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DIRECTED CANONICAL ANALYSIS AND THE PERFORMANCE 
OF CLASSIFIERS UNDER ITS ASSOCIATED LINEAR 
TRANSFORMATI ONS 

BENJAMIN F. MEREMBECK~ BRIAN J. TURNER 
The Pennsylvania State University 

I. ABSTRACT 

Directed canonical analYSis is presented as 
an extension of the general form of canonical 
analysis, which is a method for reducing the 
dimensionality of multivariate data sets with 
minimum loss of discriminatory variance. The 
reduction takes the form of a.linear transforma­
ti,on, y = C.!., that condenses the discriminatory 
variance onto a relatively few, high-variance, 
orthogonal discriminant axes. 

Canonical analysis is developed as an analog 
to the one-way MANOVA. The directed extension 
allows user-specified contrasts to define linear 
relationships that are known or suspected to exist 
within the data. The linear transformation, C, is 
defined by means of the symmetric canonical form 
of the matrix eigenproblem. 

Canonical and principal components transfor­
mations and various distance classifiers were 
applied to 3 representative r~motely sensed MSS 
data sets. Results indicate that use of a piece­
wise maximum likelihood classifier with the 
directed canonical discriminant axes will give 
the best overall combination of classification 
accuracy and computational efficiency if adequate 
sample sizes are available to estimate category 
statistics. For small sample sizes, piecewise 
Euclidean distance is recommended, which, in 
canonically transformed space, is equivalent to 
the Mahalanobis classifier. 

II. INTRODUCTION 

The trend in remote sensing analysis tech­
nology is toward merged data sets of large 
dimensionality. The variables in the data sets 
may include single- and multi-date multispectral 
·scanner (MSS) data, digitized aerial photography, 
environmental and topographic data, geophysical 
data, etc. Such large dimensionality presents 
machine processing problems in terms of storage, 
analysis, and data display. In the near future, 
the advent of the 7-channel LANDSAT thematic 
mapper (TM) with 30 m ground resolution, which is 
to supersede at least partially the 4-channel 

LANDSAT MSS with 80 m resolution, will further 
aggravate the machine processing problems. 

The technique of canonical analYSis (Seal 
1964) has been ttsed for some time to alleviate the 
problems associated with large dimensionality. In 
canonical analysis, the multivariate statistics 
associated with categories of interest within the 
data are used to find an orthogonal linear trans­
formation, C, of the form 

y = Cx (1) 

that defines a relatively small number of statis­
tically independent canonical discriminant axes 
that explain the preponderance of the discrimina­
tory variance associated with the categories. It 
is not uncommon to have in excess of 95% of the 
discriminatory variance explained on the first 2 
or 3 axes regardless of the original number of 
variables (Gnanadesikan 1977). 

III. A DEFINITION OF CANONICAL ANALYSIS 

It is convenient to define canonical analysis 
in terms of the multivariate analysis of variance 
(MANOVA) application of the 5eneral multivariate 
linear model. In MANOVA, a null hypothesis is 
set forth as 

The matrix ~ is an hxp matrix whose rows are the 
category mean vectors, where h is the number of 
categories and p is the original number of vari­
ables. In practice, ~ is not known and must be 
estimated by the matrix M, whose rows are the 
category sample mean vectors. Q is a qXh hypothe­
sis matrix, where q 2 (h-l). The limitation on 
the number of rows of Q is set because only h-l 
linearly independent combinations of the h cate­
gories can be defined and a maximum of h-l axes 
are required to discriminate between the h cate­
gories (Scheffe 1959, Green and Carroll 1976). 
Each row of Q is a contrast that, by definition, 
must sum to 0 and defines a hypothetical linear 
relationship among the categories. Matrix 0 is a 
qxp null matrix. 
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A. GENERAL CANONICAL ANALYSIS 

The null hypothesis implicit in the general 
canonical analysis is given by 

= Il ' 
-h 

versus 

H
l

: at least 2 of the means differ 

(3) 

where ~i" i = 1 •...• h. is the ith row of Il. 
Therefore. the hypothesis matrix in the general 
canonical analysis is implicitly an (h-l)xh matrix 
of simple one-way contrasts over which there is no 
control. One of the many forms that the matrix of 
one-way contrasts can take is 

1 -1 0 0 0 0 
0 1 -1 0 0 0 

Q 
0 0 1 -1 0 0 

.Q 0 0 0 1 -1 

The canonical axes associated with this 
hypothesis will attempt to separate the h cate­
gories on as few axes as possible. 

