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Abstract--Advances in processor, memory, and radio tech- 

nology will enable small and cheap nodes capable of sensing, 

communication, and computation. Networks of such nodes can 

coordinate to perform distributed sensing of environmental phe- 

nomena. In this paper, we explore the directed-diffusion paradigm 

for such coordination. Directed diffusion is data-centric in that all 

communication is for named data. All nodes in a directed-diffu- 

sion-based network are application aware. This enables diffusion 

to achieve energy savings by selecting empirically good paths and 

by caching and processing data in-network (e.g., data aggrega- 

tion). We explore and evaluate the use of directed diffusion for 

a simple remote-surveillance sensor network analytically and 

experimentally. Our evaluation indicates that directed diffusion 

can achieve significant energy savings and can outperform ide- 

alized traditional schemes (e.g., omniscient multicast) under the 

investigated scenarios. 

Index Terms--Data aggregation, data-centric routing, dis- 

tributed sensing, in-network processing, wireless sensor networks. 

I. INTRODUCTION 

I 
N THE NEAR future, advances in processor, memory, and 

radio technology will enable small and cheap nodes capable 

of wireless communication and significant computation. The 

addition of sensing capability to such devices will make 

distributed microsensing--an activity in which a collection of 

nodes coordinate to achieve a larger sensing task--possible. 

Such technology can revolutionize information gathering 

and processing in many situations. Large scale, dynamically 

changing, and robust sensor networks can be deployed in 

inhospitable physical environments such as remote geographic 

regions or toxic urban locations. They will also enable low 

maintenance sensing in more benign, but less accessible, envi- 

ronments, such as large industrial plants and aircraft interiors. 

To motivate our research, consider this simplified model of 

how such a sensor network will work. One or more human op- 

erators pose, to any node in the network, questions of the form: 

"How many pedestrians do you observe in the geographical 

region X?" or "In what direction is that vehicle in region Y 
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moving?" These queries result in sensors within the specified 

region being tasked to start collecting information. Once 

individual nodes detect pedestrians or vehicle movements, they 

might collaborate with neighboring nodes to disambiguate 

pedestrian location or vehicle movement direction. One of these 

nodes might then report the result back to the human operator. 

Motivated by robustness, scaling, and energy-efficiency re- 

quirements, this paper examines a new data dissemination para- 

digm for such sensor networks. This paradigm, which we call 

directed diffusion, 1 is data-centric. Data generated by sensor 

nodes is named by attribute-value pairs. A node requests data 

by sending interests for named data. Data matching the interest 

is then "drawn" down toward that node. Intermediate nodes can 

cache, or transform data and may direct interests based on pre- 

viously cached data Section II. 

Using this communication paradigm, our example might be 

implemented as follows. The human operator's query would be 

transformed into an interest that is d i ~ s e d  (e.g., broadcasted, 

geographically routed) toward nodes in regions X or Y. When 

a node in that region receives an interest, it activates its sensors 

which begin collecting information about pedestrians. When the 

sensors report the presence of pedestrians, this information re- 

turns along the reverse path of interest propagation. Interme- 

diate nodes might aggregate the data, e.g., more accurately pin- 

point the pedestrian's location by combining reports from sev- 

eral sensors. An important feature of directed diffusion is that 

interest and data propagation and aggregation are determined 

by localized interactions (message exchanges between neigh- 

bors or nodes within some vicinity). 

Directed diffusion is significantly different from IP-style 

communication where nodes are identified by their end-points 

and inter-node communication is layered on an end-to-end 

delivery service provided within the network. In this paper, 

we describe directed diffusion and illustrate one example of 

this paradigm for sensor query dissemination and processing. 

We show that, by using directed diffusion, one can realize 

robust multipath delivery, empirically adapt to a small subset 

of network paths, and achieve significant energy savings when 

intermediate nodes aggregate responses to queries (Section IV). 

We have also implemented directed diffusion on several small 

sensor platforms; we describe our implementation design and 

our experiences in Section V. 

In this paper, we outline the directed-diffusion paradigm, ex- 

plain its key features, and describe in some detail a particular ex- 

ample of the directed-diffusion paradigm for a vehicle tracking 

sensor network (Section II). We specify what local rules achieve 

the desired behavior of interest and data propagation. In doing 

1Van Jacobson suggested the concept of "diffusing" attribute-named data for 

this class of applications that later led to the design of directed diffusion. 

1063-6692/03517.00 © 2003 IEEE 



INTANAGONWIWAT et al.: DIRECTED DIFFUSION FOR WIRELESS SENSOR NETWORKING 

ffYgl3t ~ Ey~nt 

/ 
Sourcl @ 

Fig. 1. 

ell ", i;O e 

(a) (b) (c) 

Simplified schematic for directed diffusion. (a) Interest propagation. (b) Initial gradients setup. (c) Data delivery along reinforced path. 

so, we show how the directed-diffusion paradigm differs from 

traditional networking and qualitatively argue that this paradigm 

offers scaling, robustness and energy efficiency benefits. We 

quantify some of  these benefits via detailed packet-level sim- 

ulation of directed diffusion (Section IV). 

II. DIRECTED DIFFUSION 

Directed diffusion consists of several elements: interests, data 

messages, gradients, and reinforcements. An interest message is 

a query or an interrogation which specifies what a user wants. 

Each interest contains a description of a sensing task that is sup- 

ported by a sensor network for acquiring data. Typically, data 

in sensor networks is the collected or processed information of  

a physical phenomenon. Such data can be an event, which is a 

short description of  the sensed phenomenon. In directed diffu- 

sion, data is named using attribute-value pairs. A sensing task 

(or a subtask thereof) is disseminated throughout the sensor net- 

work as an interest for named data. This dissemination sets up 

gradients within the network designed to "draw" events (i.e., 

data matching the interest). Specifically, a gradient is direction 

state created in each node that receives an interest. The gradient 

direction is set toward the neighboring node from which the in- 

terest is received. Events start flowing toward the originators of  

interests along multiple gradient paths. The sensor network re- 

inforces one or a small number of  these paths. Fig. 1 illustrates 

these elements. 

