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;‘ isualization requires more than just the production of complex

A combination of , ‘ 1requ
. / d images of higher dimensional data: Users must be able to comprehend
segmentatlon tools an the information within the data. Traditional approaches 1o representing

fﬂSt volume renderers 3D intormation using volume rendering often lack an environment that
provides an interactive lets users C\plnlp ;1n‘1|n;.|gc, Here we dl\&'ALl\\‘ x‘c\_’urul }cchmquc.\ that help

[ . . make volume visualization more user driven. Thev include mechanisms
exp oration environment that distribute volume data across multiple processors, as well as image
TOI‘ volume visualization. compositing technigues and solutions to representation problems in the

selection and display of subregions within bounding volumes. Our discus-
ston is comprehensive and trades depth for breadth.

In this article we deseribe our approach to direet volume visualization:
the interactive control of images rendered direetly from volume data cou-
pled with o user-controlied semantic classification tool. We present the
variations of paratlel volume rendering being explored on the Pixel-
Plancs 3 svstem at the University of North Carolina at Chapel HHIL (We
include a brict overview of the machine) Then we deseribe the region-of-
imterest selection methods and the interactive tools we use. Finallv,
through medical imaging applications, we demonstrate the flexibility and
power of combining yolume rendering with region-ol-interest selection

technigues.
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Figure 1. Pixel-Planes 5 system components.

Interactive classification

We distinguish two carly stages in volume visualization as
segmentation and classification. By segmentation we mean
the division of a data sct into often nonoverlapping subvol-
umes that have some cohesive meaning unto themselves.
Classification, on the other hand. is the process of labeling
the various portions of an image by type. In many cases. data
must be segmented into cohesive regions before labeling. If
classification happens at the voxel level with each voxel la-
beled by type (in the case of medical data. by tissuc type).
the data has been segmented down to the individual voxels.
the smallest cohesive regions possible.

Segmentation and classification are often performed to-
gether in a preprocessing stage, but it is possible to do them
separately in different stages. Our system provides a power-
ful segmentation preprocessing stage and then allows the
user to control classification interactively while viewing the
data with a volume renderer. By giving the user classification
and labeling control at rendering time, we provide a flexiblc
means of specifying the visualization.

In addition to the distinction between scgmentation and
classification, we distinguish two types of classitication: syi-
tactic and semantic. Syntactic classification uses only the in-
formation contained within the data set to perform the
segmentation or classification. Available information in-
cludes voxel intensity. local gradient information, and con-
nectivity.

Local properties of the data often do not reveal informa-
tion regarding morphological features within the image. and
geometric tools are sometimes unwieldy. Therefore. it is use-
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ful to apply some semantic groupings of a
given data set to isolate features of form. Se-
lecting regions on a voxel-by-voxel basis is
not practical for defining featurcs of 3D data.
so our system gathers voxels of similar na-
ture into primitive collections that then be-
come the basis of the shape-driven
classification. The uscr performs classifica-
tion in a second pass by collecting these re-
gion primitives into coherent volumes that
encompass features in the data sct. The way
these primitive groupings relate to global
structure is most effectively determined by a
knowledgeable user. who requires a graphi-
cal language of sensible fundamental regions
and a means to interact with them.

We contend that cffective volume visual-
ization requires this level of control. Control
of the labeling should rest in the hands of ex-
pert users who apply their knowledge of the
information in the visualization. Effective vi-
sualization is possible only when the uscr
who explores the data controls the view.

Display

Researchers exploring advanced graphics architectures at
the University of North Carolina at Chapel Hill provided us
with a platform for our rescarch. Completed in the summer
of 1990, Pixel-Planes 5' is a heterogeneous graphics architec-
ture using both MIMD and SIMD parallelism.

As Figure 1 shows. the Pixel-Plancs 5 system has multiple
i860-bascd Graphics Processors and multiple SIMD pixel-
processor arrays called Renderers. Each Renderer is a 128 x
128 array of pixel processors capable of cxecuting a general-
purpose instruction sct. Graphics Processors send Renderers
operation-code strcams that arc executed in SIMD fashion.
Renderers also have a quadratic expression evaluator that
can be configured to occupy any screcn position. Special op-
cration codes evaluate the function

Q= Ax+Bv+C+Dx> + Exy+ Fy’

in the Renderer for each pixel’s unique .x. y location. The co-
efficients A through F are part of the instruction strcam from
the graphics processors.