B. DIRECTED CANONICAL ANALYSIS 

The general canonical analysis has recently 
been extended to allow user-specified contrasts 
that define underlying relationships among cate­
gories or natural groupings of categories known 

(4) 

a priori to exist within the data. The extension. 
called directed canonical analysis. was originally 
proposed by Dr. F. Yates Borden shortly before his 
death in 1977. It affords more control over the 
transformation than does the general form in that 
the directed canonieal axes reflect relationships 
and .groupings defined by the contrasts. 

In directed canonical analysis. the rows of Q 
can be explicitly defined as contrasts that reflect 
known or suspected relationships among the cate­
gories. For example. consider the following 6 
categories: 

Category 

1 
2 
3 
4 
5 
6 

Known Type of Category 

Forest vegetation with NW aspect 
Forest vegetation with SE aspect 
Non-vegetated land with NW aspect 
Non-vegetated land with SE aspect 
Lake water 
River water 

These categories have a structure that can be 
investigated by proposing the orthogonal contrasts 
shown in Table 1. The Q matrix for the composite 
hypothesis in (2) is defined in Table 1. 

Orthogonal contrasts. such as those in Table 
1. are useful in hypothesis testing and data dis­
play. In hypothesis testing. the orthogonal 
structure leads to unambiguous. single degree of 

Table l. Orthogonal contrasts among cate-
gories (from .Merembeck and Borden 1978). 

CateBories 
1 2 3 4 5 6 

Coefficients 

Water vs non-water -1 -1 -1 -1 +2 +2 
Lake vs river water 0 0 0 0 +1 -1 
Veg. vs non-veg. +1 +1 -1 -1 0 
NW vs SE aspect +1 -1 +1 -1 0 
Veg. vs non-veg. x 

NW vs SE aspect +1 -1 -1 +1 0 

freedom tests for examining each orthogonal con­
trast independently of the others. For data 
display. the orthogonal structure implies that a 
discriminant axis can be found for each contrast 
that is independent of the other contrasts. The 
axes would then be used to photo-interpret a data 
set for a specific characteristic or set of 
characteristics. In pattern recognition proce­
dures. such as classification. the orthogonal 
contrasts do not appear to have any particular 
advantage over non-orthogonal contrasts in defin­
ing the desired linear relationships among cate­
gories. A more detailed discussion of orthogonal 
contrasts can be found in Merembeck and Borden 
(1978). 

C. CONVERTING THE PROBLEM TO CANONICAL FORM 

0 
0 

0 

To test the null hypothesis. the total sample 
covariance matrix of the data. S. is partitioned 
into an among-categories sample covariance matrix. 
A. and a within-categories sample covariance 
matrix. W. that is assumed to be equal for. and 
common to. all categories. The relation is 

S* = A* + w* (5) 

where 

S* 
A* 

(total observations - l)S. 
(among-categories degrees of freedom)A. 
and 

W* (within-categories degrees of freedom)W. 

Matrices S*. A*. and W* are. respectively. the 
total. among-categories. and within-categories 
adjusted sums of squares and cross-products 
matrices. 

W is found by 

W I-~ n, - :\-1 I-~ (n. - l)S-il 
1.=1 ~ _ 1.=1 ~ _ 

(6) 

where n is the number of observations for the ith 

~:~e~~r~~un~ib~st~~ec!~~e~~~~!~~Ys~~:a~~a:~~a;::rix 
and cross-products formulation. 

-1 
(n

i 
- 1) 

n
i 

1: (~- }!!i)(~ - }!!i)' 
i=l 

1979 .Machine Processilg of Remotely Sensed Data Symposium 
315 



where m ' is the ith row of M. 
-i 

The among-categories sample covariance 
matrix, A, is found from the general formulation 
adapted from Morrison (1976.), 

A = [M' Q'(Q N- l Q,)-l Q M]/q (7) 

where N is an hxh diagonal matrix with the numbers 
of observations for the categories in the diagonal 
positions. In the case where Q is a matrix of 
simple one-way contrasts associated with the 
general canonical analysis, (7) reduces to the 
sums of squares and cross-products form conven­
tionally used to find A. 

