell death in Hif1a2/2, compared to WT DCs after poly IC

stimulation (Figure 5F). Inhibition of NADPH oxidase by

apocynin only partially decreased Hif1a2/2 and, to a lesser

extent, WT DCs apoptosis (unpublished data) indicating that ROS

levels are not the only reason for this effect. Together, this

indicates that IFNAR signaling leads to upregulation of Hif1a,
which may contribute to DC survival by suppressing production of

reactive oxygen and maintenance of intracellular ATP levels.

To explore a causal link between IFNs, Hif1, DC survival, and

immunogenicity, we assessed the ability of Hif1a2/2 DCs to

induce T cell responses. To first test the functionality of DCs, we

sorted CD11c+ MHCII+ DCs from spleen 18 h after poly IC

injection and performed a mixed-leukocyte reaction (MLR). DCs

from Hif1a+/2 but not Hif1aflox/2 CD11c-Cre+mice became active

stimulators of the allogeneic MLR, inducing robust proliferation of

both CD4+ and CD8+ T cells (Figure 5G). Then, to evaluate the

capacity of DCs to become immunogenic following antigen capture

in vivo, we immunized mice with poly IC and Dec-HIVp24

targeted-vaccine, and analyzed immune T cell response after

prime/boost. Consistent with the MLR, T cell response was

reduced in Hif1aflox/2 CD11c-Cre+ compared to WT mice

(Figure 5H), suggesting that increased cell death results in reduced

T cell stimulation.

Discussion

DC maturation is a highly complex differentiation process

characterized by, but not limited to, upregulation of costimulatory

molecules, production of inflammatory cytokines, downregulation

of endocytic/phagocytic activity, changes in cell morphology and

migration, and upregulation of the antigen processing machinery.

Activation in trans by inflammatory mediators has been shown to

induce phenotypically mature DCs. However, those DCs were

unable to induce adaptive immunity. Increasing evidence suggest

that direct pathogen stimulation via PRR, is required to induce

fully mature DCs and to provide ‘‘signal, 3’’ e.g., cytokines for T

cell priming [8,28]. In our previous work, using poly IC as

maturation stimuli, we found that direct PRR stimulation alone is

insufficient to induce DC maturation and that immunogenicity

requires direct signaling through type I IFN receptor [9]. In this

work, we aimed to identify key biochemical pathways for DC

maturation that were regulated by direct PRR or IFNAR

stimulation. In order to do so, we performed gene array analysis

from mixed chimera mice. In this model, DCs from WT bone

marrow can respond directly to poly IC and type I IFNs and they

mount a normal inflammatory response, whereas DCs derived

from the KO bone marrow only respond to one receptor (PRR or

IFNAR). However, both DCs receive the same secondary signals

from the inflammatory environment (activation in trans due to poly

IC response in WT radioresistant and radiosensitive cells). While,

microarray analyses have been previously used to investigate the

global effects of PRR and interferon stimulation in isolated cells in

vitro [29–31], no information is currently available on genes

directly regulated by PRR and type I IFNs in vivo, where

inflammation is the consequence of the complex response of

several cell populations to various stimuli.

The data presented in this paper show that bystander activation

of PRR2/2 DCs induces similar gene expression profile to WT

DCs, with the exception of type I IFN genes that required direct

PRR engagement. However, in stark contrast from previous

publications from Sporri and colleagues [28] and consistent with

the microarray data, as long as type I IFNs were present in the

inflammatory milieu, direct PRR stimulation was not required for

DC immunogenicity. This difference could be attributed to the

study of polyclonal T cell responses instead of TCR-transgenic

models. This finding is of high relevance for the design of protein-

based vaccine. The current paradigm is that adjuvant should be

designed to activate specific PRR receptors expressed selectively

on different DC subsets. DC subsets express an array of different

PRR, which will require a perfect matching of the adjuvant and

the antigen-presenting cell. Our data refute this model and suggest

that DCs can be activated in trans by different PRR agonist.

