
2 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. l 1, NO. 1, FEBRUARY 2003

Directed Diffusion for Wireless Sensor Networking
Chalermek Intanagonwiwat , Ramesh Govindan, Deborah Estfin, John Heidemann, Member, IEEE, and

Fabio Silva, Member, IEEE

Abstract--Advances in processor, memory, and radio tech-

nology will enable small and cheap nodes capable of sensing,

communication, and computation. Networks of such nodes can

coordinate to perform distributed sensing of environmental phe-

nomena. In this paper, we explore the directed-diffusion paradigm

for such coordination. Directed diffusion is data-centric in that all

communication is for named data. All nodes in a directed-diffu-

sion-based network are application aware. This enables diffusion

to achieve energy savings by selecting empirically good paths and

by caching and processing data in-network (e.g., data aggrega-

tion). We explore and evaluate the use of directed diffusion for

a simple remote-surveillance sensor network analytically and

experimentally. Our evaluation indicates that directed diffusion

can achieve significant energy savings and can outperform ide-

alized traditional schemes (e.g., omniscient multicast) under the

investigated scenarios.

Index Terms--Data aggregation, data-centric routing, dis-

tributed sensing, in-network processing, wireless sensor networks.

I. INTRODUCTION

I
N THE NEAR future, advances in processor, memory, and

radio technology will enable small and cheap nodes capable

of wireless communication and significant computation. The

addition of sensing capability to such devices will make

distributed microsensing--an activity in which a collection of

nodes coordinate to achieve a larger sensing task--possible.

Such technology can revolutionize information gathering

and processing in many situations. Large scale, dynamically

changing, and robust sensor networks can be deployed in

inhospitable physical environments such as remote geographic

regions or toxic urban locations. They will also enable low

maintenance sensing in more benign, but less accessible, envi-

ronments, such as large industrial plants and aircraft interiors.

To motivate our research, consider this simplified model of

how such a sensor network will work. One or more human op-

erators pose, to any node in the network, questions of the form:

"How many pedestrians do you observe in the geographical

region X?" or "In what direction is that vehicle in region Y

Manuscript received March 9, 2002; approved by IEEE/ACM TRANSACTIONS

ON NETWORKING Editor N. Vaidya. This work was supported by the Defense

Advanced Research Projects Agency under Grant DABT63-99-1-0011. An ear-

lier version of this paper appeared in the Proceedings of the ACM Mobicom

2000, Boston, MA.

C. Intanagonwiwat was with the University of Southern California, Los An-

geles, CA 90089 USA. He is now with Chulalongkorn University, Bangkok

10330, Thailand (intanago@yahoo.com).

R. Govindan is with the Department of Computer Science, University of

Southern California, Los Angeles, CA 90089 USA.

D. Estfin is with the Department of Computer Science, University of Cali-
fornia, Los Angeles, CA 90095 USA (e-mail: destnn@cs.ucla.edu).

J. Heidemann and E Silva are with the Information Sciences Institute, Uni-
versity of Southern California, Marina del Rey, CA 90292 USA.

Digital Object Identifier 10.1109/TNET.2002.808417

moving?" These queries result in sensors within the specified

region being tasked to start collecting information. Once

individual nodes detect pedestrians or vehicle movements, they

might collaborate with neighboring nodes to disambiguate

pedestrian location or vehicle movement direction. One of these

nodes might then report the result back to the human operator.

Motivated by robustness, scaling, and energy-efficiency re-

quirements, this paper examines a new data dissemination para-

digm for such sensor networks. This paradigm, which we call

directed diffusion, 1 is data-centric. Data generated by sensor

nodes is named by attribute-value pairs. A node requests data

by sending interests for named data. Data matching the interest

is then "drawn" down toward that node. Intermediate nodes can

cache, or transform data and may direct interests based on pre-

viously cached data Section II.

Using this communication paradigm, our example might be

implemented as follows. The human operator's query would be

transformed into an interest that is d i ~ s e d (e.g., broadcasted,

geographically routed) toward nodes in regions X or Y. When

a node in that region receives an interest, it activates its sensors

which begin collecting information about pedestrians. When the

sensors report the presence of pedestrians, this information re-

turns along the reverse path of interest propagation. Interme-

diate nodes might aggregate the data, e.g., more accurately pin-

point the pedestrian's location by combining reports from sev-

eral sensors. An important feature of directed diffusion is that

interest and data propagation and aggregation are determined

by localized interactions (message exchanges between neigh-

bors or nodes within some vicinity).

Directed diffusion is significantly different from IP-style

communication where nodes are identified by their end-points

and inter-node communication is layered on an end-to-end

delivery service provided within the network. In this paper,

we describe directed diffusion and illustrate one example of

this paradigm for sensor query dissemination and processing.

We show that, by using directed diffusion, one can realize

robust multipath delivery, empirically adapt to a small subset

of network paths, and achieve significant energy savings when

intermediate nodes aggregate responses to queries (Section IV).

We have also implemented directed diffusion on several small

sensor platforms; we describe our implementation design and

our experiences in Section V.

In this paper, we outline the directed-diffusion paradigm, ex-

plain its key features, and describe in some detail a particular ex-

ample of the directed-diffusion paradigm for a vehicle tracking

sensor network (Section II). We specify what local rules achieve

the desired behavior of interest and data propagation. In doing

1Van Jacobson suggested the concept of "diffusing" attribute-named data for

this class of applications that later led to the design of directed diffusion.

1063-6692/03517.00 © 2003 IEEE

INTANAGONWIWAT et al.: DIRECTED DIFFUSION FOR WIRELESS SENSOR NETWORKING

ffYgl3t ~ Ey~nt

/
Sourcl @

Fig. 1.

ell ", i;O e

(a) (b) (c)

Simplified schematic for directed diffusion. (a) Interest propagation. (b) Initial gradients setup. (c) Data delivery along reinforced path.

so, we show how the directed-diffusion paradigm differs from

traditional networking and qualitatively argue that this paradigm

offers scaling, robustness and energy efficiency benefits. We

quantify some of these benefits via detailed packet-level sim-

ulation of directed diffusion (Section IV).

II. DIRECTED DIFFUSION

Directed diffusion consists of several elements: interests, data

messages, gradients, and reinforcements. An interest message is

a query or an interrogation which specifies what a user wants.

Each interest contains a description of a sensing task that is sup-

ported by a sensor network for acquiring data. Typically, data

in sensor networks is the collected or processed information of

a physical phenomenon. Such data can be an event, which is a

short description of the sensed phenomenon. In directed diffu-

sion, data is named using attribute-value pairs. A sensing task

(or a subtask thereof) is disseminated throughout the sensor net-

work as an interest for named data. This dissemination sets up

gradients within the network designed to "draw" events (i.e.,

data matching the interest). Specifically, a gradient is direction

state created in each node that receives an interest. The gradient

direction is set toward the neighboring node from which the in-

terest is received. Events start flowing toward the originators of

interests along multiple gradient paths. The sensor network re-

inforces one or a small number of these paths. Fig. 1 illustrates

these elements.

In this section, we describe these elements of diffusion with

specific reference to a particular kind of sensor network---one

that supports a location tracking task. As we shall see, several

design choices present themselves even in the context of this

specific instantiation of diffusion. We elaborate on these design

choices while describing the design of our sensor network. Our

initial evaluation (Section IV) focuses only a subset of these de-

sign choices. Different design choices result in different variants

of diffusion (see also [16] for another variant). Moreover, even

though we describe this diffusion variant for rate-based applica-

tions, diffusion also works for event-triggered applications.

A. Naming

In directed diffusion, task descriptions are named by, for ex-

ample, a list of attribute-value pairs that describe a task. A ve-

hicle-tracking task might be described as (this is a simplified

description; see Section II-B for more details)

type : wheeled vehicle // detect vehicle loca-

tion

interval : 20 ms // send events every 20 ms

duration = i0 s // for the next i0 s

rect : [-i00~i00,200~400] // from sensors within

rectangle.

For ease of exposition, we choose the subregion represen-

tation to be a rectangle defined on some coordinate system; in

practice, this might be based on GPS coordinates. Intuitively,

the task description specifies an interest for data matching the

attributes. For this reason, such a task description is called an

interest. The data sent in response to interests are also named

using a similar naming scheme. Thus, for example, a sensor that

detects a wheeled vehicle might generate the following data (see

Section II-C for an explanation of some of these attributes):

type =wheeled vehicle / / type of vehicle seen

interval = truck // instance of this type

location: [125,220] // node location

intensity= 0.6 // signal amplitude measure

intensity=O.85 // confidence in the match

timestamp= Ol : 20:40 // event generation time.

Given a set of tasks supported by a sensor network, then,

selecting a naming scheme is the first step in designing directed

diffusion for the network. For our sensor network, we have

chosen a simple attribute-value based interest and data naming

scheme. In general, each attribute has an associated value

range. Forexample , the range of the t y p e attribute is the set

of codebook values representing mobile o b j e c t s (vehicles,

animal, humans). The value of an attribute can be any subset of

its range. In our example, the value of the t y p e attribute in the

interest is that corresponding to wheeled vehicles.