In this section, we describe these elements of diffusion with 

specific reference to a particular kind of sensor network---one 

that supports a location tracking task. As we shall see, several 

design choices present themselves even in the context of this 

specific instantiation of  diffusion. We elaborate on these design 

choices while describing the design of our sensor network. Our 

initial evaluation (Section IV) focuses only a subset of  these de- 

sign choices. Different design choices result in different variants 

of diffusion (see also [16] for another variant). Moreover, even 

though we describe this diffusion variant for rate-based applica- 

tions, diffusion also works for event-triggered applications. 

A. Naming 

In directed diffusion, task descriptions are named by, for ex- 

ample, a list of  attribute-value pairs that describe a task. A ve- 

hicle-tracking task might be described as (this is a simplified 

description; see Section II-B for more details) 

type : wheeled vehicle // detect vehicle loca- 

tion 

interval : 20 ms // send events every 20 ms 

duration = i0 s // for the next i0 s 

rect : [-i00~i00,200~400] // from sensors within 

rectangle. 

For ease of  exposition, we choose the subregion represen- 

tation to be a rectangle defined on some coordinate system; in 

practice, this might be based on GPS coordinates. Intuitively, 

the task description specifies an interest for data matching the 

attributes. For this reason, such a task description is called an 

interest. The data sent in response to interests are also named 

using a similar naming scheme. Thus, for example, a sensor that 

detects a wheeled vehicle might generate the following data (see 

Section II-C for an explanation of  some of  these attributes): 

type =wheeled vehicle / /  type of vehicle seen 

interval = truck // instance of this type 

location: [125,220] // node location 

intensity= 0.6 // signal amplitude measure 

intensity=O.85 // confidence in the match 

timestamp= Ol : 20:40 // event generation time. 

Given a set of tasks supported by a sensor network, then, 

selecting a naming scheme is the first step in designing directed 

diffusion for the network. For our sensor network, we have 

chosen a simple attribute-value based interest and data naming 

scheme. In general, each attribute has an associated value 

range. Forexample  , the range of the t y p e  attribute is the set 

of codebook values representing mobile o b j e c t s  (vehicles, 

animal, humans). The value of  an attribute can be any subset of  

its range. In our example, the value of  the t y p e  attribute in the 

interest is that corresponding to wheeled vehicles. 

There are other choices for attribute value ranges (e.g., hier- 

archical) and other naming schemes (such as intentional names 

[ 1 ] ). To some extent, the choice of  naming scheme can affect 

the expressivity of tasks and may impact performance of  a dif- 

fusion algorithm. In this paper, our goal is to gain an initial un- 

derstanding of the diffusion paradigm. For this reason, the ex- 

ploration of  possible naming schemes is beyond the scope of  

this paper, but we have begun that exploration elsewhere (see 

Section V) [141. 

B. Interests and Gradients 

The named task description of  Section II-A constitutes an in- 

terest. An interest is usually injected into the network at some 

(possibly arbitrary) node in the network. We use the term sink 

to denote this node. 
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1) Interest Propagation: Given our choice of  naming 

scheme, we now describe how interests are diffused through the 

sensor network. Suppose that a task, with a specified t y p e  and 

r e c t ,  a d u r a t i o n  of  10 min and an i n t e r v a l  of  10 ms, is 

instantiated at a particular node in the network. The i n t e r v a l  

parameter specifies an event data rate; thus, in our example, 

the specified data rate is 100 events per second. This sink node 

records the task; the task state is purged from the node after the 

time indicated by the d u r a t i o n  attribute. 

For each active task, the sink periodically broadcasts an in- 

terest message to each of  its neighbors. (More efficient methods 

to send the interest will be discussed later.) This initial interest 

contains the specified r e c t  and d u r a t i o n  attributes, but con- 

tains a much larger i n t e r v a l  attribute. Intuitively, this initial 

interest may be thought of  as exploratory; it tries to determine 

if there indeed are any sensor nodes that detect the wheeled 

vehicle. To do this, the initial exploratory interest specifies a 

low data rate (in our example, one event per second). 2 In Sec- 

tion II-D, we describe how the desired data rate is achieved 

by reinforcement. Then, the initial interest takes the following 

form: 

type = wheeled vehicle 

interval : l s 

r e c t  : [-100,200,200,400] 

t i r a e s t a r a p = 0 1 : 2 0 : 4 0  / /  h h : m m : s s  

expiresAt = 01 : 30 : 40. 

Before we describe how interests are processed, we empha- 

size that the interest is soft state [19], [29], [32] that will be 

periodically refreshed by the sink. To do this, the sink simply 

resends the same interest with a monotonically increasing 

timestamp attribute. This is necessary because interests are 

not reliably transmitted throughout the network. The refresh 

rate is a protocol design parameter that trades off overhead for 

increased robustness to lost interests. 

Every node maintains an interest cache. Each item in the 

cache corresponds to a distinct interest. Two interests are dis- 

tinct, in our example, if their t y p e  attribute differs, or their r e c t  

attributes are (possibly partially) disjoint. Interest entries in the 

cache do not contain information about the sink, but just about 

the immediately previous hop. Thus, interest state scales with 

the number of  distinct active interests. Our definition of  dis- 

tinct interests also allows interest aggregation. Two interests/1 

and /2 ,  with identical types, completely overlapping r e c t  at- 

tributes, can, in some situations, be represented with a single 

interest entry. Other interest aggregation is a subject of  future 

research. 

An entry in the interest cache has several fields. A t ime  s t  amp 

field indicates the timestamp 3 of the last received matching in- 

2This is not the only  choice,  but represents a pe r fo rmance  tradeoff.  Since the 

locat ion of  the sources is not precisely known,  interests mus t  necessari ly be  

diffused over a broader  section o f  the sensor  ne twork  than that covered by  the 

potential sources.  As a result, i f  the sink had  chosen a higher  initial data  rate, a 

h igher  energy consumpt ion  migh t  have resulted f rom the wider  disseminat ion 

o f  sensor data. However ,  with a h igher  initial data rate, the t ime to achieve high-  

fidelity t racking is reduced.  