The Graphics Processors. the Renderers, a frame buffer.
and a workstation host communicate over an eight-channel
one-dimensional ring network whose aggregate bandwidth is
5.12 Gbits per second. Renderers supplement their working
memory with a secondary memory or backing store that may
contain large quantities of user data as well as completed
rendered images. Renderers also have backing store ports
that allow data movement in and out of secondary memory
under Graphics Processor control.
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Volume renderers

A fundamental operation in any volume renderer is the re-
construction of a continuous function from discrete samplcs.
The efficiency with which this is done has a direct impact on
rendering speed. One aspect of our current research is a
comparative analysis of the speed and quality of multipass
shear. splatting. and trilincar reconstruction techniques.

Parallcl approaches to volume rendering are complicated
by the fact that data distributed throughout the system’s
memory spaces must be combined in depth order during im-
age rendering. This partial sorting of potentially large vol-
umes of data can tax the communications network. resulting
in poor performance. An important clement in minimizing
the expense of this operation is the data distribution itself.

This scction describes the evolution of a parallel algorithm
that achicves both fast update rates and good image quality.
The final algorithm is the culmination of several disparate cf-
forts. Each incremented cffort resulted in a product whose
performance in some way fell short of the performance
needed for the visualization described in this article.

VRN

VRN. one of the first applications to run on Pixel-Planes 3.
is an implementation of multivalued classified volume ren-
derers.™ s unique aspect is its exploitation of the Render-
ers” SIMD parallelism to perform the classification and
Phong shading ot the voxels. The algorithm distributes data
among the Renderers’ backing store memory. The Render-
ers perform elementary shading and syntactic classification.
and transmit shaded blocks of data to the Graphics Proces-
sors for ray casting on a demand basis. A designated master
processor creates a block hit list that allows the sending of
shaded blocks to all the Graphics Processors that handle rays
passing through that block-——whether or not the processors
have already requested them. VRN incorporates several
lcchniqum4 to speed the ray casting on the Graphics Proces-
sors: alpha cutoff. adaptive sampling. and incremental oc-
trees.

An undesirable aspect of this approach is the latency in a
Graphics Processor’s access to the data needed for a ray.
Much of the data set must be transmitted over the communi-
cations network every frame. Load imbalance among Graph-
ics Processors is significant and difficult (o correct. These
shortcomings (among others) limit the speed of this ap-
proach to about three frames per second for a 128 x 128 x
128 data set using 20 Graphics Processors and cight Render-

Crs.

VOL, Splat, and DIVO
Rescarchers at UNC made several incremental steps to-
ward improved volume rendering on our multicomputer ar-
chitecture. The effort centered around overcoming the
bottlenecks in the VRN algorithm by ray casting into un-
shaded volumes and performing shading at rendering time.
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Figure 2. Volume rendering with Splat.

The volume renderers known as VOL. Splat. and DIVO
demonstrate advances in accelerated shading. reconstruction
of images from a minimal number of samples. and ray casting
in a distributed data environment.

VOL circumvented the data distribution problem by duphi-
cating the full data set at cach processing node and attacked
fast shading. This programming effort demonstrated the effi-
ciency of lookup table techniques to speed shading opera-
tions. VOL performs syntactic classification and Phong
shading by using lookup tables indexed by the raw data. its
eradient. and gradient magnitude.

Splat generated techniques for parallel screen space image
reconstruction from volume data. It is based on splatting. a
[eed-forward mechanism rather than a ray-casting approach
to volume rcndcring.i Neumann constructed a parallel imple-
mentation of splatting on Pixel-Planes 5 in the spring of
1991." This volume renderer uses the Renderer quadratic ex-
pression evaluator to efficiently generate the reconstruction
filter kernels needed for splatting. Figure 2 shows example
output from Splat. This approach demonstrated an elficient
sereen interpolation method later used in DIVO and subse-
quent volume renderers.

I data is distributed and ray casting is parallelized among
separate Graphics Processors. the system must reconstruct
the ray segments into coherent ravs. DIVO was an attempt
to address the issues surrounding data distribution and ray
reconstruction. It introduced the idea of pipelining by assign-
ing ray casting to one group of Graphics Processors and as-
signing compositing and screen interpolation to another.
DIVO distributes the data blocks among the ray-casting

Graphics Processors.



