
Directed Acyclic Graph Kernels for Action Recognition

Ling Wang

Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI

46 rue Barrault, 75013 Paris, France

ling.wang@telecom-paristech.fr

Hichem Sahbi

CNRS LTCI; Télécom ParisTech

46 rue Barrault, 75013 Paris, France

hichem.sahbi@telecom-paristech.fr

Abstract

One of the trends of action recognition consists in ex-

tracting and comparing mid-level features which encode vi-

sual and motion aspects of objects into scenes. However,

when scenes contain high-level semantic actions with many

interacting parts, these mid-level features are not sufficient

to capture high level structures as well as high order causal

relationships between moving objects resulting into a clear

drop in performances.

In this paper, we address this issue and we propose

an alternative action recognition method based on a nov-

el graph kernel. In the main contributions of this work,

we first describe actions in videos using directed acyclic

graphs (DAGs), that naturally encode pairwise interactions

between moving object parts, and then we compare these

DAGs by analyzing the spectrum of their sub-patterns that

capture complex higher order interactions. This extraction

and comparison process is computationally tractable, re-

sulting from the acyclic property of DAGs, and it also de-

fines a positive semi-definite kernel. When plugging the

latter into support vector machines, we obtain an action

recognition algorithm that overtakes related work, includ-

ing graph-based methods, on a standard evaluation dataset.

1. Introduction

Human action recognition is one of the major tasks in

multimedia content analysis. It comprises a broad range

of applications including video surveillance, robotic vision,

video search and human-machine interaction. This task is

also very challenging due to the complexity of actions into

scenes and their large intra-class variability.

Efforts have been undertaken during the last two decades

in order to build models both for action representation and

classification. Many existing solutions successfully apply

under specific conditions (including static background, s-

ingle person and periodic actions). However, more power-

ful algorithms are needed to deal with videos in complex

uncontrolled environment (such as multiple views, moving

platforms, and cluttered backgrounds) and to handle the ex-

ponential growth of video collections in the current mul-

timedia supports including social networks. In this work,

we address these issues for complex actions including non-

periodic ones and involving multiple persons; for that pur-

pose, recognition is known to be difficult as it requires ob-

serving and modeling both local action parts as well as their

contextual relationships in order to correctly capture their

intra-class variability.

1.1. Related Work

Among the representative action recognition method-

s (see for instance [18, 1]), a considerable part of them

focus attention on utilizing local features. Early meth-

ods, even though relatively successful, neglected struc-

tural aspects and contextual relationships into video scenes.

Many of them were applied under the bag-of-words scheme

and relied either on sparse or dense sampling (see for in-

stance [21, 14, 26, 25]). Subsequent works consider struc-

tural and spatio-temporal relationships in order to upgrade

local features [11, 16]; in these works, structural informa-

tion between feature points has been used both at local and

global scales. Among existing methods, bottom-up ones

consider relationships in local neighborhoods in order to

build higher order features ([17, 11, 15, 7]). The latter

summarize content as well as context from groups of neigh-

boring features and result into more descriptive features for

recognition compared to the initial ones. These methods, re-

lying also on the bag-of-words scheme during learning, still

suffer from their inability to sufficiently handle structural

information into scenes. Other existing methods proceed

in a top-down way, by applying graph clustering on dense

trajectories in order to build mid level components which

again are described using bag-of-words [27, 5, 19].

More recent works learn from global structures in order

to achieve action recognition. For instance authors in [3, 19]

use graphical models in order to capture dependency be-

tween different components; these models are used under

the assumption that actions, belonging to the same category,

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.393

3161

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.393

3168

share common structures and fixed number of parts. Kernel

methods are also used in order to compare videos while han-

dling global structures; In [4], videos are described by ar-

ranging frame representations into matrices and kernel val-

ues are computed based on auto-correlation distances be-

tween these matrices. In the work of [5], complex actions

are considered as decomposed spatio-temporal parts and a

binary tree is built on video data. A kernel method, based

on the convolution of all subtree patterns, is used in order to

compare videos. Another work [27], considers components

as human body parts, and combines them with context-

dependent kernels in order to capture structural and causal

relationships around components. This method uses a con-

volution kernel between components and iteratively learns

a more effective kernel matrix in order to achieve action

recognition. In the work of [23], authors describe videos

as spatio-temporal graphs, with nodes corresponding to in-

dividual elements (e.g. single trajectories) and graph links

corresponding to both directed and undirected relations. In

the learning phase, authors use tensor product graph in or-

der to infer their graphical model.