There are other choices for attribute value ranges (e.g., hier-

archical) and other naming schemes (such as intentional names

[1]). To some extent, the choice of naming scheme can affect

the expressivity of tasks and may impact performance of a dif-

fusion algorithm. In this paper, our goal is to gain an initial un-

derstanding of the diffusion paradigm. For this reason, the ex-

ploration of possible naming schemes is beyond the scope of

this paper, but we have begun that exploration elsewhere (see

Section V) [141.

B. Interests and Gradients

The named task description of Section II-A constitutes an in-

terest. An interest is usually injected into the network at some

(possibly arbitrary) node in the network. We use the term sink

to denote this node.

4 1EEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

1) Interest Propagation: Given our choice of naming

scheme, we now describe how interests are diffused through the

sensor network. Suppose that a task, with a specified t y p e and

r e c t , a d u r a t i o n of 10 min and an i n t e r v a l of 10 ms, is

instantiated at a particular node in the network. The i n t e r v a l

parameter specifies an event data rate; thus, in our example,

the specified data rate is 100 events per second. This sink node

records the task; the task state is purged from the node after the

time indicated by the d u r a t i o n attribute.

For each active task, the sink periodically broadcasts an in-

terest message to each of its neighbors. (More efficient methods

to send the interest will be discussed later.) This initial interest

contains the specified r e c t and d u r a t i o n attributes, but con-

tains a much larger i n t e r v a l attribute. Intuitively, this initial

interest may be thought of as exploratory; it tries to determine

if there indeed are any sensor nodes that detect the wheeled

vehicle. To do this, the initial exploratory interest specifies a

low data rate (in our example, one event per second). 2 In Sec-

tion II-D, we describe how the desired data rate is achieved

by reinforcement. Then, the initial interest takes the following

form:

type = wheeled vehicle

interval : l s

r e c t : [-100,200,200,400]

t i r a e s t a r a p = 0 1 : 2 0 : 4 0 / / h h : m m : s s

expiresAt = 01 : 30 : 40.

Before we describe how interests are processed, we empha-

size that the interest is soft state [19], [29], [32] that will be

periodically refreshed by the sink. To do this, the sink simply

resends the same interest with a monotonically increasing

timestamp attribute. This is necessary because interests are

not reliably transmitted throughout the network. The refresh

rate is a protocol design parameter that trades off overhead for

increased robustness to lost interests.

Every node maintains an interest cache. Each item in the

cache corresponds to a distinct interest. Two interests are dis-

tinct, in our example, if their t y p e attribute differs, or their r e c t

attributes are (possibly partially) disjoint. Interest entries in the

cache do not contain information about the sink, but just about

the immediately previous hop. Thus, interest state scales with

the number of distinct active interests. Our definition of dis-

tinct interests also allows interest aggregation. Two interests/1

and /2 , with identical types, completely overlapping r e c t at-

tributes, can, in some situations, be represented with a single

interest entry. Other interest aggregation is a subject of future

research.

An entry in the interest cache has several fields. A t ime s t amp

field indicates the timestamp 3 of the last received matching in-

2This is not the only choice, but represents a pe r fo rmance tradeoff. Since the

locat ion of the sources is not precisely known, interests mus t necessari ly be

diffused over a broader section o f the sensor ne twork than that covered by the

potential sources. As a result, i f the sink had chosen a higher initial data rate, a

h igher energy consumpt ion migh t have resulted f rom the wider disseminat ion

o f sensor data. However , with a h igher initial data rate, the t ime to achieve high-

fidelity t racking is reduced.

3This may require t ime synchronizat ion a m o n g nodes in the network. How-

ever, t ime can be synchronized using GPS [22], NTP [14], or using post-facto
messag ing [12].

Diffusion element I Design Choices

• Flooding
Interest Propagation • Constrained or directional flooding based on location

• Directional propagation based on previously cached data

• Reinforcement to single path delivery
Data Propagation • Multipath delivery with selective quality along different paths

• Multipath delivery with probabilistic forwarding
• For robust data delivery in the face of node failure

Data caching and agglegation • For coordinated sensing and data reduction
• For directing interests

• Rules for deciding when to reinforce
Reinforcement • Rules for how many neighbors to reinforce

• Negative reinforcement mechanisms and rules

Fig. 2. Partial des ign space for diffusion.

terest. The interest entry also contains several gradient fields,

up to one per neighbor. Each gradient contains a da t a r a t e field

requested by the specified neighbor, derived from the i n t e r v a l

attribute of the interest. It also contains a duration field, derived

from the timestamp and expiresAt attributes of the interest

and indicating the approximate lifetime of the interest. This du-

ration must be longer than the network delay.

When a node receives an interest, it checks to see if the in-

terest exists in the cache. If no matching entry exists (where a

match is determined by the definition of distinct interests spec-

ified above), the node creates an interest entry. The parameters

of the interest entry are instantiated from the received interest.

This entry has a single gradient toward the neighbor from which

the interest was received, with the specified event data rate. In

our example, a neighbor of the sink will set up an interest entry

with a gradient of one event per second toward the sink. For this,

it must be possible to distinguish individual neighbors. Any lo-

cally unique neighbor identifier may be used for this purpose.

Examples of such identifiers include 802.11 MAC addresses [8],

Bluetooth [13] cluster addresses, or locally unique ephemeral

identifiers [11]. If there exists an interest entry, but no gradient

for the sender of the interest, the node adds a gradient with

the specified value. It also updates the entry's t i m e s t a m p and

d u r a t i o n fields appropriately. Finally, if there exists both an

entry and a gradient, the node simply updates the t i m e s t a m p

and d u r a t i on fields.

In Section II-C, we describe how gradients are used. When

a gradient expires, it is removed from its interest entry. Not all

gradients will expire at the same time. For example, if two dif-

ferent sinks express indistinct interests with different expiration

times, some node in the network may have an interest entry with

different gradient expiration times. When all gradients for an

interest entry have expired, the interest entry itself is removed

from a cache.

After receiving an interest, a node may decide to resend the

interest to some subset of its neighbors. To its neighbors, this

interest appears to originate from the sending node, although

it might have come from a distant sink. This is an example of a

local interaction. In this manner, interests diffuse throughout the

network. Not all received interests are resent. A node may sup-

press a received interest if it recently resent a matching interest.

Generally speaking, there are several possible choices for

neighbors (Fig. 2). The simplest alternative is to rebroadcast

the interest to all neighbors. This is equivalent to flooding the

interest throughout the network; in the absence of information

INTANAGONWlWAT et aL: DIRECTED DIFFUSION FOR WIRELESS SENSOR NETWORKING " 5

. 4 .

EVeh;

Sink Sink Y ~ Sink

/

(a) (b) (c) (d) (e)

Fig. 3. Illustrating different aspects of diffusion. (a) Gradient establishment. (b) Reinforcement. (c) Multiple sources. (d) Multiple sinks. (e) Repair.

about which sensor nodes are likely to be able to satisfy the in-

terest, this is the only choice. This is also the alternative that we

simulate in Section IV. In our example sensor network, it may

also be possible to perform geographic routing, using some of

the techniques described in the literature [7], [23], [34]. This

can limit the topological scope for interest diffusion, thereby

resulting in energy savings. Finally, in an immobile sensor net-

work, a node might use cached data (see Section II-C) to direct

interests. For example, if in response to an earlier interest, a node

heard from some neighbor A data sent by some sensor within the

region specified by the r e c t attribute, it can direct this interest

to A, rather than broadcasting to all neighbors.

2) Gradient Establishment: Fig. 3(a) shows the gradients

established in the case where interests are flooded through a

sensor field. Unlike the simplified description in Fig. l(b), no-

tice that every pair of neighboring nodes establishes a gradient

toward each other. This is a crucial consequence of local interac-

tions. When a node receives an interest from its neighbor, it has

no way of knowing whether that interest was in response to one

it sent out earlier, or is an identical interest from another sink on

the "other side" of that neighbor. Such two-way gradients can

cause a node to receive one copy of low data rate events from

each of its neighbors. However, as we show later, this technique

can enable fast recovery from failed paths or reinforcement of

empirically better paths (Section II-D) and does not incur per-

sistent loops (Section II-C).

Note that for our sensor network, a gradient specifies both a

data rate and a direction in which to send events. More generally,

a gradient specifies a value and a direction. The directed-diffu-

sion paradigm gives the designer the freedom to attach different

semantics to gradient values. We have shown two examples of

gradient usage. Fig. l(c) implicitly depicts binary valued gradi-

ents. In our sensor networks, gradients have two values that de-

termine event reporting rate. In other sensor networks, gradient

values might be used to, for example, probabilistically forward

data along different paths, achieving some measure of load bal-

ancing (Fig. 2).

In summary, interest propagation sets up state in the network

(or parts thereof) to facilitate "pulling down" data toward the

sink. The interest propagation rules are local and bear some

resemblance to join propagation in some Internet multicast

routing protocols [10]. One crucial difference is that join

propagation can leverage unicast routing tables to dii'ect joins

toward sources, whereas interest propagation cannot.

In this section, we have described interest propagation rules

for a particular type of task. More generally, a sensor network

may support many different task types. Interest propagation rules

may be different for different task types. For example, a task type

of the form "Count the number of distinct wheeled vehicles in

rectangle R seen over the next T seconds" cannot leverage the

event data rate as our example does. However, some elements of

interest propagation are similar to both: the form of the cache

entries, the interest redistribution rules, etc. In our implemen-

tation (Section V), we have culled these similarities into a dif-

fusion substrate at each node, so that sensor network designers

can use a library of interest propagation techniques (or, for that

matter, rules discussed in the subsequent sections for data pro-

cessing and reinforcement) for different task types.