In DIVO. a subsct of the Graphics Processors casts rays on
a regular sereen grid through the Graphics Processors™ data
blocks. Each Graphics Processor computes an <RGBo> tu-
ple for the ray fragments through its data block. The tuple
arrays are written to the Renderers” data memory. The Ren-
derers composite the many fragments and distribute the final
ray colors to the interpolation Graphics Processors. A binary
space-partition tree determines the proper order for com-
positing. The interpolation Graphics Processors use cither
software or a modified splatting technigue and the Render-
ers to do screen interpolation. The advantages of using the
Renderers are that this approach is actually faster than bilin-
ear interpolation on the Graphics Processors. and higher or-
der filter kernels can be used. producing less offensive
artifacts for the coarscly sampled images generated while the
user navigates through the data set. Kinctic depth perception
is much better using splatting because of the less objection-
able artifacts.

DIVO accommodates large data sets (greater than 256 x
256 x 256). The system performs well. except that the ray-
casting Graphics Processors arce not evenly loaded because
the data cubes have varying amounts of nonzero data in
them.

VVEVOL

The VVEVOL renderer is the culmination of the idcas
and techniques developed in the four carlier approaches.
VVEVOL. uscs the lookup table method for syntactic classi-
fication and Phong shading. It performs progressive refine-
ment from a coarse density of one ray per 8 x 8 screen pixels
to a final density of one ray per pixel. One set of Graphics
Processors supports pipelined ray casting, and another sup-
ports compositing and interpolation. The compositing
Graphics Processors assemble ray fragments into a final ray
color. Finally. the Renderers translate the rays into splat ker-
nels using the Renderer quadratic expression cvaluators to
perform parallel screen interpolation.

Dynamic load balancing of the ray-casting Graphics Pro-
cessors is accomplished by dividing them into several groups.
The data set is divided among groups as approximately equal
slabs. Each group of Graphics Processors is responsible for a
full screen of ravs cast through the group’s slab. Each Graph-
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Figure 3. Three different intensity classifications of a CT scan: skin surface (a), musculature (b), bone (c).

ics Processor within a group has the same slab subset of the
wholc volume. thus allowing the system to assign rows of
ravs to Graphics Processors on a demand basis. Within a
group. therefore. the Graphics Processor loads are balanced.
The imbalance between groups is typically small because
usually there are only a few groups. Memory and data sct
size dictate the number of groups.

VVEVOL can render shaded images from 128 x 128 x 56
volume data at 20 frames per second. and 192 x 192 x 128
volume data at 11 frames per second. Semantically selected
regions specified by the user are rendered as surfaces within
the volume.*’

The evolution of volume renderers on Pixel-Planes 5 has
generated new thoughts about the trade-offs made in sam-
pling and image reconstruction. as well as the sorting and dis-
tribution of volume data throughout a parallel architecture.
We have analvzed the costs of communication and the im-
portance of load balancing in a generic MIMD architecture
with local memory at each computing node. Schroder and
Salem, in their discussion of memory motion on the Connec-
tion machine.” emphasize that these are concerns throughout
all parallel architectures and merit further investigation.

Classification

Our rescarch handles classification both syntactically and
semantically. Many volume renderers are equipped with gra-
dient magnitude and intensity magnitude classification tools
that allow the uscr to select and display various data set cle-
ments that have consistent propertics. Two of the volume
renderers described in the previous section allow alternate
data input for connection with semantic visualization inter-
faces. adding user-supervised semantic classification to their
capabilitics.

Syntactic classification: One pass
We implement syntactic classification in two forms. In the
first, a series of linear (or other parametricy matching func-
tions lets the user map intensity values to display parameters.
Gradient mapping is widely used in our systems: we refer to
this class of methods as ramp classification. The second type
of classification is purcly gecometrical and involves in its sim-
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plest form a series of clipping surfaces uscd (o pare away
extrancous portions ol the data set. These two approaches
intensity or gradient windowing and gecometric sculpting.--
often seem natural to users.

[n ramp classitication. many volume data sets have natural
divisions along intensity values. local density. or aradient
magnitude. An intensity-value histogram will show signifi-
cant divisions among the different classitiable groups of vox-
cls. The example in Figure 3 shows three views of a human
pelvis acquired using X-rav computed tomography with tis-
suc density as the classification parameter. It is natural 1o
think of bone as denser than muscle and muscele as denser
than skin. so ramp methods work well for visualization of
this tvpe of data.

Onc caution about this method: These classifving divisions

arc often subject to changes in the parameters of the image

Figure 4. Geometrie
sculpting as classifi-
cation,

acquisition system and are not reliably reproducible in arbi-
trary images. even of the same original scene. This was an
important motivation for providing interactive classification
control at rendering time.