1.2. Motivation and Contribution

Among action recognition techniques those based on

graph comparison, using kernel machines, are particularly

interesting but their success is very dependent on the used

kernels [5]. The kernels defined as symmetric and posi-

tive semi-definite functions, should reserve high values on-

ly if two given actions are very similar. Considering graph-

based kernels, two families of these kernels can be found

in the literature. In the first family, similarity between t-

wo given graphs is defined by matching the underlying sub-

patterns (nodes, edges, random walks, etc.). Random walk

graph kernels [6, 24] belong to this family and have been

deeply studied theoretically and successfully applied main-

ly in bioinformatics and chemistry data where nodes and

edges have simple labels. The general principle of these

kernels considers that similarity between two given graph-

s should be proportional to the number of common path-

s modeled with product graphs. Beside the computation-

al overhead of these kernels, their convergence is not al-

ways guaranteed for general graph structures and their per-

formances are highly dependent on the relevance of labels

in graphs.

The second family of graph-based kernels proceeds dif-

ferently and considers similarity between two given graphs

as a decreasing function of the distance between first or high

order statistics of their sub-patterns. This family of methods

includes graphlets [22, 12] which can capture more complex

sub-patterns compared to simple path patterns, but their ap-

plication to general graph structures is limited only to small

orders (usually less than 5 nodes) and this is due to combi-

natorial issues. Note that kernels, belonging to this second

family, usually guarantee the positive definiteness by con-

struction while this property is not straightforward and not

always guaranteed on the first family of kernels.

In this work, we introduce a novel graph kernel that

attempts to overcome the limitations of these two afore-

mentioned families of kernels while keeping their strengths

for action recognition problem. In our proposed solution,

we use a particular graph structure, known as directed a-

cyclic graphs in order to model spatio-temporal relation-

ships between action components. In this representation, a

given video is described with a DAG, where its nodes cor-

respond to the mid-level action components and links char-

acterize spatial as well as temporal relationships between

them. Then, we use these DAGs, in order to compare videos

by defining a novel graph-based kernel function. Note that

the acyclic property of DAGs, allows us to guarantee im-

portant theoretical properties as well as convergence while

making the proposed kernel computationally efficient and

also effective.

Finally, our model is built upon mid-level features result-

ing from grouping local action elements. The latter corre-

spond to spatio-temporal local features, short trajectories,

etc. [14, 25]. All these local features are widely used due to

their robustness to noise, partial occlusion, camera jittering,

change of illumination, etc. Considering these advantages,

we follow up the line in [19, 27] in order to extract these

mid-level features by grouping trajectories into components

resulting into semantically meaningful moving body parts

in videos.

The rest of this paper is organized as follows. We pro-

pose our methodology in the three following sections: In

section 2 we present details about DAG construction from

video data. In section 3, we introduce our directed acyclic

graph kernel based on walk patterns. We show and discuss

experimental results in section 4 and we conclude in sec-

tion 5.

2. Our Directed Acyclic Graph Construction

In this section, we present our video description method

based on DAGs. We first extract dense trajectories [25], then

we group them using agglomerative clustering in order to

build mid-level feature components. We tackle in this sec-

tion several issues including the automatic selection of the

number of mid-level components into a given video as well

as the modeling of spatio-temporal relationships between

components using DAGs.