C. Data Propagation

A sensor node that is within the specified r e c t processes

interests as described in the previous section. In addition, the

node tasks its local sensors to begin collecting samples (to save

power, sensors are off until tasked). In this paper, we do not dis-

cuss the details of target recognition algorithms. Briefly, these

algorithms simply match sampled waveforms against a library

of presampled stored waveforms. This is based on the observa-

tion that a wheeled vehicle has a different acoustic or seismic

footprint than, for example, a human being. The sampled wave-

form may match the stored waveform to varying extents; the

algorithms usually associate a degree of confidence with the

match. Furthermore, the intensity of the sampled waveform may

roughly indicate distance of the signal origin, though perhaps

not direction.

A sensor node that detects a target searches its interest cache

for a matching interest entry. In this case, a matching entry is one

whose rect encompasses the sensor location and the type of

the entry matches the detected target type. When it finds one, it

computes the highest requested event rate among all its outgoing

gradients. The node tasks its sensor subsystem to generate event

samples at this highest data rate. In our example, this data rate

is initially one event per second (until reinforcement is applied;

see Section II-D). The source then sends to each neighbor for

whom it has a gradient an event description every second of the

form

type :wheeled vehicle // type of vehicle seen

instance : truck // instance of this type

location : [125,220] // node location

intensity: 0.6 // signal amplitude measure

confidence= 0.85 // confidence in the match

timestamp : 01 : 20:40 // local event generation

time.

6 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

This data message is, in effect, unicast individually to the rel-

evant neighbors. (The exact mechanism used is a function of the

radio's medium-access control (MAC) layer and can have a sig-

nificant impact on performance, as evaluated in Section IV-D).

A node that receives a data message from its neighbors

attempts to find a matching interest entry in its cache. The

matching rule is as described in the previous paragraph. If no

match exists, the data message is silently dropped. If a match

exists, the node checks the data cache associated with the

matching interest entry. This cache keeps track of recently seen

data items. It has several potential uses, one of which is loop

prevention. If a received data message has a matching data

cache entry, the data message is silently dropped. Otherwise,

the received message is added to the data cache and the data

message is resent to the node's neighbors.

By examining its data cache, a node can determine the data

rate of received events. 4 To resend a received data message, a

node needs to examine the matching interest entry's gradient

list. If all gradients have a data rate that is greater than or equal

to the rate of incoming events, the node may simply send the re-

ceived data message to the appropriate neighbors. However, if

some gradients have a lower data rate than others (caused by se-

lectively reinforcing paths; see Section II-D), then the node may

downconvert to the appropriate gradient. For example, consider

a node that has been receiving data at 100 events per second,

but one of its gradients (e.g., set up by a second sink originating

an indistinct task with a larger i n t e r v a l) is at 50 events per

second. In this case, the node may only transmit every alternate

event toward the corresponding neighbor. Alternately, it might

interpolate two successive events in an application-specific way

(in our example, it might choose the sample with the higher con-

fidence match).

Loop prevention and downconversion illustrate the power of

embedding application semantics in all nodes (Fig. 2). Although

this design is not pertinent to traditional networks, it is feasible

with application-specific sensor networks. Indeed, as we show

in Section IV-D, it can significantly improve network perfor-

mance.

D. Reinforcement for Path Establishment and Truncation

In the scheme we have described so far, the sink initially

and repeatedly diffuses an interest for a low-rate event notifi-

cation. We call these exploratory events, since they are intended

for path setup and repair. We call the gradients set up for ex-

ploratory events exploratory gradients. Once a source detects a

matching target, it sends exploratory events, possibly along mul-

tiple paths, toward the sink. After the sink starts receiving these

exploratory events, it reinforces one particular neighbor in order

to "draw down" real data (i.e., events at a higher data rate that

allow high quality tracking of targets). We call the gradients set

up for receiving high-quality tracking events data gradients.

1) Path Establishment Using Positive Reinforcement: In

general, this novel feature of directed diffusion is achieved

by data driven local rules. One example of such a rule is to

reinforce any neighbor from which a node receives a previously

4In our simulations in Section II-D, as a simplification, we include the data

rate in the event descriptions.

unseen event. To reinforce this neighbor, the sink resends the

original interest message but with a smaller i n t e r v a l (higher

data rate), as follows:

type ---- wheeled vehicles

interval = 10 ms

rect ---- [-100, 200,200,400]

timestamp ~- 01 : 22 : 35

expiresAt ~- 01 : 30 : 40.

When the neighboring node receives this interest, it notices

that it already has a gradient toward this neighbor. Furthermore,

it notices that the sender's interest specifies a higher data rate

than before. If this new data rate is also higher than that of

any existing gradient (intuitively, if the "outflow" from this

node has increased), the node must also reinforce at least one

neighbor. The node uses its data cache for this purpose. Again,

the same local rule choices apply. For example, this node might

choose that neighbor from whom it first received the latest

event matching the interest. Alternatively, it might choose all

neighbors from which new events were recently received. This

implies that we reinforce that neighbor only if it is sending

exploratory events. Obviously, we do not need to reinforce

neighbors that are already sending traffic at the higher data

rate. This is the alternative we evaluate in Section IV. Through

this sequence of local interactions, a path is established from

source to sink transmission for data.

The local rule we described above, then, selects an empiri-

cally low-delay path [Fig. 3(b) shows the path that can result

when the sink reinforces the path]. It is very reactive to changes

in path quality; whenever one path delivers an event faster than

others, the sink attempts to use this path to draw down high

quality data. However, because it is triggered by receiving one

new event, this could be wasteful of resources. More sophisti-

cated local rules are possible (Fig. 2), including choosing that

neighbor from which the most events have been received, or that

neighbor which consistently sends events before other neigh-

bors. These choices trade off reactivity for increased stability.

2) Path Establishment for Multiple Sources and Sinks: In

describing reinforcement so far, we may have appeared to im-

plicitly describe a single-source scenario. In fact, the rules we

have described work with multiple sources. To see this, con-

sider Fig. 3(c). Assume initially that all initial gradients are ex-

ploratory. According to this topology, data from both sources

reaches the sink via both of its neighbors C and D. If one of

the neighbors, say, C has consistently lower delay, our rules

will only reinforce the path through C (this is depicted in the

figure). However, if the sink hears B's events earlier via D, but

A's events 5 earlier via C , the sink will attempt to draw down

high-quality data streams from both neighbors (not shown). In

this case, the sink gets both sources' data from both neighbors,

a potential source of energy inefficiency. Such problem can be

avoided with some added complexity [16].

Similarly, if two sinks express identical interests, our interest

propagation, gradient establishment, and reinforcement rules

5Note that in directed diffusion, the sink would not be able to associate a

source with an event. Thus, the phrase "A ' s events" is somewhat misleading.

What we really mean is that data generated by A that is distinguishable in content

from data generated by B.

INTANAGONWIWAT et al.: DIRECTED DIFFUSION FOR WIRELESS SENSOR NETWORKING 7

Fig. 4.

Evln~t

t

' ~urce Source

_ ®
A

Sink

D E

/ SinkSourcel Siokl Slnk2

B C
A B C

(a) (b) (c)

Negative reinforcement for path truncation and loop removal. (a) Multiple paths. (b) Removable loop. (c) Unremovable loop.

Source 2

work correctly. Without loss of generality, assume that sink Y

in Fig. 3(d) has already reinforced a high-quality path to the

source. Note, however, that other nodes continue to receive

exploratory events. When a human operator tasks the network

at sink X with an identical interest, X can use the reinforcement

rules to achieve the path shown. To determine the empirically

best path, X need not wait for data--rather, it can use its data

cache to immediately draw down high-quality data toward

itself.

3) Local Repair for Failed Paths: So far, we have described

situations in which reinforcement is triggered by a sink. How-

ever, in directed diffusion, intermediate nodes on a previously

reinforced path can apply the reinforcement rules. This is useful

to enable local repair of failed or degraded paths. Causes for

failure or degradation include node energy depletion and en-

vironmental factors affecting communication (e.g., obstacles).

Consider Fig. 3(e), in which the quality of the link between the

source and node C degrades and events are frequently corrupted.

When C detects this degradation--either by noticing that the

event reporting rate from its upstream neighbor (the source) is

now lower, or by realizing that other neighbors have been trans-

mitting previously unseen location estimates--it can apply the

reinforcement rules to discover the path shown in the figure.

Eventually, C negatively reinforces the direct link to the source

(not shown in the figure). Our description so far has glossed over

the fact that a straightforward application of reinforcement rules

will cause all nodes downstream of the lossy link to also initiate

reinforcement procedures. This will eventually lead to the dis-

covery of one empirically good path, but may result in wasted

resources. One way to avoid this is for C to interpolate location

estimates from the events that it receives so that downstream

nodes still perceive high-quality tracking.

4) Path Truncation Using Negative Reinforcement: The al-

gorithm described in Section II-D1 can result in more than one

path being reinforced. For example, in Fig. 4(a), if the sink rein-

forces neighbor A, but then receives a new event from neighbor

B, it will reinforce the path through B.6 If the path through B is

consistently better (i.e., B sends events before A does), we need

a mechanism to negatively reinforce the path through A.