Geometrie sculpting tools arc also natural and powertul
implements in visualization. The cutting planc is particulariy
valuable in medical visualization, Medi-
cal imaging svstems that compute 3D re-
constructions from  planar images
present the tomographic data as a series
ol slices. Figure 4 shows the use of a cut-
ting plane to reproduce a particular sec-
tion or shice of cranial anatomy within
the context of the surrounding tissue.

F-or this presentation to fit well with
existing diagnostic paradigms. some ma-
nipulation of the cutting plane surfaces
is required. Most visualization svstems
render the exposed surface using normal
interpolation and shading techniques.
This may appeal to students and pathol-

ogists who often view prepared slices
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and sections of actual tissue. However, most radiologists are
disturbed by this approach and wish to see the original tomo-
sraphic data texture-mapped onto the exposed surface. Their
common view of the datais through film reproductions of
computed tomographic slices ol a paticnt. and they require
some assurance of a correlation between the volume render-
ing and the onginal data. 11 these user interface issues are re-
solved. the type of visualization we deseribe here may become
an extension of the diagnostic tools in use today.

As powerful and rapid as these methods can be. they can-
not distinguish between the different bones of the leg and
different muscle groups of the pelvis. or follow the contours
ol separate fobes of the brain. For that we turn to the image
analyvsis techniques that contribute the semantic tools for

classification,

Semantic classification: Two passes

Our approach to semantic classification is to perform the
labeling process in multiple steps. First, in a preprocessing
step.our system segments the image into a large number of
mathcmatically cohesive volumes using strictly svntactic in-
formation. Sceond. it automatically gencerates a hierarchy to
conncect the primitive regions with a directed acyelic graph.
The goal is to parse an image into cohesive elements and
then provide the user with an intuitive language to describe
its regions. Finally, at rendering time. the user interactively
traverses the graph. grouping primitive regions into classifi-
able subscts.

We try 1o oversegment an image and leave the parameteri-
sation of the disjoint segments until rendering time. Using
the hicrarchy. we shorten the human interaction time re-

quired to group the clements into classifiable regions.

Syntactic segmentation as preprocessing

Here we introduce two algorithms to generate hierarchies
i the preprocessing stage. We also deseribe the interactive
tool that allows users to perform interactive classification.
Since the geometry is often hard to coneeptualize. we de-
scribe the algorithms as implemented on 2D images. Figure 3

Figure 5. Two conceptualizations of a 2D image.



shows a 2D image with variable intensity at each pixel. If we
consider the image as a surface of variable height (shown on
the right). rather than a plane with variable intensity (as
shown on the left). we see the image as an intensity mountain
range, with peaks, ridges. valleys. and saddlc-shaped gaps di-
viding the ranges of peaks.

In previous rescarch with 2D images. we generated these
region hierarchies using one of many techniques.” These
methods characterize a 2D image as an intensity surface and
define regions based on the geometric nature of the ridges
and valleys in that surface. In our current work we extend
these ideas for segmentation to three dimensions. We can
treat a volume image as a 3-manifold in 4-spacc, and analyze
ridges and valleys in the 3-manifold.

Reverse-gravity watershed techniques

Consider a d-dimensional image as a function /: R'= R
say /(x). where x € R’ Let M be the set of critical points v
for which I(y) is a relative maximum. Given v € M. the re-
verse-gravity watershed corresponding to y is the set of points
X, € R such that there is a path of steepest ascent from (x,
I(xy)) to (v, [(v)) along the graph of /. Intuitively. if we place
a droplet of water on the intensity surface and allow it to
flow against gravity, then the droplet will follow a steepest
ascent path to a local peak on the surface. A concise mathe-
matical description for such a region is the following: A point
Xy is in the reverse-gravity watcrshed of v if thereisa 7> 0
such that the solution x(r) to the differential cquation

de(r)  VI(x(

_ 1) N = v
0 —*”V[(.\'(t))” Ja>0.x(0) = x

satisfies x(7°) = y. Here V is the gradient operator and |l |l de-
notes the length of a vector. The right-hand side of the differ-
ential cquation is the unit gradient vector for /, which points
in the direction of steepest ascent.

