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Introduction

Model updating is becoming a common method to improve the correlation between finite
element models and measured data1,2. A number of approaches to the problem exist,
based on the type of parameters that are updated and the measured data that is used. This
paper concentrates on a direct updating method based on measured modal data. These
methods update complete structural matrices, so that the updated matrices are those
closest to the initial analytical matrices, but reproduce the measured data. For example,
Baruch3,4 considered the mass matrix to be exact and updated the stiffness matrix. A
preliminary step estimated the mass normalised eigenvectors closest to the measured
eigenvectors. Berman5,6 questioned whether the mass matrix should be considered exact,
and updated both the mass matrix and the stiffness matrix. Baruch7 described these
methods as reference basis methods, since one of three quantities (the measured modal
data, and the analytical mass and stiffness matrices) is assumed to be exact, or the
reference, and the other two are updated. Caesar8 extended this approach and produced a
range of methods based on optimising a number of cost functions. All the methods
described thus far share the feature that only one quantity is updated at a time. Wei9-11

updated the mass and stiffness matrices simultaneously, using the measured modal data as
a reference. The constraints imposed were mass orthogonality, the equation of motion and
the symmetry of the updated matrices.

All of the methods described above used real mode shapes and natural frequencies. The
measured mode shapes were processed to produce the equivalent real modes. This paper
extends the reference basis methods by updating the damping matrix. Fuh et al.12

proposed a method that updates the mass and damping matrices with the constraint of
orthogonality. The stiffness matrix is then updated to ensure the measured modal model is
reproduced. Weighted norms between the initial and updated mass, damping and stiffness
matrices are minimised. In this paper the mass matrix is assumed correct and the damping
and stiffness matrices are updated simultaneously, so that the updated model reproduces
the measured modal data.
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The Updating Method

Following the method of Baruch3,4, who updated the stiffness matrix only, the difference
between the initial and updated damping and stiffness matrices is minimised, with the
constraints that the eigenvalue equation is satisfied and that the damping and stiffness
matrices are symmetric (and of course real). Thus, the penalty function to be minimised is
given by,

[ ] [ ]J a a= − + −− − − −1
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subject to

M C K 0aΦΛ ΦΛ Φ2 + + = (2)

C C= T               K K= T (3)

where  N M= a
1 2 , M C Ka a a, and  are the initial, analytical mass, damping and

stiffness matrices, C and K  are the updated damping and stiffness matrices, and Φ and Λ
are the measured eigenvector and eigenvalue matrices. The extension for other weighting
matrices, N, and indeed for different weighting of the damping and stiffness matrices, is
straightforward. A full set of modes are not measured, so Φ is not square, but all degrees
of freedom (DoFs) are assumed measured. If only a subset of the DoFs is measured then
the model must be reduced or the mode shapes expanded. Λ is a diagonal matrix with the
measured eigenvalues on the diagonal. The parameter µ in Equation (1) is to enable the
damping and stiffness terms to be weighted. Often the magnitude of the stiffness terms
are far greater than the damping terms, and so if µ was not present more weight would be
given to the stiffness terms, leading to a poor estimate of the damping matrix. The value
of µ is selected based on ‘experience’, often using the results from a range of values. This
will be discussed further in the example. Note that Wei9-11 produced a similar method for
updating mass and stiffness matrices simultaneously, although he didn’t include a
weighting factor similar to µ. Including such a factor does mean that closed form
solutions for the updated matrices are unlikely, but in practice including this weighting is
vital.

The Lagrange multiplier method will now be used to solve the optimisation problem. The
augmented penalty function based on Equation (1) and the constraints is
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where kij  is the (i,j) element of K  and similarly for C and Φ, λ j  is the jth eigenvalue (or

the (j,j) element of Λ), n is the number of DoFs, and m is the number of measured modes.
The overbar denotes the complex conjugate. The third and fourth terms ensure the
updated damping and stiffness matrices are symmetric, and the last 2 terms ensure that
the eigenvalue equation is satisfied. The Lagrange multipliers may be formed into 3
matrices in obvious notation: ΓK  and ΓC  which are real and forced to be skew-
symmetric (since otherwise they would not be unique) and ΓΛ  which is complex.
Because the eigenvalues and eigenvectors are complex, so must the corresponding
Lagrange multiplier, ΓΛ , and the last term in Equation (4) is the complex conjugate of
the penultimate term to ensure that J is real.