3This may  require t ime synchronizat ion a m o n g  nodes in the network.  How-  

ever, t ime can be synchronized using GPS [22], NTP [14], or using post-facto 
messag ing  [12]. 

Diffusion element I Design Choices 

• Flooding 
Interest Propagation • Constrained or directional flooding based on location 

• Directional propagation based on previously cached data 

• Reinforcement to single path delivery 
Data Propagation • Multipath delivery with selective quality along different paths 

• Multipath delivery with probabilistic forwarding 
• For robust data delivery in the face of node failure 

Data caching and agglegation • For coordinated sensing and data reduction 
• For directing interests 

• Rules for deciding when to reinforce 
Reinforcement • Rules for how many neighbors to reinforce 

• Negative reinforcement mechanisms and rules 

Fig. 2. Partial des ign space for  diffusion. 

terest. The interest entry also contains several gradient fields, 

up to one per neighbor. Each gradient contains a da t  a r a t  e field 

requested by the specified neighbor, derived from the i n t e r v a l  

attribute of  the interest. It also contains a duration field, derived 

from the timestamp and expiresAt attributes of  the interest 

and indicating the approximate lifetime of  the interest. This du- 

ration must be longer than the network delay. 

When a node receives an interest, it checks to see if the in- 

terest exists in the cache. If  no matching entry exists (where a 

match is determined by the definition of  distinct interests spec- 

ified above), the node creates an interest entry. The parameters 

of the interest entry are instantiated from the received interest. 

This entry has a single gradient toward the neighbor from which 

the interest was received, with the specified event data rate. In 

our example, a neighbor of  the sink will set up an interest entry 

with a gradient of  one event per second toward the sink. For this, 

it must be possible to distinguish individual neighbors. Any lo- 

cally unique neighbor identifier may be used for this purpose. 

Examples of  such identifiers include 802.11 MAC addresses [8], 

Bluetooth [13] cluster addresses, or locally unique ephemeral 

identifiers [ 11 ]. If  there exists an interest entry, but no gradient 

for the sender of  the interest, the node adds a gradient with 

the specified value. It also updates the entry's t i m e s t a m p  and 

d u r a t i o n  fields appropriately. Finally, if there exists both an 

entry and a gradient, the node simply updates the t i m e s t a m p  

and d u r a t  i on  fields. 

In Section II-C, we describe how gradients are used. When 

a gradient expires, it is removed from its interest entry. Not all 

gradients will expire at the same time. For example, if two dif- 

ferent sinks express indistinct interests with different expiration 

times, some node in the network may have an interest entry with 

different gradient expiration times. When all gradients for an 

interest entry have expired, the interest entry itself is removed 

from a cache. 

After receiving an interest, a node may decide to resend the 

interest to some subset of  its neighbors. To its neighbors, this 

interest appears to originate from the sending node, although 

it might have come from a distant sink. This is an example of  a 

local interaction. In this manner, interests diffuse throughout the 

network. Not all received interests are resent. A node may sup- 

press a received interest if it recently resent a matching interest. 

Generally speaking, there are several possible choices for 

neighbors (Fig. 2). The simplest alternative is to rebroadcast 

the interest to all neighbors. This is equivalent to flooding the 

interest throughout the network; in the absence of  information 
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Fig. 3. Illustrating different aspects of diffusion. (a) Gradient establishment. (b) Reinforcement. (c) Multiple sources. (d) Multiple sinks. (e) Repair. 

about which sensor nodes are likely to be able to satisfy the in- 

terest, this is the only choice. This is also the alternative that we 

simulate in Section IV. In our example sensor network, it may 

also be possible to perform geographic routing, using some of 

the techniques described in the literature [7], [23], [34]. This 

can limit the topological scope for interest diffusion, thereby 

resulting in energy savings. Finally, in an immobile sensor net- 

work, a node might use cached data (see Section II-C) to direct 

interests. For example, if in response to an earlier interest, a node 

heard from some neighbor A data sent by some sensor within the 

region specified by the r e c t  attribute, it can direct this interest 

to A, rather than broadcasting to all neighbors. 

2) Gradient Establishment: Fig. 3(a) shows the gradients 

established in the case where interests are flooded through a 

sensor field. Unlike the simplified description in Fig. l(b), no- 

tice that every pair of  neighboring nodes establishes a gradient 

toward each other. This is a crucial consequence of local interac- 

tions. When a node receives an interest from its neighbor, it has 

no way of  knowing whether that interest was in response to one 

it sent out earlier, or is an identical interest from another sink on 

the "other side" of  that neighbor. Such two-way gradients can 

cause a node to receive one copy of low data rate events from 

each of its neighbors. However, as we show later, this technique 

can enable fast recovery from failed paths or reinforcement of  

empirically better paths (Section II-D) and does not incur per- 

sistent loops (Section II-C). 

Note that for our sensor network, a gradient specifies both a 

data rate and a direction in which to send events. More generally, 

a gradient specifies a value and a direction. The directed-diffu- 

sion paradigm gives the designer the freedom to attach different 

semantics to gradient values. We have shown two examples of  

gradient usage. Fig. l(c) implicitly depicts binary valued gradi- 

ents. In our sensor networks, gradients have two values that de- 

termine event reporting rate. In other sensor networks, gradient 

values might be used to, for example, probabilistically forward 

data along different paths, achieving some measure of load bal- 

ancing (Fig. 2). 

In summary, interest propagation sets up state in the network 

(or parts thereof) to facilitate "pulling down" data toward the 

sink. The interest propagation rules are local and bear some 

resemblance to join propagation in some Internet multicast 

routing protocols [10]. One crucial difference is that join 

propagation can leverage unicast routing tables to dii'ect joins 

toward sources, whereas interest propagation cannot. 

In this section, we have described interest propagation rules 

for a particular type of  task. More generally, a sensor network 

may support many different task types. Interest propagation rules 

may be different for different task types. For example, a task type 

of  the form "Count the number of  distinct wheeled vehicles in 

rectangle R seen over the next T seconds" cannot leverage the 

event data rate as our example does. However, some elements of  

interest propagation are similar to both: the form of the cache 

entries, the interest redistribution rules, etc. In our implemen- 

tation (Section V), we have culled these similarities into a dif- 

fusion substrate at each node, so that sensor network designers 

can use a library of  interest propagation techniques (or, for that 

matter, rules discussed in the subsequent sections for data pro- 

cessing and reinforcement) for different task types. 