Sometimes the following hierarchy-generation technique is
called the peak-flow method. We can partition the domain
for [ into reverse-gravity watersheds as a method of scgmen-
tation. A critical point yielding a relative minimum is arbi-
trarily assigned to a watershed on which it borders. Given
this collection of primitive regions. we construct a hierarchy
from it. The method we use is based on the concepts of blur-
ring and scale space. The original image is blurred via a
Gaussian kernel of standard deviation s. called a scale. The
blurred image J(x, s) is a solution to the partial differential
equation

(xs) sV (x.s) s>0
ds

with initial data J(x. 0) = I(x). The operator V7 is the Lapla-

cian.

As scale increases, the relative maxima of J(x. s) are annihi-

lated. In fact, at the limit. as scale becomes infinite. the im-
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age becomes constant. Annihilation occurs when two or
more relative maxima merge into a single such point. In the
region hierarchy. the watersheds associated with merging rel-
ative maxima are linked as siblings of a common parent. As
scale increases. more mergings occur and more tree links are
sct. When the blurred image is finally constant. the final par-
ent nodes of the hierarchy are linked to a single root.

Ridge-flow techniques

We are developing a more sophisticated hierarchy-genera-
tion technique called the ridge-flow method. Instcad of iden-
tifying regions associated with relative maxima, we construct
regions based on the ridges of the intensity surface. For the
intensity function /(x), x € R'. we define ridge points 10 be
those points x;, such that the curvaturc of the level set de-
fined by /(x) = I(x,) has a relative maximum at x,,.

It is difficult to work with the level sets of /. so in the im-
plementation we have a measure ot curvature at a point .x
without reference to level scts. The measure is

c(x)= rrace[ Ve fl—g%{;—“}

where @ is the standard tensor product between vectors. The
tensor product yiclds a matrix. and C(x) is the trace (sum of
diagonal elements) of the matrix. We threshold this curva-
ture measure to get a candidate sct of ridge points, which in
turn we thin to the appropriate size using methods of mathe-
matical morphology.

Each connected component of the ridge structure for the
intensity surface is either an isolated point or a continuum of
points that we can partition into curvilincar segments. Each
such segment has an associated reverse-gravity watershed re-
gion. just as before. In this casc, however, paths of steepest
ascent are traversed until a ridge point is encountered. We
also obtain some finer segmentations by partitioning the
ridges at points where the intensity surface has a local mini-
mum along the direction of the ridge.

The hierarchy-generation technique we usc for this seg-
mcntation relies on identifying ridge-flank and ridge-ridge
relationships. If a ridge lies on the flank of a larger ridge,
then we create a parent-child link from the region of the
large ridge to the region of the small ridge. If three or more
ridges meet at a single junction. then we create the hierarchy
links on the basis of collinearity of the joined ridges. For ex-
ample, if three ridges are joined. we identify the two ridges
that are nearly collincar (while traversing the ridges) as sib-
lings. We consider their parent to be a sibling of the remain-
ing ridge. The resulting hierarchy will be a forest of trees.

Navigating the hierarchy

Our system lets users manipulate the regions of an image
hierarchy. The 3D interactive hierarchy viewer (3D IHV)
permits mouse-based interactions and provides a view of the
multiple slices of the data set. We chose a slice paradigm as

IEEE Computer Graphics & Applications
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the  basis for navigating
through 3D images because of
its inherent ability to project
away one level of dimension
without loss of user compre-
hension.

Figure 6 shows the three ba-
sic interface components. A
window presents a full-size
view of once shice through the
data sct. Mouse operations in
this window fet the user select
and desclect primitive regions
for classification. Although the
interaction is within one slice.
the scelected regions extend in
three dimensions. Buttons in
this window let the user move
forward and backward in the
unseen dimension to view ad-
jacent slices.

The sccond component is a
series of scaled-down images
(241 the current implementa-
tion) that atlow the user to sce
the effects of region selection
on a wide range of slices. A
shider on this window lets the
user view different slices in the
data set. With a frequencey but-
ton. the user can subsample the range of slices for multiple
simultancous views of slices throughout the entire data sct.
I'he third component of the editor is a control pancel that
governs /O operations and hierarchical moyement

I'he results with 31D THV show a dramatic improvement
over the carlier slice-by-slice and voxel-painting methods.
128

For example, we created deseriptions of a 128 < 128
data set of @ human head and selected a portion of the brain
Tor volume rendering, Using 2D deseriptions and editing
slice by slice (68 shices contained portions of imterest). the
task took approximateldy 40 minutes. With the 31D descrip-
tion. the task required approximately 10 button presses and
took less than a minute. Using the same 30 deseription. the

entire bramm can be selected inapproximately four minutes.