2.1. From Dense Trajectories to Mid-level Compo-
nents

Following the line in [25], trajectories are obtained by

tracking densely sampled points in successive video frames

using optical flow and each trajectory is described by fea-

tures extracted from local space-time volume around it. All

31623169

(a) Frame example (b) Dense trajectories

(c) Trajectory clusters (d) Action component graph

Figure 1. This figure shows our DAG construction process: (a)

given a video clip which contains an action; (b) extract dense tra-

jectories in the spatio-temporal domain; (c) cluster trajectories into

components and each of the components corresponds to a moving

body part; (d) construct a directed acyclic graph on these compo-

nents.

of these trajectories are limited to a small fixed length in

order to alleviate trajectory drifting and to obtain homoge-

neous components in the subsequent steps.

Considering a finite collection of trajectories extracted

on a given video, we build an adjacency graph where each

node corresponds to a trajectory and an edge exists between

two nodes iff the underlying trajectories are neighbors in a

particular feature space; in that feature space, a trajectory

with L points, is described by its normalized 3D space-time

coordinates and velocities as well as its appearance and mo-

tion features (described with HOG, HOF and MBH respec-

tively [25]).

Using this adjacency graph, we cluster trajectories into

components with a graph-based agglomerative method pro-

posed in [28]. This clustering method allows us to build

components by hierarchically merging similar trajectories

in that graph (see Figs. 1 and 2). The choice of this par-

ticular graph-based clustering algorithm was mainly driv-

en by its ability to achieve clustering inside the manifold

enclosing the space of trajectories, and this provides better

estimate of distances in contrast to other methods which re-

ly mainly on Euclidean distances. Extra details about this

clustering algorithm, out of the main scope of this paper, are

deliberately omitted and can be found in [28].

The number of clusters in the above algorithm reflects

the number of components1. In order to automatically selec-

t this number, we use a simple criterion, similar to the one

in [9], that balances intra-cluster and inter-cluster variances.

1Selecting the number of components of actions in a given video scene

is not trivial at least because we have no priori knowledge about how many

persons are interacting in that scene (see also [5, 19]).

Considering a given partition of the set of trajectories into K

clusters, the intra-cluster variance measures the average dis-

tance between trajectories and their K cluster centers while

the inter-cluster variance measures the average distance be-

tween the K cluster centers and the global center. Using

these measures, we incrementally cluster trajectories for d-

ifferent and decreasing values of K and we keep the value of

K that makes the difference, between intra and inter-cluster

variances, the smallest.

2.2. DAG Construction

Components obtained from trajectories only reveal mo-

tion of local parts, however, complex actions depend not on-

ly on the local motion parts, but also on their relationships.

Current literature relies mainly on undirected graph struc-

tures in order to model dependencies between action com-

ponents and use graph-based learning techniques in order

to infer action classes. However, these general graph struc-

tures are not always appropriate. On the one hand, undi-

rected graph based representations are highly redundant (for

instance simple causal relationships, such as a component

“precedes”/“follows” another one can equivalently be de-

scribed with one “relation” only.). On the other hand, and

more importantly, general undirected graph structures do

not always guarantee some important theoretical properties

(for instance, inference based on diffusion on graphs is not

always guaranteed to converge when graphs include loop-

s.). Following the previous arguments, we choose directed

acyclic graphs, in order overcome the two above limitations.

Given a constellation of components extracted from a

given video as shown in section 2.1, we build an adja-

cency DAG (denoted G = (V, E)), where each node in

V corresponds to a component (a cluster of trajectories

described by its cluster center) and a directed edge, in E ,

exists between two components v, v′ in V if the following

relationship exists:

Spatio-temporal causal relationship. As described in

section 2.1, each component corresponds to a cluster of

trajectories, and occupies a local volume in the XYT space

(see Fig. 1 (c)). Two components, associated to nodes

v, v′ in V , are considered as neighbors if their clusters

join together at the XYT space. In the case v and v′ are

neighbors but not overlapping in time, we create a link

directed from v to v′ that explicitly means “v precedes

v′” (and also implicitly means that “v′ follows v”) or

vice-versa.

Notice that unlinked nodes in G may either correspond

to action components running independently or to weakly

dependent components (i.e., connected through intermedi-

ate nodes). This setting guarantees that the obtained graph

structure is acyclic. As each node represents a bunch of

31633170

trajectories in the XYT space, the links capture also rich

spatio-temporal relationships. We treat two nodes v and v′

overlapping in time but meeting in the XY space as weakly

dependent because they lack causal relationship so they are

less discriminative for video actions.