C. Data Propagation 

A sensor node that is within the specified r e c t  processes 

interests as described in the previous section. In addition, the 

node tasks its local sensors to begin collecting samples (to save 

power, sensors are off until tasked). In this paper, we do not dis- 

cuss the details of  target recognition algorithms. Briefly, these 

algorithms simply match sampled waveforms against a library 

of presampled stored waveforms. This is based on the observa- 

tion that a wheeled vehicle has a different acoustic or seismic 

footprint than, for example, a human being. The sampled wave- 

form may match the stored waveform to varying extents; the 

algorithms usually associate a degree of  confidence with the 

match. Furthermore, the intensity of the sampled waveform may 

roughly indicate distance of  the signal origin, though perhaps 

not direction. 

A sensor node that detects a target searches its interest cache 

for a matching interest entry. In this case, a matching entry is one 

whose rect encompasses the sensor location and the type of 

the entry matches the detected target type. When it finds one, it 

computes the highest requested event rate among all its outgoing 

gradients. The node tasks its sensor subsystem to generate event 

samples at this highest data rate. In our example, this data rate 

is initially one event per second (until reinforcement is applied; 

see Section II-D). The source then sends to each neighbor for 

whom it has a gradient an event description every second of the 

form 

type :wheeled vehicle // type of vehicle seen 

instance : truck // instance of this type 

location : [125,220]  // node location 

intensity: 0.6 // signal amplitude measure 

confidence= 0.85 // confidence in the match 

timestamp : 01 : 20:40 // local event generation 

time. 
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This data message is, in effect, unicast individually to the rel- 

evant neighbors. (The exact mechanism used is a function of the 

radio's medium-access control (MAC) layer and can have a sig- 

nificant impact on performance, as evaluated in Section IV-D). 

A node that receives a data message from its neighbors 

attempts to find a matching interest entry in its cache. The 

matching rule is as described in the previous paragraph. If no 

match exists, the data message is silently dropped. If a match 

exists, the node checks the data cache associated with the 

matching interest entry. This cache keeps track of recently seen 

data items. It has several potential uses, one of which is loop 

prevention. If a received data message has a matching data 

cache entry, the data message is silently dropped. Otherwise, 

the received message is added to the data cache and the data 

message is resent to the node's neighbors. 

By examining its data cache, a node can determine the data 

rate of received events. 4 To resend a received data message, a 

node needs to examine the matching interest entry's gradient 

list. If  all gradients have a data rate that is greater than or equal 

to the rate of incoming events, the node may simply send the re- 

ceived data message to the appropriate neighbors. However, if 

some gradients have a lower data rate than others (caused by se- 

lectively reinforcing paths; see Section II-D), then the node may 

downconvert to the appropriate gradient. For example, consider 

a node that has been receiving data at 100 events per second, 

but one of its gradients (e.g., set up by a second sink originating 

an indistinct task with a larger i n t e r v a l )  is at 50 events per 

second. In this case, the node may only transmit every alternate 

event toward the corresponding neighbor. Alternately, it might 

interpolate two successive events in an application-specific way 

(in our example, it might choose the sample with the higher con- 

fidence match). 

Loop prevention and downconversion illustrate the power of 

embedding application semantics in all nodes (Fig. 2). Although 

this design is not pertinent to traditional networks, it is feasible 

with application-specific sensor networks. Indeed, as we show 

in Section IV-D, it can significantly improve network perfor- 

mance. 

D. Reinforcement for Path Establishment and Truncation 

In the scheme we have described so far, the sink initially 

and repeatedly diffuses an interest for a low-rate event notifi- 

cation. We call these exploratory events, since they are intended 

for path setup and repair. We call the gradients set up for ex- 

ploratory events exploratory gradients. Once a source detects a 

matching target, it sends exploratory events, possibly along mul- 

tiple paths, toward the sink. After the sink starts receiving these 

exploratory events, it reinforces one particular neighbor in order 

to "draw down" real data (i.e., events at a higher data rate that 

allow high quality tracking of targets). We call the gradients set 

up for receiving high-quality tracking events data gradients. 

1) Path Establishment Using Positive Reinforcement: In 

general, this novel feature of directed diffusion is achieved 

by data driven local rules. One example of such a rule is to 

reinforce any neighbor from which a node receives a previously 

4In our simulations in Section II-D, as a simplification, we include the data 

rate in the event descriptions. 

unseen event. To reinforce this neighbor, the sink resends the 

original interest message but with a smaller i n t e r v a l  (higher 

data rate), as follows: 

type ---- wheeled vehicles 

interval = 10 ms 

rect ---- [-100, 200,200,400] 

timestamp ~- 01 : 22 : 35 

expiresAt ~- 01 : 30 : 40. 

When the neighboring node receives this interest, it notices 

that it already has a gradient toward this neighbor. Furthermore, 

it notices that the sender's interest specifies a higher data rate 

than before. If this new data rate is also higher than that of 

any existing gradient (intuitively, if the "outflow" from this 

node has increased), the node must also reinforce at least one 

neighbor. The node uses its data cache for this purpose. Again, 

the same local rule choices apply. For example, this node might 

choose that neighbor from whom it first received the latest 

event matching the interest. Alternatively, it might choose all 

neighbors from which new events were recently received. This 

implies that we reinforce that neighbor only if it is sending 

exploratory events. Obviously, we do not need to reinforce 

neighbors that are already sending traffic at the higher data 

rate. This is the alternative we evaluate in Section IV. Through 

this sequence of local interactions, a path is established from 

source to sink transmission for data. 