IHV and Pixel-Planes

W combined 3D THV with volume rendering to create a
powcerful visualization suite  With segmentation performed
by THV . the user speaifies regions ofinterest to the volume
renderer. The user understands the region-selection process
better and gains more from overall visualization of 3D vol
ume nmages.

Using standard Unix socketss we connected THY and VRN

viaean Ethernet. passing image nuasks and operation codes in
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Figure 6. 3D IHV console window.

transmission-control protocol packets. Sending a selection
volume from the THV application currently takes about 10
seconds. The data is used during ray casting to emphasize se
lected voxels by moditving their color and opacity. The ~ys-
tem currently does not permit the selected data 1o interact
with the raw data before local classification. We will make

such mteraction possible  the future

Application results

Interactive semantic region selection is eritical for visualiz
ing medical data sets. Within a data set. many regions may
perform different functions but have the same chemical com-
position or visual appearance: they may even be connected.
Similarly, disconnected regions may have similar shape or
physiology. Tor example. the ditferent brain lobes are com-
posed of the same tissue and are all interconnected. vet spe-
cialists often distinguish the various regions by the roles they
plav in cognition. sensing. and motor control. These distine-
tions are not castly communicated through a computer pro-
eraim that performs secgmentation or classification. The best
way Lo image this tvpe of data is to provide appropriate con
trol to users.

Figure 7 shows a visualization possible only with semantic

control. The Jeft mmage is a view of cerebral tissue produced
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the application of an intensiy win-
dow or ramp. The image on the
right shows a representation of

only the white matter of the cere-

bral tissuc of the data scet previ-

ously sclected on the Jeti. The

saggital rift (the division between

the Tett and right brain hemi-

=

spheres) becomes clear after syn-

tactic classification is applicd.

Conclusions

Sdsemese

The requirement for immediate

e

feedback in volume visuahzation

Figun Comparison viowsweth and sithout senviie s lesificanion makes speed aeritical issue. By

concentrating on optimization of -
the vendering pipeline in parallel

architectures, we are achieving the

using only geometric and syntactic selection. Tois straightior-
ward to classily all tissue of this type withim this data set.
Howeverditis impossible using these tools to distinguish the
cerebellum. i wedge-shaped organ of the brain located in the
rear section beneath the oceipital lobe This organ’s tissue is
stmilar to the tissue in the rest of the brain. Using the inter-
active semantic region selection technigues described carlier.
it s simple to specify the organ of mterest and separately
classifyvoit as different from the remainmy tissue. The figure
on the right is the same visualization atter semantic mforma-
tion is apphed.

We do not imply that syntactic tools have no value. On the
contrary. semantic and \)‘1)1;\&'lic tools 1 coneert cmpower
the user with visualization control unparatleled mits presen-
tation capabilitics. The images 10 Figure 8 show how tissue
sclected using the mteractive hierarchy viewer timage on the

left) can be further classitied into different fevels of tissue by

Figure 8. Comparison views using syntactic classification.

2y

speeds necessary to provide o natural means to explore vol-
ume data. We take advantage of the human visual system’s
ability to integrate torm from motion: Adaptive refinement
reduces the number of ravs cast per frame during motion of
the image and increases the picture quality for still images.
The cost for these speeds is some loss of image quality during
motion.

Although the speed of hicrarchy traversal is a imiting fac-
tor, our svstem demonstrates the advantages of user selee-
ton of 3D regions of interest when supported by
precomputed sensible regions and immediate display feed-
back. Our approach reduces by an order of magnitude the
time required to scleet particular regions of medical data.
I'he system also demonstrates the power of interactive con-
trol of local classifiers such as clipping and opacity ramps
within regions of interest sclected by the interactive viewing
tool.

Application of the combined sys-
tems to real images reveals their
arcat potential for facilitating rapid
comprehension ol volume data.
ven with the limited speeds of the
present interactive system, we see
the great importance of fast gen-
cral-purpose parallel graphies svs-
tems such as Pixel-Planes 5.0 and
the need for even faster svstems
with faster data access and render-
ing algorithms. The speed is not
simply a convenience: [t results in
qualitative imcreases inouser coms-
prehension of data.

When such machines are more
widelhy available and can support a
wide range of scgmentation and

classification techniques at mterac-
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tive rates of up to 30 frames per second, volume visualization
will be a much more powerful approach. When interactive
semantic region definition with volume visualization can be
achieved in real time on affordable platforms, we think it will
be the standard means for viewing 3D data. a
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