The null hypothesis (2) is tested by means 
of an "F" ratio that has several forms, one of 
which is 

F 
.fi ' A .fi 
.fi ' W ~ 

(8) 

Vector C ' is the ith row of the linear transfor­
mation t~at will most strongly reject the null 
hypothesis. The solution for (8) is found by 
placing the matrices A and W into the canonical 
form defined by the characteristic equation 

!A - dW! = 0 (9) 

where d is the Lagrange multiplier. Equation (9) 
can be rewritten in two forms: 

!w- l A - dI! = 0 (10) 
and 

- dI! = 0 (ll) 

Both forms give the same eigenvalues but different 
eigenvectors. Since the MANOVA problem only 
requires the eigenvalues, the form in (10) is used 
in most MANOVA procedures. However, the use of 
the eigenvectors from the non-symmetric form of 
(10) will not yield the spherical, unit variance, 
within-categories transformed covariance matrix 
sought in canonical analysis. The normalized row 
eigenvectors from the symmetric form of (11) will 
spherize the within-categories covariance matrix 
(Green and Carroll 1976) and form the canonical 
linear transformation, C, such that 

C A C' D (12) 

and 
C W C' I (13) 

where D is the qxq diagonal matrix of eigenvalues 
of (9) and is the transformed among-categories 
sample covariance matrix and I is the qxq identity 
matrix. 

The rows of C and the associated diagonal 
elements of D are ordered such that the trans­
formation preserves as much of the among­
categories discriminatory variance on the first 
canonical, or discriminant, axis as can be pre­
served on any 1 axis •. The second canonical axis 
preserves as much of the remaining discriminatory 

variance that is orthogonal to, or uncorrelated 
with, the first axis as can be preserved on any 1 
axis. The third canonical axis preserves as much 
of the remaining discriminatory variance that is 
orthogonal to the first 2 axes, and so on. 

Seal (1964) gives an indirect method for 
solving (11) that was implemented in The Pennsyl­
vania State University's Office for Remote Sensing 
of Earth Resources (ORSER) digital processing 
system (Turner et al. 1978) by Lachowski (1973). 
The program, CANAL, has since been extended to 
accommodate the directed canonical analysis. 

IV. CLASSIFIER PERFORMANCE UNDER TRANSFORMATION 

A study was undertaken to investigate the 
effects of general and directed canonical analyses 
on thematic classification of remotely sensed MSS 
data. The techniques were assessed relative to 
each other and relative to classifications based 
on the original raw data and the orthogonal axes 
generated by principal components analysis. 

In principal components analysis, the normal­
ized row eigenvectors associated with the eigen­
values of the total covariance matrix, S, define 
an orthogonal linear transformation, C, such that 

CSC' D (14) 
while 

CC' I (15) 

The principal components transformation has many 
of the data reduc~ion qualities of·the canonical 
transformations but will not necessarily reflect 
the desired thematic relationships. 

The primary classification criterion was that 
of maximum likelihood under the assumption of 
multivariate normality. The metric for this 
criterion, when used as a distance classifier, is 

d i
2 

= In!si! + (~- !!!i)' Si-
l (~- .!!!i) (16) 

(Gnanadesikan 1977). 

The vector ~ is a p-variate raw data vector 
to be classified and is assumed to be distributed 
MVN(~i' E

i
)· This classifier accounts for differ­

ences in the shape and orientation of the disper­
sions and for differences in total variance between 
categories. 

Under the linear transformation y = C~, Y is 
a q-variate (q ~ p) vector distributed MVN(C ~i' 
C Li C') (Anderson 1958). In transformed space 
then, (16) becomes 

d i
2 

= In!CSiC'!+(y-C!!!i)'(CSiC')-\y-C!!!i) (17) 

Since the transformations do not specifically con­
sider individual category dispersions, the trans­
formed category covariance matrices, CS C', i = 1, 
..• , h, will not necessarily be diagonal matrices 
in transformed space. 
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Since the category'mean vectors and covariance 
matrices have to be transformed only once, the 
major computational cost in applying (17) is that 
of transforming the individual observations. It 
was hoped that only the first few canonical and 
principal components axes would be required to 
obtain, at a reduced cost, classification results 
equal to or better than results obtained by classi­
fying raw data. Superior classification results in 
transformed space might be expected in the case of 
noisy data. The linear transformations have proven 
to be effective random noise filters (Merembeck 
et al. 1976). 