The local rule we described above, then, selects an empiri- 

cally low-delay path [Fig. 3(b) shows the path that can result 

when the sink reinforces the path]. It is very reactive to changes 

in path quality; whenever one path delivers an event faster than 

others, the sink attempts to use this path to draw down high 

quality data. However, because it is triggered by receiving one 

new event, this could be wasteful of resources. More sophisti- 

cated local rules are possible (Fig. 2), including choosing that 

neighbor from which the most events have been received, or that 

neighbor which consistently sends events before other neigh- 

bors. These choices trade off reactivity for increased stability. 

2) Path Establishment for Multiple Sources and Sinks: In 

describing reinforcement so far, we may have appeared to im- 

plicitly describe a single-source scenario. In fact, the rules we 

have described work with multiple sources. To see this, con- 

sider Fig. 3(c). Assume initially that all initial gradients are ex- 

ploratory. According to this topology, data from both sources 

reaches the sink via both of its neighbors C and D. If one of 

the neighbors, say, C has consistently lower delay, our rules 

will only reinforce the path through C (this is depicted in the 

figure). However, if the sink hears B's  events earlier via D, but 

A's  events 5 earlier via C ,  the sink will attempt to draw down 

high-quality data streams from both neighbors (not shown). In 

this case, the sink gets both sources' data from both neighbors, 

a potential source of energy inefficiency. Such problem can be 

avoided with some added complexity [16]. 

Similarly, if two sinks express identical interests, our interest 

propagation, gradient establishment, and reinforcement rules 

5Note that in directed diffusion, the sink would not be able to associate a 

source with an event. Thus, the phrase "A ' s  events" is somewhat misleading. 

What  we really mean is that data generated by A that is distinguishable in content 

from data generated by B. 



INTANAGONWIWAT et al.: DIRECTED DIFFUSION FOR WIRELESS SENSOR NETWORKING 7 

Fig. 4. 

Evln~t 

t 

' ~urce Source 

_ ® 
A 

Sink 

D E 

/ SinkSourcel Siokl Slnk2 

B C 
A B C 

(a) (b) (c) 

Negative reinforcement for path truncation and loop removal. (a) Multiple paths. (b) Removable loop. (c) Unremovable loop. 

Source 2 

work correctly. Without loss of  generality, assume that sink Y 

in Fig. 3(d) has already reinforced a high-quality path to the 

source. Note, however, that other nodes continue to receive 

exploratory events. When a human operator tasks the network 

at sink X with an identical interest, X can use the reinforcement 

rules to achieve the path shown. To determine the empirically 

best path, X need not wait for data--rather, it can use its data 

cache to immediately draw down high-quality data toward 

itself. 

3) Local Repair for Failed Paths: So far, we have described 

situations in which reinforcement is triggered by a sink. How- 

ever, in directed diffusion, intermediate nodes on a previously 

reinforced path can apply the reinforcement rules. This is useful 

to enable local repair of failed or degraded paths. Causes for 

failure or degradation include node energy depletion and en- 

vironmental factors affecting communication (e.g., obstacles). 

Consider Fig. 3(e), in which the quality of  the link between the 

source and node C degrades and events are frequently corrupted. 

When C detects this degradation--either by noticing that the 

event reporting rate from its upstream neighbor (the source) is 

now lower, or by realizing that other neighbors have been trans- 

mitting previously unseen location estimates--it  can apply the 

reinforcement rules to discover the path shown in the figure. 

Eventually, C negatively reinforces the direct link to the source 

(not shown in the figure). Our description so far has glossed over 

the fact that a straightforward application of reinforcement rules 

will cause all nodes downstream of the lossy link to also initiate 

reinforcement procedures. This will eventually lead to the dis- 

covery of one empirically good path, but may result in wasted 

resources. One way to avoid this is for C to interpolate location 

estimates from the events that it receives so that downstream 

nodes still perceive high-quality tracking. 

4) Path Truncation Using Negative Reinforcement: The al- 

gorithm described in Section II-D1 can result in more than one 

path being reinforced. For example, in Fig. 4(a), if the sink rein- 

forces neighbor A, but then receives a new event from neighbor 

B, it will reinforce the path through B.6 If the path through B is 

consistently better (i.e., B sends events before A does), we need 

a mechanism to negatively reinforce the path through A. 

One mechanism for negative reinforcement is soft state, i.e., 

to time out all data gradients in the network unless they are ex- 

plicitly reinforced. With this approach, the sink would periodi- 

cally reinforce neighbor B and cease reinforcing neighbor A. All 

gradients along the path through A would eventually degrade 

6This path may or may not be completely disjoint from the path through 
neighbor A. 

to being exploratory gradients. Another approach, one that we 

evaluate in this paper, is to explicitly degrade the path through 

A by sending a negative reinforcement message to A .  In this 

rate-based diffusion, the negative reinforcement is the interest 

with the lower data rate. When A receives this interest, it de- 

grades its gradient toward the sink. Furthermore, if all its gradi- 

ents are now exploratory, A negatively reinforces those neigh- 

bors that have been sending data to it (as opposed to exploratory 

events). 7 This sequence of  local interactions ensures that the 

path through A is degraded rapidly, but at the cost of  increased 

resource utilization. 

To complete our description of  negative reinforcement, we 

need to specify what local rule a node uses in order to decide 

whether to negatively reinforce a neighbor or not. Note that this 

rule is orthogonal to the choice of mechanism for negative rein- 

forcement. One plausible choice for such a rule is to negatively 

reinforce that neighbor from which no new events have been re- 

ceived (i.e., other neighbors have consistently sent events before 

this neighbor) within a window of N events or time T. The local 

rule we evaluate in Section IV is based on a time window of T, 

chosen to be 2 s in our simulations. Such a rule is a bit conserva- 

tive and energ3/inefficient. For example, even if one event in ten 

was received first from neighbor A, the sink will not negatively 

reinforce that neighbor. Other variants include negatively rein- 

forcing that neighbor from which fewer new events have been 

received. 

5) Loop Removal Using Negative Reinforcement: In addi- 

tion to suppressing high-delay or lossy paths, our local rule for 

negative reinforcement is also used for loop removal because the 

looping paths never deliver events first 8 [Fig. 4(b)]. Although 

the looping message will be immediately suppressed using a 

message cache, in general, we would still benefit from trun- 

cating the looping paths for resource savings. However, such 

loop removal is not always appropriate, specifically for some 

shared high-rate gradient maps with multiple sources and sinks. 