One mechanism for negative reinforcement is soft state, i.e.,

to time out all data gradients in the network unless they are ex-

plicitly reinforced. With this approach, the sink would periodi-

cally reinforce neighbor B and cease reinforcing neighbor A. All

gradients along the path through A would eventually degrade

6This path may or may not be completely disjoint from the path through
neighbor A.

to being exploratory gradients. Another approach, one that we

evaluate in this paper, is to explicitly degrade the path through

A by sending a negative reinforcement message to A . In this

rate-based diffusion, the negative reinforcement is the interest

with the lower data rate. When A receives this interest, it de-

grades its gradient toward the sink. Furthermore, if all its gradi-

ents are now exploratory, A negatively reinforces those neigh-

bors that have been sending data to it (as opposed to exploratory

events). 7 This sequence of local interactions ensures that the

path through A is degraded rapidly, but at the cost of increased

resource utilization.

To complete our description of negative reinforcement, we

need to specify what local rule a node uses in order to decide

whether to negatively reinforce a neighbor or not. Note that this

rule is orthogonal to the choice of mechanism for negative rein-

forcement. One plausible choice for such a rule is to negatively

reinforce that neighbor from which no new events have been re-

ceived (i.e., other neighbors have consistently sent events before

this neighbor) within a window of N events or time T. The local

rule we evaluate in Section IV is based on a time window of T,

chosen to be 2 s in our simulations. Such a rule is a bit conserva-

tive and energ3/inefficient. For example, even if one event in ten

was received first from neighbor A, the sink will not negatively

reinforce that neighbor. Other variants include negatively rein-

forcing that neighbor from which fewer new events have been

received.

5) Loop Removal Using Negative Reinforcement: In addi-

tion to suppressing high-delay or lossy paths, our local rule for

negative reinforcement is also used for loop removal because the

looping paths never deliver events first 8 [Fig. 4(b)]. Although

the looping message will be immediately suppressed using a

message cache, in general, we would still benefit from trun-

cating the looping paths for resource savings. However, such

loop removal is not always appropriate, specifically for some

shared high-rate gradient maps with multiple sources and sinks.

For example [Fig. 4(c)], if both sources send distinguishable

events, the gradient B - C and C - B should not be truncated be-

cause each of them is necessary for delivering events for a par-

7This local rule works even i f the path through A and the path through B are

partially joint. The joint links will not be negatively reinforced unless both paths
are negatively reinforced.

8Given that only neighbors that sent the exploratory event first are reinforced,
one may expect that the looping paths would never be reinforced (particularly for
single-source-single-sink scenarios). However, the reinforced paths in a given
round of exploratory events may differ from those in the previous rounds. Al-
though no looping path is reinforced, a union of reinforced paths from multiple
rounds may contain loops.

8 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

ticular source-sink pair. Although such gradients may deliver

some looping events, they also consistently deliver new events.

With our conservative rule for negative reinforcement, those

gradients will not be negatively reinforced.

Furthermore, even without loops, it is still reasonable to keep

our negative reinforcement rule conservative so that useful paths

will not be truncated. For example [Fig. 3(c)], both sources may

consistently send distinguishable events but they may also send

identical events once in a while. Although originating from dif-

ferent sources, the identical events are considered duplicates for

diffusion. 9 The path from one of the sources will be truncated

if the negative reinforcement rule is too aggressive against du-

plicates. Conversely, given our conservative rule, no source will

be negatively reinforced.

E. Discussion

In introducing the various elements of directed diffusion, we

also implicitly described a particular usage--interests set up

gradients drawing down data. The directed-diffusion paradigm

itself does not limit the designer to this particular usage. Other

usages are also possible, such as the one in which nodes may

propagate data in the absence of interests, implicitly setting up

gradients when doing so. This is useful, for example, to spon-

taneously propagate an important event to some section of the

sensor field. A sensor node can use this to warn other sensor

nodes of impending activity. Moreover, other design choices for

each element of diffusion are also possible (Fig. 2).

Our description points out several key features of diffusion

and how it differs from traditional networking. First, diffusion

is data-centfic; all communication in a diffusion-based sensor

network uses interests to specify named data. Second, all

communication in diffusion is neighbor-to-neighbor, unlike

the end-to-end communication in traditional data networks. In

other words, every node is an "end" in a sensor network. In the

sense, there are no "routers" in a sensor network. Each sensor

node can interpret data and interest messages. This design

choice is justified by the task specificity of sensor networks.

Sensor networks are not general-purpose communication net-

works. Third, sensor nodes do not need to have globally unique

identifiers or globally unique addresses. Nodes, however, do

need to distinguish among neighbors. Finally, in an IP-based

sensor network, for example, sensor data collection and

processing might be performed by a collection of specialized

servers which may, in general, be far removed from the sensed

phenomena. In our sensor network, because every node can

cache, aggregate, and more generally, process messages, it is

generally desirable to perform coordinated sensing close to the

sensed phenomena. Diffusion is clearly related to traditional

network data-routing algorithms. In some sense, it is a reactive

routing technique, since "routes" are established on demand.

However, it differs from other ad hoc reactive routing tech-

niques in several ways (see also Section VI). First, no attempt

9In diffusion, events are independent from their sources (i.e., a node would
not be able to associate a source with an event). The current instantiation of
diffusion maintains only the high-rate paths along which useful (new) data are
consistently sent, regardless of the sources. Thus, generally, we do not guarantee
that there will be at least one high-rate path from every source to every sink (e.g.,
when some of the sources are not generating useful data).

is made to find one loop-free path between source and sink

before data transmission commences. Instead, constrained or

directional flooding is used to set up a multiplicity of paths and

data messages are initially sent redundantly along these paths.

Second, soon thereafter, reinforcement attempts to reduce this

multiplicity of paths to a small number, based on empirically

observed path performance. Finally, a message cache is used

to perform loop avoidance. The interest and gradient setup

mechanisms themselves do not guarantee loop-free paths

between source and sink.

Why this peculiar choice of design? At the outset of this re-

search, we consciously chose to explore path setup algorithms

that establish network paths using strictly local (neighbor-to-

neighbor) communication. The intuition behind this choice is

the observation that physical systems (e.g., ant colonies [5]) that

build up transmission paths using such communication scale

well and are extraordinarily robust (see also Section VI). How-

ever, using strictly local communication implies that path setup

cannot use global topology metrics; local communication im-

plies that, as far as a node knows, the data that it received from a

neighbor came from that neighbor.I° This can be energy efficient

in highly dynamic networks when changes in topology need not

be propagated across the network. Of course, the resulting com-

munication paths may be suboptimal. However, the energy in-

efficiency due to path suboptimality can be countered by care-

fully designed in-network aggregation techniques. Overall, we

believe that this approach trades off some energy efficiency for

increased robustness and scale.

Finally, it might appear that the particular instantiation that

we chose, location tracking, has limited applicability. We be-

lieve, however, that such location tracking captures many of the

essential features of a large class of remote surveillance sensor

networks. We emphasize that, even though we have discussed

our tracking network in some detail, much experimentation and

evaluation of the various mechanisms is necessary before we

fully understand the robustness, scale, and performance impli-

cations of diffusion in general and some of our mechanisms in

particular. The next two sections take initial steps in this direc-

tion.

III. ANALYTIC EVALUATION

In this section, we present an analytic evaluation of the

data-delivery cost for directed diffusion and two idealized

schemes: omniscient multicast and flooding. This analysis

serves to sanity check the intuition behind directed diffusion

and highlights some of the differences between diffusion and

the other approaches.

For analytic tractability, we analyze these three schemes in

a very simple idealized setting. We assume a square grid con-

sisting of N nodes. In this grid, node transmission ranges are

such that each node can communicate with exactly eight neigh-

boring nodes on the grid. Fig. 5 shows links between pairs of

nodes that can communicate with each other. All n sources are

placed along nodes on the left edge of the grid, whereas all ra

sinks are placed along the fight edge. The first source is at the

leThe location information in a data message might reveal otherwise, but that
information still does not contain topology metrics.

INTANAGONWlWAT et al.: DIRECTED DIFFUSION FOR WIRELESS SENSOR NETWORKING 9

< Square root of N = 5 nodes >

Fig. 5. Example of square-grid topology.

center of the left border. The ith source is dn Li/2J hops above (if

i is even) or below (if i is odd) the first source. This placement

scheme is also used for sinks except that the distance between

two adjacent sinks is dm hops rather than dn hops. Given that

sources and sinks are vertically placed only, x / ~ cannot be less

than max(ndn, mdm).

A. Flooding

In the flooding scheme, sources flood all events to every node

in the network. Flooding is a watermark for directed diffusion;

if the latter does not perform better than flooding does, it cannot

be considered viable for sensor networks.

In this analytic evaluation, our measure of performance is the

total cost of transmission and reception of one event from each

source to all the sinks. We define cost as one unit for message

transmission and one unit for message reception. These assump-

tions are clearly idealized in two ways. Transmission and recep-

tion costs may not be identical and there might be other metrics

of interest. We consider more realistic measures with simulation

in Section IV.