To make the results more global, a number of 
other distance classifiers were included in the 
study: 

1. The elliptical classifier, defined as 

d; = lnlsil+(!.-E!i)'D;l (~-E!t) (18) 

2. 

3. 

4. 

where Di is a diagonal matrix containing 
the diagonal entries of Si' requires con­
siderably fewer computations and less 
storage than does (16). The elliptical 
classifier does not account for differ­
ences in the spatial orientation of the 
category dispersions in that it assumes 
that the axes of the dispersions are 
parallel to the axes of the measurement 
space. 

The Mahalanobis distance equivalent to the 
Wald-Anderson linear discriminant 
(Morrison 1976) has the form 

2 -1 
di = (~-E!i)'W (~~i) (19) 

and assumes that the category covariance 
matrices are common to and equal for all 
categories; the same assumption made for 
canonical analysis. Therefore, by (13), 
this classifier reduces to simple Euclid­
ean distance under the canonical linear 
transformation. 

A classifier that is a compromise between 
maximum likelihood and the Mahalanobis 
classifier uses the pooled covariance of 
a family of categories whose probability 
dispersions are approximately proportional 
as determined by Mauchly's sphericity 
criterion as modified by Davis (1971). 
The classifier has the same form as (19) 
but uses the pooled matrix for the propor­
tional family rather than the within­
categories covariance matrix pooled over 
all categories. 

The minimum Euclidean distance is of the 
form 

d 2 = (x-m )' (x-'m ) 
i --i --i (20) 

This is the fastest of the distance clas­
sifiers and requires the least storage. 

V. PROCEDURE 

The classifiers were applied to a series of 
representative data sets consisting of from 4 to 
22 original variables. The raw data and principal 
components and canonical transformations of the 
data were evaluated for each data set. The data 
consisted of 4-channel LANDSAT data, 8-channel 
multi-temporal LANDSAT data, and 22-channel SKYLAB 
data. 

The measure of performance used for the com­
parisons was classification accuracy. Estimates 
of classification accuracy were determined both 
for classifications based on individual categories 
and for piecewise classifications. In piecewise 
classification, a number of individual categories 
are assigned the same mapping symbol or color. 
Classification of an element into any category 
having the same mapping symbol or color as the 
category to which the element belongs is considered 
to be correct classification in the piecewise 
procedure. 

The contrasts for the directed canonical 
analyses of the test data sets were constructed to 
reflect the category groupings associated with 
piecewise classification. The directed canonical 
axes in this case attempt to separate the category 
groupings rather than the individual categories. 

Two different estimates of classification 
accuracy were made: 

1. Monte Carlo techniques were used to gen­
erate synthetic data that followed 
probability distributions defined by the 
categories in the observed data (Boullion 
et al. 1975). The synthetic data in both 
raw and linearly transformed form were 
presented to the classifiers and classi­
fication accuracy determined. 

2. The observed data were resampled using a 
technique attributed to Lachenbruch (1967) 
that has been shown to give approximately 
unbiased estimates of classification 
accuracy. Lachenbruch's procedure, also 
known as a jackknife procedure, involves 
removing the effects of the element cur­
rently being classified from the sample 
mean and covariance matrix of the popula­
tion to which the element belongs. The 
resampled data were presented to the 
adjusted classifiers in both raw and 
linearly transformed form. 

Jensen's (1972) modification of Rotelling's 
t 2 was used as a global test for equality of the 
maximum likelihood performance profiles among the 
various linear transformations over the first few 
high-variance axes. The same differences between 
individual pairs of transformations were tested 
using Bonferroni multivariate multiple comparisons 
(Morrison 1976). The significance level of the 
tests was set at 0.05. Differences among classi­
fiers were investigated by the same methods. 
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Further analyses were performed by generating 
comparisons of thematic maps that had been produced 
by using the maximum likelihood classifier on sets 
of the original raw data and on various combina­
tions of transformed axes. The comparison maps 
were used to determine where, spatially, the dif­
ferences in classification accuracy that were 
observed in the previous analysis were occurring. 
During this processing, the approximate number of 
machine cycles required to produce each of the 
thematic maps was determined. These results 
allowed a relative measure of cost versus perfor­
mance to be determined. 