For example [Fig. 4(c)], if both sources send distinguishable 

events, the gradient B - C  and C - B  should not be truncated be- 

cause each of them is necessary for delivering events for a par- 

7This local rule works even i f  the path through A and the path through B are 

partially joint. The joint links will not be negatively reinforced unless both paths 
are negatively reinforced. 

8Given that only neighbors that sent the exploratory event first are reinforced, 
one may expect that the looping paths would never be reinforced (particularly for 
single-source-single-sink scenarios). However, the reinforced paths in a given 
round of exploratory events may differ from those in the previous rounds. Al- 
though no looping path is reinforced, a union of reinforced paths from multiple 
rounds may contain loops. 
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ticular source-sink pair. Although such gradients may deliver 

some looping events, they also consistently deliver new events. 

With our conservative rule for negative reinforcement, those 

gradients will not be negatively reinforced. 

Furthermore, even without loops, it is still reasonable to keep 

our negative reinforcement rule conservative so that useful paths 

will not be truncated. For example [Fig. 3(c)], both sources may 

consistently send distinguishable events but they may also send 

identical events once in a while. Although originating from dif- 

ferent sources, the identical events are considered duplicates for 

diffusion. 9 The path from one of  the sources will be truncated 

if the negative reinforcement rule is too aggressive against du- 

plicates. Conversely, given our conservative rule, no source will 

be negatively reinforced. 

E. Discussion 

In introducing the various elements of directed diffusion, we 

also implicitly described a particular usage--interests set up 

gradients drawing down data. The directed-diffusion paradigm 

itself does not limit the designer to this particular usage. Other 

usages are also possible, such as the one in which nodes may 

propagate data in the absence of  interests, implicitly setting up 

gradients when doing so. This is useful, for example, to spon- 

taneously propagate an important event to some section of the 

sensor field. A sensor node can use this to warn other sensor 

nodes of  impending activity. Moreover, other design choices for 

each element of  diffusion are also possible (Fig. 2). 

Our description points out several key features of  diffusion 

and how it differs from traditional networking. First, diffusion 

is data-centfic; all communication in a diffusion-based sensor 

network uses interests to specify named data. Second, all 

communication in diffusion is neighbor-to-neighbor, unlike 

the end-to-end communication in traditional data networks. In 

other words, every node is an "end" in a sensor network. In the 

sense, there are no "routers" in a sensor network. Each sensor 

node can interpret data and interest messages. This design 

choice is justified by the task specificity of sensor networks. 

Sensor networks are not general-purpose communication net- 

works. Third, sensor nodes do not need to have globally unique 

identifiers or globally unique addresses. Nodes, however, do 

need to distinguish among neighbors. Finally, in an IP-based 

sensor network, for example, sensor data collection and 

processing might be performed by a collection of  specialized 

servers which may, in general, be far removed from the sensed 

phenomena. In our sensor network, because every node can 

cache, aggregate, and more generally, process messages, it is 

generally desirable to perform coordinated sensing close to the 

sensed phenomena. Diffusion is clearly related to traditional 

network data-routing algorithms. In some sense, it is a reactive 

routing technique, since "routes" are established on demand. 

However, it differs from other ad hoc reactive routing tech- 

niques in several ways (see also Section VI). First, no attempt 

9In diffusion, events are independent from their sources (i.e., a node would 
not be able to associate a source with an event). The current instantiation of 
diffusion maintains only the high-rate paths along which useful (new) data are 
consistently sent, regardless of the sources. Thus, generally, we do not guarantee 
that there will be at least one high-rate path from every source to every sink (e.g., 
when some of the sources are not generating useful data). 

is made to find one loop-free path between source and sink 

before data transmission commences. Instead, constrained or 

directional flooding is used to set up a multiplicity of  paths and 

data messages are initially sent redundantly along these paths. 

Second, soon thereafter, reinforcement attempts to reduce this 

multiplicity of  paths to a small number, based on empirically 

observed path performance. Finally, a message cache is used 

to perform loop avoidance. The interest and gradient setup 

mechanisms themselves do not guarantee loop-free paths 

between source and sink. 

Why this peculiar choice of  design? At the outset of  this re- 

search, we consciously chose to explore path setup algorithms 

that establish network paths using strictly local (neighbor-to- 

neighbor) communication. The intuition behind this choice is 

the observation that physical systems (e.g., ant colonies [5]) that 

build up transmission paths using such communication scale 

well and are extraordinarily robust (see also Section VI). How- 

ever, using strictly local communication implies that path setup 

cannot use global topology metrics; local communication im- 

plies that, as far as a node knows, the data that it received from a 

neighbor came from that neighbor.I° This can be energy efficient 

in highly dynamic networks when changes in topology need not 

be propagated across the network. Of course, the resulting com- 

munication paths may be suboptimal. However, the energy in- 

efficiency due to path suboptimality can be countered by care- 

fully designed in-network aggregation techniques. Overall, we 

believe that this approach trades off some energy efficiency for 

increased robustness and scale. 

Finally, it might appear that the particular instantiation that 

we chose, location tracking, has limited applicability. We be- 

lieve, however, that such location tracking captures many of  the 

essential features of a large class of  remote surveillance sensor 

networks. We emphasize that, even though we have discussed 

our tracking network in some detail, much experimentation and 

evaluation of  the various mechanisms is necessary before we 

fully understand the robustness, scale, and performance impli- 

cations of diffusion in general and some of  our mechanisms in 

particular. The next two sections take initial steps in this direc- 

tion. 

III. ANALYTIC EVALUATION 

In this section, we present an analytic evaluation of  the 

data-delivery cost for directed diffusion and two idealized 

schemes: omniscient multicast and flooding. This analysis 

serves to sanity check the intuition behind directed diffusion 

and highlights some of  the differences between diffusion and 

the other approaches. 