By this measure, the cost of flooding, denoted by

C f (N~ n, m, dn, din), or simply C f , is given by

Cy =nN + 2n (2 (x / N - 1) x / ~ + 2 (x /N - 1) 2)

=nN + 4 n (v / N - 1) (2v/N - 1). (1)

The transmission cost for flooding n events (one event from

each source) is nN because each node sends only one MAC

broadcast per event. Conversely, each node can receive the same

event from all neighbors. Thus, the reception cost for those n

events is determined by 2n times the number of links in the

network (4n (v /N - 1) (2v/N - 1)). The data-delivery cost for

flooding is O(nN), which is asymptotically higher than the cost

of other schemes (see Sections III-B and III-C).

B. Omniscient Multicast

In the omniscient multicast scheme, each source transmits

its events along a shortest path multicast tree to all sinks. In

our analysis, as well as in the simulations described in Sec-

tion IV, we do not account for the cost of tree construction.

Omniscient multicast instead indicates the best possible perfor-

mance achievable in an IP-based sensor network without con-

sidering overhead. We use this scheme to give the reader some

intuition for how the choice of in-network processing mecha-

nism effects performance.

For omniscient multicast, the data-delivery cost is determined

by twice the number of links on its source-specific shortest

path trees. However, even in this simple grid topology, there

are several shortest paths for each source-sink pair. We choose

the shortest path using the following simple deterministic rule.

From a sink to a source, a diagonal link is always the next hop

as long as it leads to a shortest path. Otherwise, a horizontal

link is selected. This path-selection rule is repeated until the

source is reached. Thus, no shortest path includes vertical links.

For example, if we denote a shortest path tree rooted at source

j by Tj, then the number of links on T1 has two components:

the number of horizontal links (x /N - 1) and diagonal links

(dm [m/2J (km/2J + 1) - d m Lm/2J ((m - 1)mod 2)). Other

choices could result in a different cost, since the number of

shared links on the tree could be different.

The cost of omniscient multicast Co is the sum of the costs

of n trees, one rooted at each source. If we denote by C(Tj) the

cost to transmit an event from source j , it turns out that we can

express this cost in terms of T1 as C(Tj) = C(T1) + C(Tj -

T1) - C(T1 - Tj). C(Tj - Tk) is interpreted as the cost of

transmission and reception along the tree formed by removing,

from Tj, those links that are common to Tj and Tk. Furthermore,

for ease of exposition, C(Tj) can be expressed as the sum of two

costs: the cost of transmission and reception along the horizontal

links H(Tj) and the analogous cost along the diagonal links

D(Tj).

We can then write Co as

(2)
where

(3)

D (Tj - T1) = 2 { [m + (j m°d

+ min(L[j/2Jd~/dmJ'[m-(jmod2)/2J)(dn~ l~ j -- ldm) }

(4)

L~-(J mod 2)/2J

l=1

(5)

Asymptotically, the data-delivery cost of omniscient multi-

cast Co is O(nx/~) for m << x /~ .

C. Directed Diffusion

The analysis of diffusion proceeds along the same lines as that

of omniscient multicast. To simplify the analysis, we assume

that the tree that diffusion's localized algorithms construct is

10 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

the "union" of the shortest path tree rooted at each source. This

assumption is approximately valid when the network operates

at low-load levels. Furthermore, of the many available shortest

paths, diffusion chooses one according to the following rule:

from a sink to a source, a diagonal link is always the next hop

as long as it is along the shortest path to a source; otherwise, a

horizontal link is selected. This rule is the same one we used for

omniscient multicast.

Despite using the same path-selection scheme, the cost of dif-

fusion Cd differs from that of omniscient multicast, primarily

because of application-level data processing. Specifically, if all

sources send identical target location estimates, then, given that

diffusion can perform application-level duplicate suppression,

the data-delivery cost of diffusion is twice the number of links

in the union of all shortest path trees rooted at the source. Hence

Cd =C (UTi~n)

+j=~z{ H (Tj - UT~-(j-1)) + D (Tj - UT~--(J-i)) }

(6)

where

H(Tj - UTi-,(j-i)) = g (Tj) (7)

D(Tj-UTi_(j_i)) : 2{ [m + (3 : ° d 2)] dn

min([l j /2J dn/d~], [m-- (j mod 2)/z])

+ Z min@n,d~ t~J - ldm)} .
l=l

(8)

Similar to Co, Cd is O(nx/N) for m << ~/~.

D. Comparison

The data-delivery cost of flooding Ci is several orders

of magnitude higher than that of onmiscient multicast Co.
However, Co is still higher than the diffusion cost Ca,

because D(Ti) - D(Ti - Tj) > 0 and D(Tj - 7"1) _>

D(Tj - UTi~(j_i)). To validate this reasoning, the data-de-

livery cost (normalized by network size) for directed diffusion

and omniscient multicast is plotted using various parameters

(i.e.,N, m, and n). As the number of sources and sinks in-

creases [Fig. 6(a) and (b)], the cost saving due to in-network

processing (e.g., duplicate suppression) of diffusion becomes

more evident (given that Cd increases at a lower rate than Co).
Of particular interest is the plot of cost versus network size

[Fig. 6(c)]. Since diffusion can suppress application-level dupli-

cates, one would expect that Co is merely nCd. The main reason

this does not hold is that our analysis somewhat conservatively

estimates diffusion costs. In practice, diffusion would have neg-

atively reinforced several of the links that our analysis includes.

IV. SIMULATION

In this section, we use packet-level simulation to explore, in

some detail, the implications of some of our design choices.

Such an examination complements and extends our analysis of

Section III. This section describes our methodology, compares

the performance of diffusion against some idealized schemes,

then considers impact of network dynamics on simulation.

A. Goals, Metrics, and Methodology

We implemented our vehicle tracking instance of di-

rected diffusion in the ns-2 [2] simulator (the current ns
release with diffusion support can be downloaded from

http://www.isi.edu/nsnam/ns). Our goals in conducting this

evaluation study were fourfold: 1) verify and complement our

analytic evaluation; 2) understand the impact of dynamics--

such as node failures--on diffusion; 3) explore the influence

of the radio MAC layer on diffusion performance; and 4) study

the sensitivity of directed-diffusion performance to the choice

of parameters.

We choose three metrics to analyze the performance of di-

rected diffusion and to compare it to other schemes: average dis-

sipated energy, average delay, and distinct-event delivery ratio.

Average dissipated energy measures the ratio of total dissi-

pated energy per node in the network to the number of distinct
events seen by sinks. This metric computes the average work

done by a node in delivering useful tracking information to the

sinks. The metric also indicates the overall lifetime of sensor

nodes. Average delay measures the average one-way latency

observed between transmitting an event and receiving it at each

sink. This metric defines the temporal accuracy of the location

estimates delivered by the sensor network. Distinct-event de-
livery ratio is the ratio of the number of distinct events received

to the number originally sent. A similar metric was used in ear-

lier work to compare ad hoc routing schemes [4]. We study these

metrics as a function of sensor network size.

In order to study the performance of diffusion as a function of

network size, we generate a variety of sensor fields of different

sizes. In each of our experiments, we study five different sensor

fields, ranging from 50 to 250 nodes in increments of 50 nodes.

Our 50-node sensor field generated by randomly placing the

nodes in a 160 x 160 m square. Each node has a radio range

of 40 m. Other sizes are generated by scaling the square and

keeping the radio range constant in order to approximately keep
the average density of sensor nodes constant. We do this because

the macroscopic connectivity of a sensor field is a function of the

average density. If we had kept the sensor field area constant but

increased network size, we might have observed performance

effects not only due to the larger number of nodes but also due to

increased connectivity. Our methodology factors out the latter,

allowing us to study the impact of network size alone on some

of our mechanisms.

The ns-2 simulator implements a 1.6 Mb/s 802.11 MAC layer.

Our simulations use a modified 802.11 MAC layer. To more

closely mimic realistic sensor network radios [21], we altered

the ns-2 radio energy model such that the idle-time power dis-

sipation was about 35 mW, or nearly 10% of its receive power

dissipation (395 roW) and about 5% of its transmit power dis-

sipation (660 mW). This MAC layer is not completely satisfac-

tory, since energy efficiency provides a compelling reasons for

selecting a time-division multiple-access (TDMA)-style MAC

for sensor networks rather than one using contention-based pro-

tocols [28]. Briefly, these reasons have to do with energy con-

N=400, m= 1-10, n=6, d j n = 2 , d n=3

2.5

) ,

~ 1.G

.~§

~ o.g .,~

~ 0

Dlffuslon •
i L i ^---"m~iecient Mutl~.ast i []

2 4 6 8 10

Number of sinks

(a)

N=121-400, m=5, n=5, d_m=l , d_n=2

2

"~ 1.8

~ 1.6

.u ~ 1.4

r.J¢
~1 1.2

W...I

~ 0.8

~ ~ 0.6

~ 0.4

~ 0.2

g
0

2.5

o~ ,.5

~ 0.5

~ 0
0

N-400, n~ lO , rim1-6, d m l2 , cLr~3

Dlffu~don
, , , , OTn~cimt M . , ~ - - B - -

1 2 3 4 5 6

Number of sources

1NTANAGONWIWAT et al.: DIRECTED DIFFUSION FOR WIRELESS SENSOR NETWORKING 11

Diffusion •
, , i i Omniscient Multicasl

150 200 250 300 350 400

Network size (N)

(c)

(b)

Fig. 6. Impact of various parameters on directed diffusion and omniscient multicast. (a) Impact of the number of sinks. (b) Impact of the number of sources.
(c) Impact of network size.

sumed by the radio during idle intervals; with a TDMA-style

MAC, it is possible to put the radio in standby mode during

such intervals. By contrast, an 802.11 radio consumes as much

power when it is idle as when it receives transmissions. In Sec-

tion IV-D, we analyze the impact of a MAC energy model in

which listening for transmissions dissipates as much energy as

receiving them.