While direct PRR stimulation had little impact in the gene

expression profile of poly IC-stimulated DCs, the overall response

was dramatically reduced in IFNAR2/2 DCs. This is particularly

IC 4 h in vivo. Total RNA was isolated from sort-purified CD11c+MHCII+ DCs. Relative expression of HIF1a was analyzed by real time (RT)-PCR or by
intracellular staining. mRNA levels in resting DCs were set to 1.
doi:10.1371/journal.pbio.1001759.g004
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surprising because poly IC induces high levels of pro-inflammatory

cytokines, in particular TNF-a, which has been described to

activate DCs [32,33]; yet we found that pro-inflammatory

cytokines or direct PRR engagement, in the absence of IFNAR

signaling, were unable to upregulate pathways associated with DC

maturation, including upregulation of costimulatory molecules,

and were dispensable for DC immunogenicity. More strikingly, the

data presented here indicate that type I IFNs can also regulate

metabolic pathways. After a transient increase in mitochondrial

activity, activated DCs switch from mitochondrial OXPHOS to

aerobic glycolysis as the major source of ATP [22,34]. Glycolysis

generates ATP with lower efficiency but at a faster rate than

OXPHOS [35]. We confirmed similar metabolic shifts in DCs in

vivo. WT DCs showed an upregulation of Hif1a transcription

followed by a decrease in mitochondrial respiration and increase

in glycolytic rate. To our surprise, metabolic reprogramming was

impaired in IFNAR2/2 DCs. IFNAR2/2 DCs utilize OXPHOS

as the main source of ATP in an attempt to rebalance their energy

supply via increased respiration, which was evident by upregula-

tion of the OXPHOS, citrate cycle, and pyruvate pathways. One

could argue that failure to switch to glycolysis is rather a

consequence than the cause of DC inactivation. Our experimental

approach relies on the use of mixed-chimeric mice where both

DCs are exposed to the same inflammatory milieu. We could

detect partial upregulation of costimulatory molecules as well as

STAT3 and STAT5 phosphorylation indicating that IFNAR2/2

DCs were stimulated by other cytokines and inflammatory

mediators. Furthermore, membrane potential was increased in poly

IC-stimulated compared to steady state-IFNAR2/2 DCs showing

that those DCs have an altered metabolic response to inflammation.

Metabolic reprogramming appears to prevent bioenergetic

collapse in response to the initial increase in energy consumption

associated with signal transduction and transcription. Recently, it

has been recognized that T cell metabolism is regulated to support

cell proliferation and control cell trafficking [36], but how it affects

DC maturation is unclear. The transcription factor Hif1, which

can be activated by low oxygen tensions or TLR stimulation,

promotes the shift from oxidative to glycolytic metabolism [37].

LPS-stimulated mouse DCs under hypoxia increased expression of

costimulatory molecules, proinflammatory cytokine, and induction

of MLR. Inhibition of Hif1a expression with siRNA, significantly

reduces glucose usage, inhibits DC maturation and MLR

stimulation [38]. However, others have shown reduced migratory

capacity and impaired DC maturation after exposure to low

oxygen tension and Hif1 activation [39–42]. Experiments were

performed in vitro with artificial culture conditions, instead of in

vivo with genetic approaches, which may explain these contra-

dictory results. Using conditional KO mice, we showed that Hif1a

upregulation was required for metabolic switch to glycolysis as well

as for DC survival and immunogenicity in vivo. During the

revision process of this manuscript, two reports of the important

role of Hif1a on DC’s function were published [43,44]. The

authors had used a similar genetic targeting approach to delete

expression of Hif1a and showed regulation of bone marrow-

derived DC’s cytokine expression and antigen presentation

capacity. However, the exact mechanism and the association with

cell metabolism were not investigated.

While the focus of this study was to define actions of PRR and

IFNs in the activation of DCs, these data also helped to elucidate

additional roles of interferons in cell metabolism. Exploration of

the transcriptional program initiated by the adjuvant poly IC and

controlled directly by IFNs, extends our understanding of the

global actions of these cytokines and improves our comprehension

of the many steps required for DC maturation.

Materials and Methods

Mice
C57BL/6, Hif1aflox/flox, and CD11c-Cre+ mice were purchased

from Jackson Laboratory; IFNAR2/2, MDA52/2, and

MDA5xTLR32/2 mice were kindly provided by K. Murali-Krishna

(University of Washington, Seattle) and M. Colonna (Washington

University, St. Louis, MO). To increase efficiency of CRE recombi-

nation, Hif1aflox/flox mice were first crossed with EIIA-CRE to obtain

Hif1aflox/2. Mice were then crossed with CD11c-Cre. Hif1a deletion

was detected using the primers TTGGGGATGAAAACATCTGC

and GCAGTTAAGAGCACTAGTTG. Mice were maintained

under specific pathogen-free conditions and used at 7–8 wk of age

according to Institutional Animal Care and Use guidelines.

DC Innate Responses
Mice were injected IP with 50 mg of poly IC. For cytokine

production, spleens were harvested 4 h after in vivo stimulation.

CD11c+ MHCII+ DCs were purified by cell sorting (FACSAria;

BD Biosciences) and plated at 56104 cells/well in a 96 well plate

for 18 h prior to assay of cytokines in the supernatants by

multiplex ELISA (R&D Systems; eBioscience). Alternatively,

serum samples were collected 1 and 6 h after poly IC injection.