Equation (4) may be optimised by differentiating J with respect to each element of K  and
C, and assembling the results into matrix form. The differentiation with respect to the
stiffness gives the following equation,

[ ]M K K M 0a a a
T T− −− + + + =1 1 2 2 2Γ Γ Φ Γ ΦΛ ΛK (5)

Similarly differentiating with respect to the damping matrix gives,

[ ]µ M C C M 0a a a
T T− −− + + + =1 1 2 2 2Γ Γ Λ Φ Γ Λ ΦΛ ΛC (6)

Using the skew symmetry of ΓK , and the symmetry of the mass and stiffness matrices,
we can eliminate ΓK  from Equation (5) to give,

[ ]K K M M= − + + +a a
T T T T

aΓ Φ Φ Γ Γ Φ Φ ΓΛ Λ Λ Λ (7)

Similarly for the damping matrix, from Equation (6),

[ ]C C M M= − + + +a a
T T T T
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µ
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If we knew the Lagrange multiplier matrix ΓΛ  we could calculate the updated damping
and stiffness matrices from Equations (7) and (8). We can obtain a set of equations for
this Lagrange multiplier matrix by combining Equations (7) and (8) with the constraint,
Equation (2), to give,
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Equation (9) is a set of 2nm linear equations (real and imaginary parts) for the nm
complex elements of the matrix ΓΛ . Baruch3,4 and Wei9-11 simplified these equations and

gave closed form solutions, but the presence of the factor µ makes this impossible here.
Also the eigenvector normalisation for complex modes is not so straight forward as using
mass normalised real eigenvectors. Even so, Equation (9) should be sufficient to obtain
ΓΛ  and then the updated damping and stiffness matrices may be obtained from Equations
(7) and (8). In practice, the solution to equation (9) may be ill-conditioned, in which case
a pseudo inverse must be applied based on a singular value decomposition.

A Numerical Example

The algorithm outlined in this paper will be tested on a simulated example of a steel, 10
element cantilever beam, of length 1 m, breadth 25 mm and thickness 50 mm. The initial,
analytical model has no damping, and Guyan reduction13 is used to reduce the analytical
model to the 10 translational DoFs. The ‘measured’ eigenvalues and eigenvectors are
derived from a ‘damaged’ beam model. The damage is modelled as a reduction in the
stiffness of element 4 by 25%. The damping in element 4 is also increased, and is
assumed to be 10-5 times the stiffness of element 4. This damage model is motivated by
the realisation that damage often reduces stiffness and adds damping locally. The full 20
DoF model, including rotational DoFs is used to calculate the ‘measured’ data. Only the
translational DoFs and the 5 lowest frequency modes are assumed to be measured.

The proposed algorithm was applied for a wide range of weighting values, µ. Figure 1
shows the effect of changing µ on the weighted norms of the change in the damping and
stiffness matrices. The changes are weighted by the analytical mass matrix and represent
the two terms in the penalty function, Equation (1). As µ is increased the change in the
damping matrix becomes smaller and the change in the stiffness matrix becomes larger.
As expected this change in both norms is monotonic. Often in regularisation type
applications, with which this approach has some similarities, the equivalent plot has an
‘L’ shape and an optimum value of µ may be obtained. The difference here is that the
weight given to different parts of the updated model are changed, rather than the weight
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between the measured and analytical data. Even so, a good compromise value of µ would
be one where the norms change considerably. The starred value in Figure 1 (µ=60) would
be a good compromise.

The measured eigenvalues are not reproduced exactly because a pseudo inverse was
required to calculate the Lagrange multiplier matrix. There are also two potentially
serious problems that arise in the method. The first problem is that the matrices are not
guaranteed to be positive definite, and for the damping matrices this means that some of
the higher modes can have negative damping (that is be unstable). Extra low frequency
modes can also be introduced. Furthermore the connectivity of the original finite element
model is not necessarily preserved. The connectivity problem has been addressed in the
standard methods by Kabé14 and Smith and Beattie15.

Conclusions

This note has outlined an extension to the available direct methods of model updating to
estimate both the damping and stiffness matrices of a structure. The method minimises
the change in the damping and stiffness matrices, with the constraint that the measured
modal data is reproduced. The approach was demonstrated using a simulated example,
and produced reasonable results. The algorithm does not guarantee that the updated
matrices will be positive definite and the connectivity of the original finite element model
is not necessarily preserved. Also extra modes may be introduced in the frequency range
of interest. These problems have been addressed in the standard methods, and are the
subject of further investigation.
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  Figure 1.The Variation of the Norms of the Changes in the Damping and Stiffness
Matrices with the Weighting Factor