Finally, in most of our simulations, we use a fixed work-

load which consists of five sources and five sinks. All sources

are randomly selected from nodes in a 70 x 70 m square at the

bottom left comer of the sensor field. Sinks are uniformly scat-

tered across the sensor field. Each source generates two events

per second. The rate for exploratory events was chosen to be

one event in 50 s. Events were modeled as 64-byte packets and

interests as 36-byte packets. Interests were periodically gener-

ated every 5 s and the interest duration was 15 s. We chose the

window for negative reinforcement to be 2 s. These parameter

choices were informed both by the particular sensor network

under consideration (small event descriptions, sources within a

geographic region) and by our desire to explore a regime of the

sensor network in a noncongested regime (to simplify our un-

derstanding of the results). Data points in each graph represent

the mean of ten scenarios with 95% confidence intervals.

B. Comparative Evaluation

Our first experiment compares diffusion to omniscient mul-

ticast and the flooding scheme for data dissemination in net-

works. Fig. 7(a) shows the average dissipated energy per packet

as a function of network size. Omniscient multicast dissipates

a little less than half as much energy per packet per node than

flooding. It achieves such energy efficiency by delivering events

along a single path from each source to every sink. Directed dif-

fusion has noticeably better energy efficiency than omniscient

multicast. For some sensor fields, its dissipated energy is only

60% that of omniscient multicast. As with omniscient multi-

cast, it also achieves significant energy savings by reducing the

number of paths over which redundant data is delivered. In ad-

dition, diffusion benefits significantly from in-network aggre-

gation. In our experiments, the sources deliver identical loca-

tion estimates and intermediate nodes suppress duplicate loca-

tion estimates. This corresponds to the situation where there is,

for example, a single vehicle in the specified region.

Why then, given that there are five sources, is diffusion

(with negative reinforcement) not nearly five times more en-

ergy efficient than omniscient multicast? First, both schemes

expend comparable--and nonnegligible----energy listening

for transmissions. Second, our choice of reinforcement and

12 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

0.018

0.015

~ o.o1,

0.012

~ o.oi

~ o.oo5

~ o.oo~

,~ ~o.~

"o
0.002

0.35

. / 0

]-

i i i
50 100 150

Network Size

(a)

0.3

0 . 2 5

O ° 0 . 2

0.15

0.1

0.05

Diffusion ---II---
Omniscient Multicast
z Flooding

2(X) 250 300

Diffusion . - - ~ i
Omniscient Mul0cast

Flooding

i

m======= a ~ ~ =====:zl~
i i i i i

50 100 150 200 250 300

Network Size

(b)

Fig. 7. Directed diffusion compared to flooding and omniscient multicast.

(a) Average dissipated energy. (b) Average delay.

negative reinforcement results in directed diffusion frequently

drawing down high-quality data along multiple paths, thereby

expending more energy. Specifically, our reinforcement rule that

reinforces a neighbor who sends a previously unseen event is

very aggressive. Conversely, our negative reinforcement rule,

which negatively reinforces neighbors who only consistently

send duplicate (i.e., previously seen) events, is very conservative.

Fig. 7(b) plots the average delay observed as a function of

network size. Directed diffusion has a delay comparable to om-

niscient multicast. This is encouraging. To a first approximation,

in an uncongested sensor network and in the absence of obstruc-

tions, the shortest path is also the lowest delay path. Thus, our re-

inforcement rules seem to be finding the low-delay paths. How-

ever, the delay experienced by flooding is almost an order of

magnitude higher than other schemes. This is an artifact of the

MAC layer: to avoid broadcast collisions, a randomly chosen

delay is imposed on all MAC broadcasts. Flooding uses MAC

broadcasts exclusively. Diffusion only uses such broadcasts to

propagate the initial interests. On a sensor radio that employs a

TDMA MAC-layer, we might expect flooding to exhibit a delay

comparable to the other schemes.

In summary, directed diffusion exhibits better energy dissi-

pation than omniscient multicast and has good latency proper-

ties. Finally, all three schemes incurred an event delivery ratio of

nearly one (not shown), since this experiment ignored network

dynamics and was congestion free.

C. Impact of Dynamics

To study the impact of dynamics on directed diffusion, we

simulated node failures as follows. For each sensor field, we re-

peatedly turned off a fixed fraction (10% or 20%) of nodes for

30 s. These nodes were uniformly chosen from the sensor field,

with the additional constraint that an equal fraction of nodes on

the sources to sinks shortest path trees was also turned off for

the same duration. The intent was to create node failures in the

paths diffusion is most likely to use and to create random fail-

ures elsewhere in the network. Furthermore, unlike the previous

experiment, each source sends different location estimates (cor-

responding to the situation in which each source "sees" different

vehicles). We did this because the impact of dynamics is less

evident when diffusion suppresses identical location estimates

from other sources. We could also have studied the impact of

dynamics on other protocols, but, because omniscient multicast

is an idealized scheme that does not factor in the cost of route

recomputation, it is not entirely clear that such a comparison is

meaningful.

Our dynamics experiment imposes fairly adverse conditions

for a data-dissemination protocol. At any instant, 10% or 20% of

the nodes in the network are unusable. Furthermore, we do not

permit any "settling time" between node failures. Even so, dif-

fusion is able to maintain reasonable, if not stellar, event delivery

[Fig. 8(c)] while incurring less than 20% additional average delay

[Fig. 8(b)]. Moreover, the average dissipated energy actually im-

proves, in some cases, in the presence of node failures. This is a

bit counterintuitive, since one would expect that directed diffu-

sion would expend energy to find alternative paths. As it turns

out, however, our negative reinforcement rules are conservative

enough that several reinforced paths (high-quality paths) are kept

alive in normal operation. Thus, at the levels of dynamics we sim-

ulate, diffusion does not need to do extra work. The lower energy

dissipation results from the failure of some high-quality paths.

We take these results to indicate that the mechanisms in dif-

fusion are relatively stable at the levels of dynamics we have

explored. By this, we mean that diffusion does not, under dy-

namics, incur remarkably higher energy dissipation or event de-

livery delays.

D. Impact of Data Aggregation and Negative Reinforcement

To explain what contributes to directed diffusion's energy ef-

ficiency, we now describe two separate experiments. In both

of these experiments, we do not simulate node failures. First,

we compute the energy efficiency of diffusion with and without

aggregation. Recall from Section IV-B that in our simulations,

we implement a simple aggregation strategy, in which a node

suppresses identical data sent by different sources. As Fig. 9(b)

shows, diffusion expends nearly five times as much energy, in

smaller sensor fields, as when it can suppress duplicates. In

larger sensor fields, the ratio is 3. Our conservative negative re-

inforcement rule accounts for the difference in the performance

of diffusion without suppression as a function of network size.

With the same number of sources and sinks, the larger network

has longer alternate paths. These alternate paths are truncated by

negative reinforcement because they consistently deliver events

INTANAGONW1WAT et al.: DIRECTED DIFFUSION FOR WIRELESS SENSOR NETWORKING 13

0.006

0.006

~, .~ o ~

~,,~ 0.0o2

0.001

Fig. 8.

, , , , ,

i i

5O 100

No node lailure +
10% slmuRaneous node fa~ , l r~
20% simu~aneous node failures

L
150 200 250 300

Network Size

(a)

0.9

.O 0.8

0,7

.~ 0.6

0,5

I~1 0.4

.~ 0.3

g
0.2

0.1

0,9

0.8

0.7

0.6

~ 0.5

~ 0.4

~ 0.3

I
0.2

0.1

0

No nods failure •
10% dinultaneous node failures []
20% simultaneous node taBums O

i i I
1 ~ 1 ~ 200

Network Size

(b)

T

No node lailure
10% simultaneous node fallur~

, , , 20% -~'~--~,~,,w.,,eous node ~,~,ilures

50 100 150 200 250 300

Network Size

(c)

Impact of node failures on directed diffusion. (a) Average dissipated energy. (b) Average delay. (c) Event delivery ratio.

i
2fi0 300

with higher latency. As a result, the larger network expends less

energy without suppression. We believe that suppression also

exhibits the same behavior, but the energy difference is rela-

tively small.

The second mechanism whose benefits we quantify is nega-

tive reinforcement. This mechanism prunes off higher latency

paths and can contribute significantly to energy savings. In this

experiment, we selectively turn off negative reinforcement and

compare the performance of directed diffusion with and without

reinforcement. Intuitively, one would expect negative reinforce-

ment to contribute significantly to energy savings. Indeed, as

Fig. 9(a) shows, diffusion without negative reinforcement ex-

pends nearly twice as much energy as when negative reinforce-

ment is employed. This suggests that even our conservative neg-

ative reinforcement rules prune off paths which deliver consis-

tently higher latency.