VI. RESULTS 

In processing the data, it became evident 
that the Lachenbruch resampling method gave 
considerably more conservative error estimates 
than did the Monte Carlo techniques. Therefore, 
only the results obtained from the Lachenbruch 
resampling method are presented. 

In evaluating the results after processing 
the data, it was found that graphing the perfor­
mance of the classifiers for a given data set and 
transformation yielded plots that had virtually 
identical shapes for all classifiers. The plots 
varied only in height on the y (percentage error) 
axis. Therefore, only the graphs for the perfor­
mance of the maximum likelihood classifier are 
presented with the results for each data set. 

A. FOUR-CHANNEL LANDSAT DATA 

The 4-channel LANDSAT data were from scene 
1028-15295, collected on August 20, 1972. The 
data set had been used previously in a small-area 
mapping study and its characteristics were well 
known (Merembeck 1978). The data set represents a 
predominantly forested area around the East Branch 
reservoir on the Clarion River in Elk County in 
northwestern Pennsylvania. A land-cover thematic 
map of the area had been produced using 16 cate­
gories and 9 mapping symbols. 

Figure 1 is a graph of the performance of the 
maximum likelihood classifier operating both on 
individual categories and as a piecewise classi­
fier. The directed canonical and principal compo­
nents axes gave marginally better performance than 
did the general canonical axes. For all 3 trans­
formations, only the first 2 axes, accounting for 
in excess of 99% of explained variance, were 
required for optimum classification. 

Table 2 gives estimated error rates over all 
classifiers for the first 2 axes of the various 
transformations and for the 4 channels of raw data. 
There were no statistically significant differences 
at the 0.05 level among the performance profiles of 
the transformations over the first 3 axes or among 
classifiers operating by category on the first 2 
directed canonical axes. 

BY CATEGORY 
60 
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Figure 1. Maximum likelihood profiles for the 
4-channel LANDSAT data set. 

Table 2. Misclassification percentages for 
the East Branch data when using Lachenbruch's 
resampling method. 

/I Variables 
% Variance 
% Error 
Max. likelihood 
Elliptical 
Pooled 
Mahalanobis 
Euclidean dist. 

/I Variables 
% Variance 
% Error 
Max. likelihood 
Elliptical 
Pooled 
Mahalanobis 
Euclidean dist. 

Directed 
Canonical 

2 
99.39 

Cat. PW 
34.8 17.2 
35.4 17.5 
36.9 21. 7 
37.8 21.1 
37.8 21.1 

Principal 
Components 

2 
99.61 

Cat. PW 
34.9 17.2 
36.9 18.1 
37.4 21. 9 
36.6 21.9 
36.5 21. 7 

General 
Canonical 

2 
99.32 

Cat. PW 
35.7 17.8 
36.6 18.4 
38.1 23.3 
38.9 21.9 
38.9 21. 8 

Raw Data 

4 
100 

Cat. PW 
34.9 17.6 
35.8 20.9 
38.4 23.4 
38.2 21.2 
40.2 22.3 

A comparison ,between the maximum likelihood 
results for the 4-channel raw data and for the 
first 2 directed canonical axes was generated for 
a block of 10,465 elements. The maps differed on 
9,009, or 13.9%, of the elements. A visual com­
parison of the classification maps favored the 
transformed map; it exhibited better symbol group­
ing in classifying a number of the small openings 
in the forest canopy that had been the object of 
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the original investigation using this data set 
(Merembeck 1978). 

The classification loop required approximately 
153,029,008 machine cycles to classify the 4-
channel raw data. In transformed space, 73,115,504 
machine cycles were required to transform and clas­
sify the data using the first 2 directed canonical 
axes; a 2.093 times reduction in favor of the 
transformation. 

B. EIGHT-CHANNEL MULTI-TEMPORAL LANDSAT DATA 

In this analysis, data from LANDSAT scenes 
1583-15100, collected on February 26, 1974, and 
1403-15134, collected on August 30, 1974, were 
geometrically corrected, registered, and merged 
onto an 8-channel multi-temporal data set. The 
data set had been used previously to map southern 
pine plantations on the Atlantic Coastal Plain in 
North Carolina near Albemarle Sound (Williams and 
Haver 1976). A land-cover map had been produced 
using 10 categories and 7 mapping symbols. 