Finally, and as will be shown through the next section,

walks/paths in this DAG structure have bounded lengths and

this is again crucial in order to make the proposed graph-

based kernel evaluation process convergent, computational-

ly efficient while still effective.

3. Graph Kernels

Given a collection of video sequences S = {Vi}i, we

describe each video Vi in S using a directed acyclic graph

Gi = (Vi, Ei) as shown in section 2. For each node v ∈ Vi,

we extract a feature vector, denoted ψ(v) ∈ R
s (see sec-

tion 2.1), corresponding to the average of feature vectors

taken from all trajectories in v. We also define an ele-

mentary kernel ke, between nodes in ∪iVi as ke(v, v
′) =

exp(−‖ψ(v) − ψ(v′)‖22/(2σ)); here σ is the scale of the

gaussian kernel and ‖.‖2 is the ℓ2 norm.

Our goal is to design a graph kernel function which re-

turns similarity between two given graphs Gi, Gj . After-

wards, we plug this kernel, into support vector machines

(SVMs), in order to achieve action classification.

In the remainder of this paper, unless explicitly men-

tioned, we denote a given graph Gi (resp. Gj) simply as G
(resp. G′).

3.1. Random Walk Graph Kernel

Let’s consider a graph G = (V, E) with a set of nodes

V = {v1, . . . , vn} and edges E = {e1, . . . , em} (m,n may

vary with graphs in {Gi}). A walk of length t in G is defined

as a sequence of nodes π = (vk0
, vk1

, . . . , vkt
) ∈ Vt+1,

with k0, . . . , kt ∈ {1, . . . , |V|} and (vki
, vki+1

) ∈ E .

Random walk kernels [6] compare graphs by counting the

number of common walks in these graphs2. These kernels

measure how similar are two given graphs according to the

frequency of their common substructures (i.e., walks). This

family of kernels has a solid theoretical background [6, 24]

and relatively efficient algorithmic solutions which are also

able to handle walks with infinite lengths [24, 10].

Definition 1 (Tensor product graph [6]). Let G =
(V, E),G′ = (V ′, E ′) be two graphs. The tensor product

of G,G′ is defined as G× = (V×, E×) with

V× = {(v, v′) : v ∈ V, v′ ∈ V ′}
E× = {((v, v′), (u, u′))

: (v, u) ∈ E , (v′, u′) ∈ E ′}.

2A common walk between two graphs G, G′ corresponds to simultane-

ous walks in G and G′, of the same length, that generate the same sequence

of node and/or edge labels.

Tensor product of two graphs can be defined using tensor

product of matrices; Let E,E′ be the adjacency matrices of

G and G′ respectively, the adjacency matrix E× of G× can

be written as E× = E ⊗ E′, with ⊗ being the Kronecker

tensor product operator.

Definition 2 (Random walk graph kernel [6]). Let G, G′

be two graphs. For any T ∈ N
+, a random walk graph

kernel between G, G′ is defined as K(G,G′) =
∑

i,j K×ij ,

with K× =
∑T

t=0 g(t)E
t
×, Et

× = Et−1
× E×, E0

× = Ip×p

(p = |V×|), and g(t) ≥ 0, ∀t ∈ {0, . . . , T}.

For graphs with node labels in L = {1, 2, . . . , d}, the k-

ernel matrix K× can be restricted to walks, with the same

node labels, as K× =
∑T

t=0 g(t)(L×E×)
tL×; here L× =∑

ℓ∈L
Lℓ ⊗ L

′

ℓ with Lℓ (resp. L
′

ℓ) being a diagonal matrix

indicating whether nodes in G (resp. G′) are assigned a

label ℓ [10]. In this new definition of K×, the matrix L×

is used to characterize label consistency between nodes in

G, G′. We use this definition and extend the random walk

kernel to unlabeled graphs as described below.