For analytic tractability, we analyze these three schemes in 

a very simple idealized setting. We assume a square grid con- 

sisting of  N nodes. In this grid, node transmission ranges are 

such that each node can communicate with exactly eight neigh- 

boring nodes on the grid. Fig. 5 shows links between pairs of  

nodes that can communicate with each other. All n sources are 

placed along nodes on the left edge of  the grid, whereas all ra 

sinks are placed along the fight edge. The first source is at the 

leThe location information in a data message might reveal otherwise, but that 
information still does not contain topology metrics. 
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< Square root of N = 5 nodes > 

Fig. 5. Example of square-grid topology. 

center of  the left border. The ith source is dn Li/2J hops above (if 

i is even) or below (if i is odd) the first source. This placement 

scheme is also used for sinks except that the distance between 

two adjacent sinks is dm hops rather than dn hops. Given that 

sources and sinks are vertically placed only, x / ~  cannot be less 

than max(ndn,  mdm). 

A. Flooding 

In the flooding scheme, sources flood all events to every node 

in the network. Flooding is a watermark for directed diffusion; 

if the latter does not perform better than flooding does, it cannot 

be considered viable for sensor networks. 

In this analytic evaluation, our measure of  performance is the 

total cost of transmission and reception of one event from each 

source to all the sinks. We define cost as one unit for message 

transmission and one unit for message reception. These assump- 

tions are clearly idealized in two ways. Transmission and recep- 

tion costs may not be identical and there might be other metrics 

of interest. We consider more realistic measures with simulation 

in Section IV. 

By this measure, the cost of  flooding, denoted by 

C f ( N~ n, m, dn, din), or simply C f , is given by 

Cy =nN + 2n ( 2 ( x / N  - 1 ) x / ~  + 2 (x /N - 1) 2) 

=nN + 4 n ( v / N  - 1) (2v/N - 1). (1) 

The transmission cost for flooding n events (one event from 

each source) is nN because each node sends only one MAC 

broadcast per event. Conversely, each node can receive the same 

event from all neighbors. Thus, the reception cost for those n 

events is determined by 2n times the number of  links in the 

network (4n (v /N  - 1) (2v/N - 1)). The data-delivery cost for 

flooding is O(nN), which is asymptotically higher than the cost 

of other schemes (see Sections III-B and III-C). 

B. Omniscient Multicast 

In the omniscient multicast scheme, each source transmits 

its events along a shortest path multicast tree to all sinks. In 

our analysis, as well as in the simulations described in Sec- 

tion IV, we do not account for the cost of  tree construction. 

Omniscient multicast instead indicates the best possible perfor- 

mance achievable in an IP-based sensor network without con- 

sidering overhead. We use this scheme to give the reader some 

intuition for how the choice of in-network processing mecha- 

nism effects performance. 

For omniscient multicast, the data-delivery cost is determined 

by twice the number of links on its source-specific shortest 

path trees. However, even in this simple grid topology, there 

are several shortest paths for each source-sink pair. We choose 

the shortest path using the following simple deterministic rule. 

From a sink to a source, a diagonal link is always the next hop 

as long as it leads to a shortest path. Otherwise, a horizontal 

link is selected. This path-selection rule is repeated until the 

source is reached. Thus, no shortest path includes vertical links. 

For example, if we denote a shortest path tree rooted at source 

j by Tj, then the number of  links on T1 has two components: 

the number of horizontal links (x /N - 1) and diagonal links 

(dm [m/2J (km/2J + 1) - d m  Lm/2J ((m - 1)mod 2)). Other 

choices could result in a different cost, since the number of  

shared links on the tree could be different. 

The cost of omniscient multicast Co is the sum of the costs 

of  n trees, one rooted at each source. If  we denote by C(Tj) the 

cost to transmit an event from source j ,  it turns out that we can 

express this cost in terms of T1 as C(Tj) = C(T1) + C(Tj - 

T1) - C(T1 - Tj). C(Tj - Tk) is interpreted as the cost of  

transmission and reception along the tree formed by removing, 

from Tj, those links that are common to Tj and Tk. Furthermore, 

for ease of exposition, C(Tj) can be expressed as the sum of two 

costs: the cost of transmission and reception along the horizontal 

links H(Tj) and the analogous cost along the diagonal links 

D(Tj). 

We can then write Co as 

(2) 
where 

(3) 

D ( Tj - T1) = 2 { [ m + (j m°d 

+ min(L[j/2Jd~/dmJ'[m-(jmod2)/2J)(dn~ l~ j -- ldm) } 

(4) 

L~-(J mod 2)/2J 

l=1  

(5) 

Asymptotically, the data-delivery cost of omniscient multi- 

cast Co is O(nx/~) for m << x /~ .  

C. Directed Diffusion 

The analysis of  diffusion proceeds along the same lines as that 

of omniscient multicast. To simplify the analysis, we assume 

that the tree that diffusion's localized algorithms construct is 
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the "union" of the shortest path tree rooted at each source. This 

assumption is approximately valid when the network operates 

at low-load levels. Furthermore, of the many available shortest 

paths, diffusion chooses one according to the following rule: 

from a sink to a source, a diagonal link is always the next hop 

as long as it is along the shortest path to a source; otherwise, a 

horizontal link is selected. This rule is the same one we used for 

omniscient multicast. 

Despite using the same path-selection scheme, the cost of dif- 

fusion Cd differs from that of omniscient multicast, primarily 

because of application-level data processing. Specifically, if all 

sources send identical target location estimates, then, given that 

diffusion can perform application-level duplicate suppression, 

the data-delivery cost of diffusion is twice the number of links 

in the union of all shortest path trees rooted at the source. Hence 

Cd =C (UTi~n)  

+j=~z{ H (Tj - UT~-(j-1)) + D (Tj - UT~--(J-i)) } 

(6) 

where 

H(Tj - UTi-,(j-i)) = g (Tj) (7) 

D(Tj-UTi_(j_i))  : 2{ [ m +  ( 3 : ° d  2)] dn 

min( [ l j /2J  dn/d~], [m-- ( j  mod 2)/z] ) 

+ Z min@n,d~ t~J - ldm)} .  
l=l 

(8) 

Similar to Co, Cd is O(nx/N) for m << ~/~.  