Figure 2 is a graph of the performance of the 
maximum likelihood classifier operating on individ­
ual categories. The shapes of the plots for piece­
wise maximum likelihood were virtually identical. 
By the fourth axis, results for the transformations 
had essentially duplicated those of the raw data. 
The canonical axes gave marginally better perfor­
mance on the fourth axis than did principal 
components. 

Table 3 gives estimated error rates over all 
classifiers using the first 4 axes of the various 
transformations and for the 8-channel raw data. 
There were no statistically significant differences 
at the 0.05 level among the performance profiles of 
the transformations over axes 2-4 or among classi­
fiers operating by category on the first 4 directed 
canonical axes. 

A comparison between the maximum likelihood 
results for the 8-channel raw data and for the 
first 4 directed canonical axes was generated for a 
block of 5,916 elements. The maps differed on 782, 
or 13.2%, of the elements. As with the 4-channel 
data, a visual comparison favored the transformed 
map due to more consistent symbol grouping. 

The classification loop required approximately 
110,283,888 machine cycles to classify the 8-
channel raw data, whereas 58,801,984 machine cycles 
were required to transform and classify the data 
using the first 4 directed canonical axes; a 1.876 
times reduction in favor of the transformation. 

C. TWENTY-TWO CHANNEL SKYLAB DATA 

The data set for the 22-channel SKYLAB S-192 
scanner was a block of line-straightened data from 
a file entitled "SL3, Orbit 14, 5 August 1975, Tape 
933847." The data represented an area around the 
town of Freeport on the Allegheny River in south­
western Pennsylvania. The data had been used 
previously for sensor evaluation and stripmine 

mapping (Barr 1978). A land-cover map of the 
area had been produced using 14 categories and 
5 mapping symbols. 

BY CATEGORY 
60 
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Figure 2. Maximum likelihood profiles for 
the 8-channel multitemporal LANDSAT data set. 

Table 3. Misclassification percentages for 
Williams and Haver's (1976) data when using 
Lachenbruch's resampling method. 

Directed General 
Canonical Canonical 

II Variables 4 4 
% Variance 99.69 99.56 
% Error Cat. PW Cat. PW 
Max. likelihood g-::; 6:i ""9.6 6.6 
Elliptical 14.6 10.0 13.7 9.3 
Pooled 11.3 7.7 11.2 7.6 
Mahalanobis 12.7 8.7 12.8 8.8 
Euclidean 12.6 8.6 12.8 8.8 

Principal 
ComEonents Raw Data 

II Variables 4 8 
% Variance 97.04 100 
% Error Cat. PW Cat. PW 
Max. likelihood 10.7 7:s ---g:=f 6.6 
Elliptical 12.5 7.8 10.4 6.9 
Pooled 12.6 8.2 11. 3 7.5 
Mahalanobis 13.0 8.8 13.4 9.2 
Euclidean dist. 15.2 10.6 15.2 10.6 
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Figure 3 is a graph of the performance of the 
maximum likelihood classifier operating both on 
individual categories and as a piecewise classi­
fier. Both directed and general canonical analyses 
achieved performance on 3 axes equal to that of the 
22-channel raw data. In classification by cate­
gory, the general canonical analysis gave improved 
results over the raw data when using 4 axes. How­
ever, in piecewise classification, there was no 
advantage in going beyond 3 axes. 

Table 4 gives estimated error rates over all 
classifiers for the first 3 axes of the directed 
canonical analysis, the first 4 axes of general 
canonical and principal components analyses, and 
for the 22 channels of raw data. The good perfor­
mance of the Mahalanobis classifier relative to 
that of maximum likelihood indicates possible 
problems with sample size. Some of the urban and 
stripmine samples are quite small with 1 of the 
stripmine categories having only 30 observations. 

Bonferroni multiple comparisons of the maximum 
likelihood performance profiles over transformed 
axes 2-4 indicate that the principal components 
axes gave significantly poorer performance than did 
either canonical transformation at the 0.05 level. 
There were no statistically significant differences 
at the 0.05 level among classifiers operating on 
the first 3 directed canonical axes. 