3.2. Our Generalized Random Walk Graph Kernel

In this section, we generalize the standard random walk

kernel [6, 24] to unlabeled graphs. Instead of labels, we

consider an elementary kernel function ke which provides

us with a similarity between nodes in ∪iVi. A similar kind

of kernel was proposed in [2] based on dynamic program-

ming for fixed and limited length of walk patterns. This

work emphasized on a generalization to tree-walk patterns

which was applied successfully in image recognition [8]. In

our method, by utilizing the tensor product framework, the

graph kernel can also handle walk patterns with any (possi-

bly infinite) lengths.

Definition 3 (Generalized random walk graph kernel). Giv-

en two graphs G, G′, we define the generalized random walk

graph kernel as K(G,G′) =
∑

i,j K×ij with

K× =
T∑

t=0

g(t)(W×E×)
tW×, (1)

and W× ∈ R
p×p being a diagonal matrix with diagonal

entries set to {ke(v, v
′), ∀(v, v′) ∈ V×} and (W×E×)

0 =
Ip×p.

In Eq. (1), T ≪ ∞ corresponds to walks with finite lengths.

A special case is when T = 0, so K(G,G′) can be rewritten

as g(0)
∑

i,j W×ij = g(0)
∑

(v,v′)∈V×

ke(v, v
′) and this

corresponds to the convolution kernel on graph nodes.

3.3. Properties

Proposition 1. Provided that g(t) ≡ 1 (∀t ∈ {0, . . . , T}),

the generalized random walk graph kernel defined in Def. 3

31643171

(a) Frame examples

(b) Short trajectories

(c) Action components

Figure 2. This figure shows examples of frames, trajectories and action components (using different colors) in different categories taken

from training (left three columns) and testing (right three columns) data.

measures similarity between G, G′ by summing up all the

similarity between walks of increasing lengths; i.e.,

K(G,G′) =

T∑

t=0

∑

(πt,π
′

t
)∈Vt+1×V′t+1

kw(πt, π
′
t), (2)

with πt = (vk0
, vk1

, . . . , vkt
), π′

t = (v′l0 , v
′
l1
, . . . , v′lt), and

kw(πt, π
′
t) =

∏t

z=0 ke(vkz
, v′lz).

Proof. We proceed by induction.

Let’s denote (W×E×)
tW× simply as K

(t)
× . If is easy to

see that the diagonal of K
(0)
× = W× includes all similari-

ties between nodes (i.e., between walks of length zero). For

t = 1, K
(1)
×ij = W×iiE×ijW×jj is the similarity of walks,

of length one, connecting nodes i and j in the product graph

G×.

Similarly, K
(2)
×ij =

∑
k W×iiE×ikW×kkE×kjW×jj sums

up similarities of all walks of length two starting from node

i and ending at node j. Assuming K
(t−1)
×ij sums up simi-

larities of all walks of length t − 1 connecting node i and

node j, then K
(t)
×ij =

∑
k K

(t−1)
×ik E×kjW×jj sums up all the

similarities of walks of length t from node i to node j.

Proposition 2. Provided that the kernel ke is positive semi-

definite, the generalized random walk kernel K is also pos-

itive semi-definite.

Proof. From Eq. (2), K is the sum of products involving ke.

When ke is positive semi-definite, the generalized random

walk kernel K will also be positive semi-definite resulting

from the closure of the positive definiteness with respect to

the sum and the product of kernels.

Remarks. Note that when g(t) = λt, and T → ∞ the sum

in Eq. (1) reduces to

K× =
∞∑

t=0

(λW×E×)
tW× = (I− λW×E×)

−1W×.

(3)

In contrast to undirected graphs3, applying the generalized

random walk graph kernel K on directed acyclic graphs

(i.e., video DAGs constructed as shown in section 2.2) has

several advantages:

• For any pair of DAGs G,G′, and for finite values of

g(t), the kernel K(G,G′) is always finite, and this re-

sults from the finiteness of walk lengths.