In the absence of negative reinforcement or suppression, dif-

fusion delay increases by factors of three to eight (the graphs

are not included for lack of space). This is an artifact of the

802.11 MAC layer. In diffusion, data traffic is transmitted using

MAC unicast. As more paths are used (in the absence of negative

reinforcement), or more copies of data are sent (without sup-

pression), MAC-layer channel contention increases, resulting in

backoffs and subsequent delays.

E. Sensitivity Analysis

Finally, we evaluate the sensitivity of our comparisons (Sec-

tion IV-B) to our choice of energy model. Sensitivity of diffu-

sion to other factors (numbers of sinks, size of source region) is

discussed in greater detail in [18].

In our comparisons, we selected radio power dissipation pa-

rameters to more closely mimic realistic sensor radios [21]. We

reran the comparisons of Section IV-B, but with power dissi-

pation comparable to the AT&T Wavelan: 1.6-W transmission,

1.2-W reception, and 1.15-W idle [30]. In this case, as Fig. 9(c)

shows, the distinction between the schemes disappears. In this

regime, we are better off flooding all events. This is because

idle-time energy utilization completely dominates the perfor-

mance of all schemes. This is the reason why sensor radios try

very hard to minimize listening for transmissions.

W. IMPLEMENTATION

We have so far described directed diffusion using a specific

application as an example. However, it is desirable to avoid

reimplementing diffusion mechanisms for every new appli-

cation. To this end, we have implemented a generic diffusion

substrate and ported this code to multiple platforms including

WINSng 2.0 nodes, USC/ISI PC/104 nodes, Motes, and as

14 I E E E / A C M T R A N S A C T I O N S O N N E T W O R K I N G , V O L . 11, N O . 1, F E B R U A R Y 2003

t~

2

Fig. 9.

0.014

o.012

O.Ol

0.0(~

0.(106

0.004

0.002

0

!

e----'---- T ~ ¢

With negative reinforcement
, , , W~ho.t n , ~ , v e r e i f f t o r ~ • -

50 100 160 200 2SO 300

Network Size

(a)

0.14

0,12

o.1

~ 0.08

~ ~o .~

~ ~ o , ~

~ 0.02

0.025

~ °.02

.~ . 0.015

g ~ O.Ol

Diffusion +
Omniscient Mulflcasl

, i i i i

0 50 100 150 200 250 300

Network Size

(c)

i i i

50 1 ~ 150

Network S i z e

(b)

Impact of various factors on directed diffusion. (a) Negative reinforcement. (b) Duplicate suppression. (c) High idle radio power.

with suffusion - - i - -
without suppression []

I
200 250 300

a module in the ns-2 simulator (the diffusion code can be

downloaded from http://www.isi.edu/scadds/testbeds.html).

On top of this substrate, several applications (e.g., collabora-

tive detection, nested query, adaptive fidelity) are developed

in collaboration with researchers at BAE Systems, Cornell

University, and Pennsylvania State University. Details of our

platforms, applications, experiences, and how the attribute

system affects applications are available elsewhere [14].

Our generic diffusion substrate exports two application pro-

gramming interfaces (APIs) [6]: a network routing API and a

filter API. The former is invoked on sources and sinks, while

the latter enables in-network processing of events.

A. Network API

The network routing API is based on a publish/subscribe par-

adigm and was developed with D. Coffin and D. van Hook of

Lincoln Laboratories, Massachusetts Institute of Technology.

The interface supports two operations. Sinks can subscribe to

named events and sources canpublish events. The diffusion sub-

strate hides the details of how published data is delivered to

subscribers, namely, the routing algorithms we have described

in Section II. Events are sent and arrive asynchronously. When

events arrive at a node, they trigger callbacks to relevant appli-

cations (those that have subscribed with matching attributes).

In diffusion, data is named using a collection of attribute-

value pairs. A key feature of the network routing API is that it

defines a generic attribute class. Each attribute has several fields,

as follows:

• the key, which indicates the semantics of the attribute (lat-

itude, longitude, frequency);

• the operator, which describes how the attribute will

match when two attributes are compared [operators

include equality, other simple comparisons (inequality,

less than, greater than, etc.) and "attribute present"

(equals-anything)];

• the type, which indicates what algorithms to run when

matching attributes [we have currently implemented

32-bit integer, 32- and 64-bit floats, string, and blob

(uninterpreted) attributes];

• the value of the attribute (its data) and its length (if length

is not implicit from the type).

This approach has the advantage of standardizing the syntax

and structure of attributes and allowing applications to reuse

attribute handling and matching code.

B. Filter API

While the publish/subscribe API allows end-points to send

and receive data, in-network processing with the filter API is key

INTANAGONWlWAT et al.: DIRECTED DIFFUSION FOR WIRELESS SENSOR NETWORKING 15

to diffusion performance. Application-specific modules can in-

stall filters in the diffusion substrate to influence data as it moves

through the network. Each filter is specified using a list of at-

tributes to match incoming data. When a data event that matches

a filter is received, the substrate passes the event to the applica-

tion module. The module may perform some application-spe-

cific processing on the event; it may aggregate the data, generate

reinforcements, or even issue new subscriptions using the net-

work routing API. In case the event matches filters belonging to

more than one application module, a static priority ordering de-

termines which module is handed the event first. That module

may then decide to also allow other application modules cor-

responding to lower priority filters to handle the event, or may

choose not to do so.

VI. RELATED WORK

Distributed sensor networks have begun to receive attention

during the last few years. However, our work has been informed

and influenced by a variety of other research efforts, which we

now describe.

Distributed sensor networks are a specific instance of ubiqui-

tous computing as envisioned by Weiser [33]. Early ubiquitous

computing efforts, however, did not approach the issues of scal-

able node coordination, focusing more on issues in the design

and packaging of small, wireless devices. More recent efforts,

such as WINS [28] and Piconet [3] considered networking and

communication issues for small wireless devices. The WINS

project made significant progress in identifying feasible radio

designs for low-power environmental sensing. Their project has

focused also on low-level network synchronization necessary

for network self-assembly. Our directed-diffusion primitives

provide inter-node communication once network self-assembly

is complete. The Piconet project is more focused on enabling

home and office information discovery. Their work relies on

centralized infrastructures rather than self-assembly networks.

In addition, recent efforts, including SPIN [24] and LEACH

[15], have pointed out some of the advantages of diffusion-like

application-specificity in the context of sensor networks. Partic-

ularly, SPIN showed how embedding application semantics in

flooding can help achieve energy efficiency. LEACH and diffu-

sion explore some of these same ideas in the context of more so-

phisticated distributed sensing algorithms. Specifically, LEACH

can achieve energy savings by processing application-level data

at its cluster heads, whereas diffusion can process such data any-

where in the network.

Some of the inspiration for directed diffusion comes from bi-

ological metaphors, such as reaction-diffusion models for mor-

phogenesis [31] and models of ant-colony behavior [5].

Directed diffusion borrows heavily from the literature on ad

hoc unicast routing. Specifically, it is a close kin of the class

of several reactive routing protocols proposed in the literature

[20], [26], [27]. Of these, it is possibly closest to [26] in its

attempt to localize repair of node failures and its deemphasis

of optimal routes. The differences between ad hoc routing and

directed diffusion were discussed in Section II-E.

Directed diffusion is influenced by the design of multicast

routing protocols. In particular, propagation of reinforcements

and negative reinforcements are similar to joins and prunes in

shared-tree construction [10]. The initial interest dissemination

and gradient setup is similar to data-driven shortest path tree

setup [9]. The difference, of course, is that where Interuet

protocols rely on underlying unicast routing to aid tree setup,

diffusion cannot. Diffusion can, however, do in-network

processing of data (caching and aggregation) unlike existing

multicast routing schemes.

Finally, interest dissemination, data propagation, and caching

in directed diffusion are all similar to some of the ideas used

in adaptive Web caching [35]. In these schemes, caches self-

organize into a hierarchy of cooperative caches through which

requests for pages are effectively diffused.

VII. CONCLUSION

In this paper, we described the directed-diffusion paradigm

for designing distributed sensing algorithms. There are several

lessons we can draw from our preliminary evaluation of diffu-

sion. First, directed diffusion has the potential for significant

energy efficiency. Even with relatively unoptimized path se-

lection, it outperforms an idealized traditional data dissemina-

tion scheme like omniscient multicast. Second, diffusion mech-

anisms are stable under the range of network dynamics consid-

ered in this paper. Finally, for directed diffusion to achieve its

full potential, careful attention has to be paid to the design of

sensor radio MAC layers.

REFERENCES

[1] W. Adejie-Winoto, E. Schwartz, H. Balakrisshnan, and J. Lilley, "The

design and implementation of an intentional naming system," in Proc.

ACM Symp. Operating Systems Principles, Charleston, SC, 1999, pp.

186-201.
[2] S. Bajij, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Handley,

A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. McCanne, R. Rejaie,

P. Sharma, K. Varadhan, Y. Xu, H. Yu, and D. Zappala, "Improving sim-

ulation for network research," Univ. Southern California, Los Angeles,

Tech. Rep. 99-702b, 1999.
[3] F. Bennett, D. Clarke, J. Evans, A. Hopper, A. Jones, and D. Leask,

"Piconet: Embedded mobile networking," IEEE Pers. Commun., vol. 4,

pp. 8-15, Oct. 1997.
[4] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, "A

performance comparison of multi-hop wireless ad hoc network routing

protocols," in Proc. 4th Annu. ACM/IEEE Int. Conf. Mobile Computing

and Networking (Mobicom'98), Dallas, TX, 1998, pp. 85-97.