The maximum likelihood results for the 22-
channel raw data and for the first 3 directed 
canonical axes were compared by generating maps for 
a block of 3,696 elements. The maps differed on 
1,644, or 44.5%, of the elements. Part of the 
discrepancy was due to unclassified elements. The 
program parameters had been set so that any element 
falling outside of the 95% confidence hyperellip­
soid for a category could not be assigned to that 
category. A total of 1,071, or 29%, of the ele­
ments for the classification run on raw data fell 
outside of all of the 95% confidence hyperellip­
soids and were not classified. This is probably a 
manifestation of the sample size problem noted 
earlier. Only 378, or 10%, of the elements in the 
transformed run were not classified. 

A visual comparison of the classification maps 
clearly favored the transformed classification; 
symbol groupings, particularly in the urban and 
stripmine areas, were much more consistent than 
those in the classification map generated with raw 
data. 

The classification loop required approximately 
473,933,312 machine cycles to classify the 22~ 
channel raw data. In transformed space, 47,665,984 
machine cycles were required to transform and clas­
sify the data on the first 3 directed canonicai 
axe~; a 9.94 times reduction in favor of the trans­
formation. 
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Figure 3. Maximum likelihood profiles for 
the 22-channel SKYLAB data set. 

Table 4. Misclassification percentages for 
SKYLAB S-192 data using Lachenbruch's resampling 
method. 

Directed General 
Canonical Canonical 

II Variables 3 4 
% Variance 99.25 96.44 
% Error Cat. PW Cat. PW 
Max. likelihood 26.7 18.1 24.8 18.1 
Elliptical 27.8 19.6 25.2 18.3 
Pooled 27.0 18.8 24.8 17.8 
Mahalanobis 27.7 18.3 25.2 17.3 
Euclidean dist. 27.6 18.2 25.1 17.3 

Principal 
ComEonents Raw Data 

II Variables 4 22 
% Variance 81.18 100 
% Error Cat. PW Cat. PW 

Max. likelihood 27.9 18.7 27.2 17.6 
Elliptical 29.3 19.9 28.7 20.8 
Pooled 28.2 19.0 31.1 20.2 
Mahalanobis 29.6 18.9 24.7 16.6 
Euclidean dist. 29.7 19.2 28.5 18.4 
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VII. DISCUSSION 

There were differences among the data sets as 
to the number of axes required for optimum classi­
fication, the estimated error rates, and the 
performance of the classifiers relative to each 
other. Some general observations, however, are 
possible. 

All of the classifiers gave similar results; 
no statistically significant differences among the 
performances of the various classifiers were found. 
The results do suggest, however, that maximum like­
lihood will give somewhat better results than the 
others when adequate sample sizes are available. 
In the case of small sample sizes, the Mahalanobis 
classifier would seem to be a better choice. 

Piecewise classification clearly improved the 
results for all combinations of classifiers and 
linear transformations. The diversity of spectral 
responses that can reasonably be grouped into the 
same cover type precludes mapping that type with 
just one set of category statistics. For that 
reason, virtually all land-cover maps generated at 
ORSER from MSS data have used the piecewise 
approach. 

For the transformations, results favor the 
canonical analyses over principal components as 
dimensionality increases. The differences "between 
the directed and general canonical analyses were 
quite small, and statistically non-significant, 
but seem to marginally favor the directed proce­
dure. Another advantage to the directed procedure 
is that the contrasts can be defined to complement 
piecewise classification. 

From the study results and previous experience 
with canonical analysis, a good rule of thumb ror 
selecting axes appears to be: select the first 
q < p axes such that the axes explain in excess of 
95% of the discriminatory variance and none of the 
remaining axes explain more than 1% of the vari­
ance. This approach will typically at least halve 
the original number of variables while giving 
equivalent or improved classification and increased 
computational efficiency relative to the results 
from raw data. 

A synthesis of the results for classifiers and 
for transformations indicates that use of a piece­
wise maximum likelihood classifier on the directed 
canonical axes will give the best overall combina­
tion of classification accuracy and computational 
efficiency if adequate sample sizes are available. 
If sample sizes are small, the use of piecewise 
Euclidean distance on the directed canonical axes 
is recommended since Euclidean distance is equiva­
lent to the Mahalanobis classifier in canonically 
transformed space. 
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