• The parameter λ can be chosen to be in favor of long

(or short) walks without altering convergence. Indeed,

walk patterns model dependencies between compo-

nents, and larger (resp. smaller) values of λ make the

3For undirected graphs, due to the existence of loops or tottering, walk-

s may have length up to infinity. In order to get finite kernel values, the

parameter λ needs to be carefully chosen. In many problems, a very s-

mall λ ≪ 1 (for instance 0.001) is often used in order to guarantee the

convergence of the sum in Eq. (1) (when T → ∞) or invertibility of the

closed form matrix solution in Eq. (3). For undirected graphs (in contrast to

DAGs), this condition highly limits the usefulness of random walk kernels

in order to handle long walks and hence long term actions.

31653172

generalized random walk kernel K more suitable for

long (resp. short) term actions (see Fig. 5).

4. Experiments

In this section, we evaluate the performance of action

classification using the challenging UCF Sport database

[20]. This dataset includes 150 video shots taken from var-

ious TV channels and sport events with 10 categories of ac-

tions. These videos have diverse contents and were taken

under extremely challenging and uncontrolled conditions,

with many viewpoint changes (see samples of video frames

in Fig. 2). Each video sequence is processed in order to ex-

tract its underlying directed acyclic graph (as discussed in

section 2); the maximum number of nodes in these DAGs

is limited to 100 so noisy action components are ignored.

Fig. 3 shows examples of these action components taken

from different categories.

4.1. Setting & Evaluation Protocol

The purpose of our evaluation is to show the per-

formance of our generalized random walk graph kernel

(GRWK) compared to standard random walk kernels as

well as other baseline graph kernels. We also extend the

comparison of action classification against reported results

in related work.

We plugged the generalized random walk kernel into sup-

port vector classifiers in order to evaluate their perfor-

mances. Again, the targeted task is action classification al-

so known as “activity recognition”; given a video shot de-

scribed with a DAG, the goal is to predict which activity

(class) is present into that shot. For this purpose, we trained

a “one-versus-all” SVM classifier for each class; we use the

train-test split evaluation protocol suggested in [13] in order

to alleviate learning from background.

We repeat this training and testing process through d-

ifferent classes and we take the average accuracy over all

classes.

4.2. Performance & Comparison

Baselines. We first show a comparison of action recog-

nition performance, using SVM + GRWK, against two

baselines.

– SVM + Convolution Kernel (CK). This kernel is defined

as K(G,G′) =
∑

(v,v′)∈V×V′ ke(v, v
′). Note that this

baseline, applied to mid-level components, is more appro-

priate, for comparison, than Bag-of-Words as the number

of mid-level components is very limited for each video

and this makes the underlying BOW histogram statistically

not meaningful. This kernel is used in order to show the

performances when using only the intrinsic visual features

of nodes (components) into videos and without taking into

(a) Label consistency between nodes

(b) Kernel values between nodes

Figure 4. This figure shows the node kernel matrices for SRWK

(top) and GRWK (bottom) between videos belonging to the same

(columns 1 and 2) and different action categories (column 3). For

each node, we assign four labels based on pregenerated dictionar-

ies. (a) shows the number of consistent labels between pairs of

nodes. These examples show that labels for videos belonging to

the same category are not always more consistent than labels for

videos belonging to different categories.

account their relationships. Early observations, reported

in Fig. 3, show that high kernel values in {ke(v, v
′)}

do not always correspond to actual matches between

components. From these preliminary observations, the

convolution kernel is not sufficiently discriminative as

also corroborated in Table 1. The results show a clear

gain when utilizing the graph structure rather than treating

components independently.

– SVM + Standard Random Walk Kernel (SRWK). Follow-

ing Def. 2, in order to evaluate this kernel, we first label

nodes in {Gi}. For that purpose, we build a dictionary of

d centroids4 by clustering features in {ψ(v) : v ∈ ∪iVi}
belonging to training data and by assigning nodes in

{Vi}i to centroids that minimize their distances. Early

observations in Fig. 4 (a), show that labels are not always

consistent through different shots, and this also affects

the performance of SVM + SRWK in action classification

(again see Table 1).

Notice that for the above two baselines as well as our

SVM + GRWK methods, components in videos used for

comparison are exactly the same, and they are distributed

from human body as well as background.