For intracellular detection of phosphorylated STAT, purified

CD11c+ MHCII+ DCs from mixed-chimera mice, were incubated

in vitro with 25 mg/ml of poly IC and collected at different time

points. For Hif1a expression, mixed-chimera mice were injected

with 50 mg of poly IC for 4 h. Cells were fixed with 2% para-

formaldehyde, permeabilized with cold 80% methanol and stained

with PE- anti phospho Stat antibodies (BD Bioscience) or purified

anti-Hif1a antibody (Novus Biologicals) followed by Alexa Fluor

555 goat anti rabbit secondary antibody (Invitrogen). Percentage

of positiveWT and IFNAR2/2DCs was analyzed by flow cytometry.

Metabolism Assays
Mitochondrial mass and potential were measured with Mito-

Tracker Green FM and MitoTracker Red CMXRos (Invitrogen),

Figure 5. Hif1a is required for DC immunogenicity. Conditional Hif-1aflox/2. CD11c-Cre+ (HIF1a2/2) or HIF1a+/2 control mice were injected
with 50 mg poly IC IP. 14 h later, spleen were harvested, CD11c+MHCII+B2202DX52 DCs cell-sorted and seeded in a Seahorse XF-24 analyzer. (A) OCR
in real time after sequential addition of oligomycin, FCCP, and antimycin-A/rotenone. (B) ECAR values. Data represent means 6 SD of cuadriplicates.
Data are representative of three experiments. (C) As in (A) but cells were incubated with MitoTracker Red CMXRos or MitoTracker Green FM and
analyzed by flow cytometry. Histogram is representative of three independent experiments. (D) Hif1a2/2 and control mice were injected with 50 mg
of poly IC and 14 h later splenic DCs were incubated with CellRox Deep Red reagent for 30 min at 37uC or (E) live purified CD11c+ MHCII+ DCs were
lysed and ATP levels were measured by Elisa (n= 3). (F) Splenic DCs were stained with 7-AAD after 14 h stimulation with poly IC in vivo. Histogram is
representative of three independent experiments. (G) HIF1a2/2 or HIF1a+/2 control mice were stimulated with 50 mg of poly IC. 18 h later, CD11c+

MHCII+ DCs were purified by cell-sort, fixed, and added in graded numbers to 26105 allogeneic Balb/C T cells. T cell proliferation was detected by
CFSE dilution of CD3+ cells. Data are representative of three experiments. (H) Mice were primed and boosted 4 wk apart with 5 mg a-DEC-p24 and
50 mg poly IC. 1 wk later, IFN-c secretion in gated CD3+ CD4+ T cells from spleen, was measured in response to gag p24 peptide mix or control gag
p17 peptide mix. Bars represent the mean 6 SD from two experiments with six mice total.
doi:10.1371/journal.pbio.1001759.g005
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respectively, by flow cytometry following manufacturers instruc-

tions. Oxidative stress was evaluated with CellRox Deep Red

(Invitrogen) and flow cytometry according to the manufacturer’s

instructions. For ATP analysis, mice were injected with 50 mg of

poly IC. After 14 h, live CD11chi CD32 DX52 B2202 DCs were

cell-sorted, washed, and resuspended in 100 ml/106 cells of PBS.

Samples were boiled for 5 min and ATP concentration was

measured with ATP determination kit (Invitrogen). For real-time

analysis of the ECAR and the OCR, the Seahorse XF-24

metabolic extracellular flux analyzer was used (Seahorse Biosci-

ence). In brief, mice were injected with PBS or 50 mg of poly IC.

After 14 h, live CD11chi CD32 DX52 B2202 DCs were cell-

sorted, washed, and resuspended in XF assay medium (unbuffered

DMEM supplemented with 10 mM glucose, 2% FCS, 100 U/ml

penicillin/streptomycin, 2 mM L-glutamine, and pyruvate) and

plated onto Seahorse X24 cell plates at 46105/well. Perturbation

of mitochondrial function was achieved by addition of 1 mM

oligomycin, 1.5 mM fluoro-carbonyl cyanide phenylhydrazone

(FCCP), and 100 nM rotenone plus 1 mM antimycin A (Sigma-

Aldrich). Oligomycin is an ATP synthase inhibitor, FCCP a

protonophore that uncouples ATP synthesis from the electron

transport chain, rotenone and antimycin Aare complex I and III

inhibitors, respectively. OCR was measured prior and after the

addition of the indicated drugs per the manufacturer’s instructions

(Seahorse Bioscience).