[5] G. Di Caro and M. Dofigo, "AntNet: A mobile agents approach to adap-

tive routing," IR1DIA, Universite' Libre de Bruxelles, Tech. Rep. 97-12,

1997.
[6] D. Coffin, D. Van Hook, R. Govindan, J. Heidemann, and E Silva, "Net-

work routing application programmer's interface (api) and walk through

8.0," Information Sciences Institute, University of Southern California,

Tech. Rep. 01-741, 2001.
[7] D.A. Coffin, D. J. Van Hook, S. M. McGarry, and S. R. Kolek, "Declar-

ative ad hoc sensor networking," in Proc. SPIE Integrated Command

Environments Conf., San Diego, CA, July 2000, pp. 109-120.
[8] "IEEE Computer Society LAN MAN Standards Committee. Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications," Inst. Electr. Electron. Eng., New York, Tech. Rep.

802.11-1997, 1997.
[9] S. Deefing, "Multicast routing in internetworks and extended lans," in

Proc. ACM SIGCOMM, Aug. 1988, pp. 55-64.
[10] S.E. Deefing, D. Estnn, D. Farinacci, V. Jacobson, C. Liu, and L. Wei,

"The PIM architecture for wide-area multicast routing," IEEE Trans.

Networking, vol. 4, pp. 153-162, Apr. 1996.
[11[J. Elson and D. Estnn, "Random, ephemeral transaction identifiers in

dynamic sensor networks," in Ptoc. Int. Conf. Distributed Computing

Systems, Phoenix, AZ, Apr. 2001.

16 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

[12] - - , "Time synchronization for wireless sensor networks," in Proc.

2001 Int. Parallel and Distributed Processing Symp. (IPDPS), Workshop

Parallel and Distributed Computing Issues in Wireless and Mobile Com-

puting, San Francisco, CA, Apr. 2001.

[13] (1999) Bluetooth V1.0B Specification. The Bluetooth Special Interest

Group. [Online]. Available: http://www.bluetooth.com,

[14] J. Heidemann, E Silva, C. Intanagonwiwat, R. Govindan, D. Estnn, and

D. Ganesan, "Building efficient wireless sensor networks with low-level

naming," in Proc. ACM Syrup. Operating Systems Principles, Banff,

Canada, Oct. 2001, pp. 146-159.

[15] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-

efficient communication protocol for wireless microsensor networks,"

in Proc. Hawaii Int. Conf. System Sciences, Maul, HI, Jan. 2000.

[16] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, "Impact

of network density on data aggregation in wireless sensor networks," in

Proc. Int. Conf. Distributed Computing Systems, Vienna, Austria, July
2002.

[17] C. Intanagonwiwat, R. Govindan, and D. Estrin, "Directed diffusion:

A scalable and robust communication paradigm for sensor networks,"

in Proc. 6th Annu. ACM/IEEE Int. Conf. Mobile Computing and Net-

working (Mobicom'2000), Boston, MA, Aug. 2000, pp. 56-67.

[18] - - , "Directed diffusion: A scalable and robust communication par-

adigm for sensor networks," Univ. Southern California, Los Angeles,
Tech. Rep. 00-732, 2000.

[19] V. Jacobson, "Compressing TCP/IP headers for low-speed serial links,"

Network Working Group, RFC 1144, 1990.

[20] D. B. Johnson and D. A. Maltz, "Dynamic source routing in ad hoc

wireless networks," in Mobile Computing, T. Imielinksi and H. Korth,

Eds. Reading, MA: Kluwer, 1996, pp. 153-181.

[21] W. J. Kaiser, "WINS NG 1.0 transceiver power dissipation specifica-
tions," Sensoria Corporation, San Diego, CA.

[22] E. D. Kaplan, Understanding GPS: Principles and Applications, E. D.

Kaplan, Ed. Norwood, MA: Artech House, 1996.

[23] Y.-B Ko and N. H. Vaidya, "Location-aided routing (LAR) in mobile ad

hoc networks," in Proc. 4th Annu. ACM/IEEE Int. Conf. Mobile Com-

puting and Networking (Mobicom'98), Dallas, TX, 1998, pp. 66-75.

[24] J. Kulik, W. Rabiner, and H. Balakrishnan, "Adaptive protocols for

information dissemination in wireless sensor networks," in Proc.

5th Annu. ACM/1EEE Int. Conf. Mobile Computing and Networking

(MobiCom'99), Seattle, WA, 1999, pp. 174-185.

[25] D.L. Mills, "Internet time synchronization: The network time protocol,"

in Global States and Time in Distributed Systems, Z. Yang and T. A.

Marsland, Eds. New York: IEEE Computer Soc. Press, 1994.

[26] V.D. Park and M. S. Corson, "A highly adaptive distributed routing al-

gorithm for mobile wireless networks," in Proc. IEEE INFOCOM, Apr.
1997, pp. 1405-1413.

[27] P. Charles, "Ad hoc on demand distance vector routing (AODV)," IETF,
draft-ietf-manet-aodv-00.txt, 1997.

[28] G. J. Pottle and W. J. Kaiser, "Embedding the internet: Wireless inte-

grated network sensors," Commun. ACM, vol. 43, no. 5, pp. 51-58, May
2000.

[29] P. Sharma, D. Estrin, S. Floyd, and V. Jacobson, "Scalable timers for soft

state protocols," in Proc. IEEE INFOCOM, Kobe, Japan, Apr. 1997, pp.
222-229.

[30] M. Stemm and R. H. Katz, "Measuring and reducing energy con-

sumption of network interfaces in hand-held devices," IEICE Trans.

Commun., vol. E80-B, no. 8, pp. 1125-1131, Aug. 1997.

[31] A. M. Turing, "The chemical basis of morphogenesis," Philosoph.

Trans. Royal Soc. London, vol. 237(B), pp. 37-72, Aug. 1952.

[32] L. Wang, A. Terzis, and L. Zhang, "A new proposal for RSVP refreshes,"

in Proc. lnt. Conf Network Protocols, Toronto, ON, Canada, Oct. 1999,
pp. 163-172.

[33] M. Weiser, "The computer for the 21st century," Sci. Amen, pp. 66-75,
Sept. 1991.

[34] Y. Yu, R. Govindan, and D. Estrin, "Geographical and energy aware

routing: A recursive data dissemination protocol for wireless sensor net-

works," Univ. California, Los Angeles, Tech. Rep. UCLA/CSD-TR-01-
0023, 2001.

[35] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V.

Jacobson, "Adaptive web caching: Toward a new global caching
architecture," in Comput. Networks ISDN Syst., vol. 30, Nov. 1998, pp.
2169-2177.

Chalermek Intanagonwiwat received the B.Eng.
degree in computer engineenng from the King
Mongkut's Institute of Technology at Ladkrabang

(KMITL), Bangkok, Thailand, and the M.S. and
Ph.D. degrees in computer science from the Univer-
sity of Southern California (USC), Los Angeles. His
Ph.D. dissertation was entitled "Directed diffusion:
A data-centric communication paradigm for wireless
sensor networks."

He is currently with Chulalongkorn University,
Bangkok, Thailand. His research interests include

neural networks and large-scale wireless networks of distributed embedded
systems.

Ramesh Govindan received the B.Tech. degree from
the Indian Institute of Technology, Madras, India, and

the M.S. and Ph.D. degrees from the University of
California at Berkeley.

He is an Associate Professor in the Department
of Computer Science, University of Southern Cali-
fornia, Los Angeles. His research interests include
Internet routing and topology and sensor networks.

Deborah Estrln received the Ph.D. degree in

computer science from the Massachusetts Institute
of Technology, Cambridge, in 1985.

She is a Professor of computer science with the
University of California at Los Angeles and Director
of the Center for Embedded Networked Sensing

(CENS), a National Science Foundation Science and
Technology Center. She has served on numerous

program committees and editorial boards, including
SIGCOMM, Mobicom, SOSP and the IEEE/ACM
TRANSACTIONS ON NETWORKING.

Dr. Estfin is a Fellow of the Association for Computing Machinery and of the
American Association for the Advancement of Science.

John Heidemann (M'96) received the B.S. degree
from the University of Nebraska-Lincoln and the

M.S. and Ph.D. degrees from the University of
California, Los Angeles.

He is a Project Leader with the Information
Sciences Institute (ISI), University of Southern
California (USC), Los Angeles, and a Research

Assistant Professor with USC. At ISI, he investigates
networking protocols and simulation as part of the
SAMAN and CONSER projects and embedded

networking and sensor networking as part of the
SCADDS project.

Dr. Heidemann is a Member of the Association for Computing Machinery
and Usenix.

Fabio Silva (M'01) received the B.S. degree
in electrical engineering from the University of
Campinas, S~o Paulo, Brazil, in 1998 and the M.S.
degree in electrical engineering from the University
of Southern California (USC), Los Angeles, in 1999.

He joined the Computer Networks Division, In-
formation Sciences Institute, University of Southern

California, where he does research in scalable and
distributed systems. He is currently the developer and
maintainer of diffusion software. His research inter-
ests are in ad hoc power-efficient wireless communi-

cation protocols.

Dr. Silva has been a Member of the Association for Computing Machinery
since 1998.