Comparison w.r.t related work. we also compared clas-

sification performance of our method against related work

including [13] and [19]. The latter is based on graphical

4We generate a dictionary of d words (d is set to 200 in the experi-

ments) for each of the four types of features (Velocity, HOG, HOF and

MBH).

31663173

(a) Golf (b) Kicking (c) Lifting

(d) Skate-Boarding (e) Swing-Bench (f) Walking

Figure 3. This figure shows example of components taken from different shots and categories. These components correspond to samples

of pairs in {(v, v′)} with the highest kernel values in {ke(v, v
′)}.

Diving Golf Kicking Lifting
Horse

Riding
Running

Skate

Boarding

Swing

Bench

Swing

Side
Walking Average

#Train video 10 12 14 4 8 9 8 14 9 15 10.3

#Test video 4 6 6 2 4 4 4 6 4 7 4.7

Lan et al.[13] 1 0.5 1 1 1 0.5 0.5 0.67 1 0.14 0.731

Raptis et al.[19] 1 0.5 0.83 1 1 0.75 0 1 1 0.86 0.794

SVM + CK 1 0.33 0.33 1 0.5 0.5 0.5 1 1 0.71 0.688

SVM + SRWK 1 0.5 0.83 1 1 0.25 0 0.67 1 1 0.725

SVM + GRWK 1 0.67 1 1 1 0.5 0.5 1 1 0.86 0.852

Table 1. This table shows classification accuracy on the UCF Sport dataset and comparison against baselines and related work. Our

experiments do not use any bounding box information in either training or testing process. Results in this table show the effectiveness of

walk patterns built on trajectory components. Generalized Random Walk Kernel (GRWK) brings a significant gain over Standard Random

Walk Kernel (SRWK) .

models (with three latent variables) and exploits bounding

boxes of objects during training. In contrast, our method

does not use any bounding box information as the similarity

in GRWK concentrates mainly on common components,

characterized by common walks in DAGs (that emphasize

on the moving objects but not background). From results

in Table 1, SVM + GRWK brings a clear gain of at least 7%.

Finally, Fig. 5, shows the evolution of the performance

of action recognition (using SVM + GRWK), class by class,

with respect to different and increasing values of λ. As

already discussed in section 3.2, this parameter λ control-

s the importance of walk lengths. Following these results,

large values of λ are more dedicated to long term action-

s (including “kicking” and “running”) while small values

are more suitable for short term actions (such as “diving”).

Thus, GRWK is able to distinguish between confusing ac-

tion classes (such as “running to kick a ball” and “running

for jogging”.

Figure 5. This figure shows the evolution of the accuracy of action

recognition, class by class, with respect to the parameter λ in GR-

WK. For some long term actions (e.g. Kicking, Running), large

values of λ increase the classification accuracy while small values

are more suitable for short term actions (e.g. Diving).

31673174

5. Conclusion

We introduced in this paper a novel action classification

method based on a new extension of random walk graph

kernels. The strength of this method resides in its ability to

(i) extend random walk graph kernels to unlabeled graphs

(by making them label insensitive) and also its ability to (ii)

exploit the acyclic properties of DAGs in order to guarantee

the convergence of GRWK while ensuring its effectiveness.

Using a challenging evaluation set, the method was able to

exploit spatio-temporal causal relationship between action

components in order to precisely characterize moving

body parts and their dependencies. Thereby, the method

was able to bring a substantial gain, in action recognition

performances, when compared to different baselines as

well as closely related work.

Acknowledgements

This work was supported in part by a grant from the Re-

search Agency ANR (Agence Nationale de la Recherche)

under the MLVIS project and a grant from DIGITEO under

the RELIR and VISUNET projects.

References

[1] J. Aggarwal and M. Ryoo. Human Activity Analysis: A Re-

view. ACM Computing Surveys, 43(3):16:1–16:43, 2011.

[2] F. R. Bach. Graph Kernels between Point Clouds. In ICML,

2008.

[3] W. Brendel and S. Todorovic. Learning Spatiotemporal

Graphs of Human Activities. In ICCV, 2011.