DC Antigen Presentation
To test allostimulatory capacity, spleen and node CD11c+

MHCII+ DCs were isolated 18 h after poly IC injection by cell

sorting. DCs were fixed with 1% paraformaldehyde for 10 min on

ice and added in graded numbers to 26105 CFSE-labeled

(Molecular Probes) Balb/C T cells. After 5 d of culture, samples

were stained with Live/Dead Fixable Violet viability dye

(Invitrogen), AlexaFluor700-anti-CD3, PerCP-Cy5.5-anti-CD4,

APC-eFluor780-anti-CD8, and acquired on a BD LSR II flow

cytometer. For DC antigen presentation in vivo, chimera mice and

MHCII2/2 mice as negative control, were injected with 5 mg of

gag-p24 together with 50 mg of poly IC. After 4 h, splenic WT or

IFNAR2/2 CD11c+ MHCII+ DCs were purified by cell sorting

based on the expression of CD45.2 and adoptively transferred into

naı̈ve mice (IV). Alternatively, mice were immunized twice IP at

4 wk intervals with 5 mg of HIV gag-p24 plus 50 mg of poly IC.

One week later, splenocytes were restimulated with p24 or p17

negative control peptide mix as previously described [9]. Antigen-

specific responses were evaluated by intracellular IFN-c after

prime-boost.

Microarray Analysis
Bone marrow mixed-chimera mice were injected with 50 mg

poly IC IP 4 and 14 h later, WT and KO CD11chi CD32 DX52

B2202 DCs, were FACS sorted on the basis of CD45.2 expression.

Total RNA was isolated using a Trizol (Invitrogen) and with

RNeasy minelute cleanup kit (Qiagen). RNA was quantified using

a Nanodrop 1000D spectrophotometer (ThermoScientific) and

quality tested with Agilent 2100 Bioanalyser (Agilent Technolo-

gies). cRNA was labeled and hybridized onto mouseRef-8

Expression BeadChips v2.0 (Illumina) as per manufacturer’s

instructions and data were extracted using BeadStudio software

(Illumina). At least triplicate samples were analyzed to achieve

statistical significance. Raw data from Illumina single color chips

were analyzed with GeneSpring 10.0. Intensities below back-

ground intensity were replaced with background intensity. The

data were log transformed and the quantile normalization

algorithm was applied. Data were filtered to eliminate probes

with low expression intensity. Baseline transformed was performed

to the median of all samples. Multiple t-tests were used to find

differentially expressed genes (p-values adjusted with Benjamini-

Hochberg method using FDR of 0.05). Differential expression was

defined as 2-fold increase or decrease in poly IC stimulated WT,

IFNAR2/2, or PRR2/2 over non-stimulated DCs. Significantly

differentially regulated pathways were identified by GSEA (FDR

of 0.25). The microarray data are available through the National

Center for Biotechnology Information Gene Expression Omnibus

(GEO) under accession number GSE46478.

Real-Time PCR
Total RNA was isolated as described above. High-capacity

RNA-to-cDNA Kit (Applied Biosystems) was used for cDNA

reactions and stored at 280uC. Primers for HIF1a and GAPDH

were selected and purchased from Applied Biosystems Gene

Expression Assay Selection. GAPDH gene was used as a

housekeeping gene to normalize results. Quantitative real-time

PCRs were performed using TaqMan Universal PCR Master Mix

in a 7900HT Real-Time PCR Instrument (Applied Biosystems).

Statistical Analysis
Data reported in the figures represent the average of at least

three independent experiments. Statistical significance was deter-

mined by Student’s t-test with two-tailed p-values of 0.05 or less.

Error bars represent the means 6 standard deviation (SD). Data

were analyzed and charts were generated using Prism 5

(GraphPad Software).

Supporting Information

Table S1 List of differentially expressed genes in

PRR2/2 versus WT DCs after poly IC stimulation

(4 h). Fold changes are indicated as FC and p-values adjusted

with Benjamini-Hochberg method as adj Pval.

(XLSX)

Table S2 List of core enriched genes (GSEA) of all

pathways in Figure 2. Table displays the list of genes in each

pathway that were core enriched in negative controls (pooled)

compared to poly IC-treated WT DCs. Fold changes are indicated

as FC and p-values adjusted with Benjamini-Hochberg method as

adj Pval. In addition, the FC and Pval of genes when compared to

steady state, single, negative controls, are also shown.

(XLSX)

Table S3 Core enriched genes (GSEA) of all pathways in

Figure 3. Table displays the list of genes that were core enriched

in each pathway after GSEA analysis and their fold change (FC)

and p-value.

(XLSX)
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