[4] A. Gaidon, Z. Harchaoui, and C. Schmid. A time series ker-

nel for action recognition. In BMVC, 2011.

[5] A. Gaidon, Z. Harchaoui, and C. Schmid. Recognizing ac-

tivities with cluster-trees of tracklets. In BMVC, 2012.

[6] T. Gärtner, P. A. Flach, and S. Wrobel. On Graph Kernels:

Hardness Results and Efficient Alternatives. In Proceedings

of the 16th Annual Conference on Computational Learning

Theory and the 7th Kernel Workshop, 2003.

[7] A. Gilbert, J. Illingworth, and R. Bowden. Action Recogni-

tion Using Mined Hierarchical Compound Features. IEEE

Trans. Pattern Anal. Mach. Intell., 33(5):883–897, 2011.

[8] Z. Harchaoui and F. Bach. Image Classification with Seg-

mentation Graph Kernels. In CVPR, 2007.

[9] Y. Jung, H. Park, D.-Z. Du, and B. L. Drake. A Decision

Criterion for the Optimal Number of Clusters in Hierarchical

Clustering. J. of Global Optimization, 25(1):91–111, 2003.

[10] U. Kang, H. Tong, and J. Sun. Fast Random Walk Graph

Kernel. In SDM, 2012.

[11] A. Kovashka and K. Grauman. Learning a Hierarchy of Dis-

criminative Space-Time Neighborhood Features for Human

Action Recognition. In CVPR, 2010.

[12] N. Kriege and P. Mutzel. Subgraph Matching Kernels for

Attributed Graphs. In ICML, 2012.

[13] T. Lan, Y. Wang, and G. Mori. Discriminative Figure-Centric

Models for Joint Action Localization and Recognition. In

ICCV, 2011.

[14] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld.

Learning Realistic Human Actions from Movies. In CVPR,

2008.

[15] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learn-

ing hierarchical invariant spatio-temporal features for action

recognition with independent subspace analysis. In CVPR,

2011.

[16] J. Liu, Y. Yang, I. Saleemi, and M. Shah. Learning semantic

features for action recognition via diffusion maps. Computer

Vision and Image Understanding, 116(3):361–377, 2012.

[17] J. Liu, Y. Yang, and M. Shah. Learning Semantic Visual

Vocabularies Using Diffusion Distance. In CVPR, 2009.

[18] R. Poppe. A survey on vision-based human action recogni-

tion. Image and Vision Computing, 28(6):976–990, 2010.

[19] M. Raptis, I. Kokkinos, and S. Soatto. Discovering discrim-

inative action parts from mid-level video representations. In

CVPR, 2012.

[20] M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH: A

Spatio-temporal Maximum Average Correlation Height Fil-

ter for Action Recognition. In CVPR, 2008.

[21] C. Schuldt, I. Laptev, and B. Caputo. Recognizing Human

Actions: A Local SVM Approach. In ICPR, 2004.

[22] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn,

and K. Borgwardt. Efficient graphlet kernels for large graph

comparison. In AISTATS, 2009.

[23] S. Todorovic. Human Activities as Stochastic Kronecker

Graphs. In ECCV, 2012.

[24] S. V. N. Vishwanathan, N. N. Schraudolph, R. I. Kondor,

and K. M. Borgwardt. Graph Kernels. J. Mach. Learn. Res.,

11:1201–1242, 2010.

[25] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action

Recognition by Dense Trajectories. In CVPR, 2011.

[26] H. Wang, M. M. Ullah, A. Kläser, I. Laptev, and C. Schmid.

Evaluation of local spatio-temporal features for action recog-

nition. In BMVC, 2009.

[27] F. Yuan, G.-S. Xia, H. Sahbi, and V. Prinet. Mid-level fea-

tures and spatio-temporal context for activity recognition.

Pattern Recognition, 45(12):4182–4191, 2012.

[28] W. Zhang, X. Wang, D. Zhao, and X. Tang. Graph Degree

Linkage: Agglomerative Clustering on a Directed Graph. In

ECCV, 2012.

31683175