D. Comparison 

The data-delivery cost of flooding Ci  is several orders 

of magnitude higher than that of onmiscient multicast Co. 
However, Co is still higher than the diffusion cost Ca, 

because D(Ti)  - D(Ti - Tj) > 0 and D(Tj - 7"1) _> 

D(Tj - UTi~(j_i)). To validate this reasoning, the data-de- 

livery cost (normalized by network size) for directed diffusion 

and omniscient multicast is plotted using various parameters 

(i.e.,N, m, and n). As the number of sources and sinks in- 

creases [Fig. 6(a) and (b)], the cost saving due to in-network 

processing (e.g., duplicate suppression) of diffusion becomes 

more evident (given that Cd increases at a lower rate than Co). 
Of particular interest is the plot of cost versus network size 

[Fig. 6(c)]. Since diffusion can suppress application-level dupli- 

cates, one would expect that Co is merely nCd. The main reason 

this does not hold is that our analysis somewhat conservatively 

estimates diffusion costs. In practice, diffusion would have neg- 

atively reinforced several of the links that our analysis includes. 

IV. SIMULATION 

In this section, we use packet-level simulation to explore, in 

some detail, the implications of some of our design choices. 

Such an examination complements and extends our analysis of 

Section III. This section describes our methodology, compares 

the performance of diffusion against some idealized schemes, 

then considers impact of network dynamics on simulation. 

A. Goals, Metrics, and Methodology 

We implemented our vehicle tracking instance of di- 

rected diffusion in the ns-2 [2] simulator (the current ns 
release with diffusion support can be downloaded from 

http://www.isi.edu/nsnam/ns). Our goals in conducting this 

evaluation study were fourfold: 1) verify and complement our 

analytic evaluation; 2) understand the impact of dynamics--  

such as node failures--on diffusion; 3) explore the influence 

of the radio MAC layer on diffusion performance; and 4) study 

the sensitivity of directed-diffusion performance to the choice 

of parameters. 

We choose three metrics to analyze the performance of di- 

rected diffusion and to compare it to other schemes: average dis- 

sipated energy, average delay, and distinct-event delivery ratio. 

Average dissipated energy measures the ratio of total dissi- 

pated energy per node in the network to the number of distinct 
events seen by sinks. This metric computes the average work 

done by a node in delivering useful tracking information to the 

sinks. The metric also indicates the overall lifetime of sensor 

nodes. Average delay measures the average one-way latency 

observed between transmitting an event and receiving it at each 

sink. This metric defines the temporal accuracy of the location 

estimates delivered by the sensor network. Distinct-event de- 
livery ratio is the ratio of the number of distinct events received 

to the number originally sent. A similar metric was used in ear- 

lier work to compare ad hoc routing schemes [4]. We study these 

metrics as a function of sensor network size. 

In order to study the performance of diffusion as a function of 

network size, we generate a variety of sensor fields of different 

sizes. In each of our experiments, we study five different sensor 

fields, ranging from 50 to 250 nodes in increments of 50 nodes. 

Our 50-node sensor field generated by randomly placing the 

nodes in a 160 x 160 m square. Each node has a radio range 

of 40 m. Other sizes are generated by scaling the square and 

keeping the radio range constant in order to approximately keep 
the average density of sensor nodes constant. We do this because 

the macroscopic connectivity of a sensor field is a function of the 

average density. If we had kept the sensor field area constant but 

increased network size, we might have observed performance 

effects not only due to the larger number of nodes but also due to 

increased connectivity. Our methodology factors out the latter, 

allowing us to study the impact of network size alone on some 

of our mechanisms. 

The ns-2 simulator implements a 1.6 Mb/s 802.11 MAC layer. 

Our simulations use a modified 802.11 MAC layer. To more 

closely mimic realistic sensor network radios [21], we altered 

the ns-2 radio energy model such that the idle-time power dis- 

sipation was about 35 mW, or nearly 10% of its receive power 

dissipation (395 roW) and about 5% of its transmit power dis- 

sipation (660 mW). This MAC layer is not completely satisfac- 

tory, since energy efficiency provides a compelling reasons for 

selecting a time-division multiple-access (TDMA)-style MAC 

for sensor networks rather than one using contention-based pro- 

tocols [28]. Briefly, these reasons have to do with energy con- 
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Fig. 6. Impact of various parameters on directed diffusion and omniscient multicast. (a) Impact of the number of sinks. (b) Impact of the number of sources. 
(c) Impact of network size. 

sumed by the radio during idle intervals; with a TDMA-style 

MAC, it is possible to put the radio in standby mode during 

such intervals. By contrast, an 802.11 radio consumes as much 

power when it is idle as when it receives transmissions. In Sec- 

tion IV-D, we analyze the impact of a MAC energy model in 

which listening for transmissions dissipates as much energy as 

receiving them. 

Finally, in most of our simulations, we use a fixed work- 

load which consists of five sources and five sinks. All sources 

are randomly selected from nodes in a 70 x 70 m square at the 

bottom left comer of  the sensor field. Sinks are uniformly scat- 

tered across the sensor field. Each source generates two events 

per second. The rate for exploratory events was chosen to be 

one event in 50 s. Events were modeled as 64-byte packets and 

interests as 36-byte packets. Interests were periodically gener- 

ated every 5 s and the interest duration was 15 s. We chose the 

window for negative reinforcement to be 2 s. These parameter 

choices were informed both by the particular sensor network 

under consideration (small event descriptions, sources within a 

geographic region) and by our desire to explore a regime of  the 

sensor network in a noncongested regime (to simplify our un- 

derstanding of  the results). Data points in each graph represent 

the mean of  ten scenarios with 95% confidence intervals. 

B. Comparative Evaluation 

Our first experiment compares diffusion to omniscient mul- 

ticast and the flooding scheme for data dissemination in net- 

works. Fig. 7(a) shows the average dissipated energy per packet 

as a function of network size. Omniscient multicast dissipates 

a little less than half as much energy per packet per node than 

flooding. It achieves such energy efficiency by delivering events 

along a single path from each source to every sink. Directed dif- 

fusion has noticeably better energy efficiency than omniscient 

multicast. For some sensor fields, its dissipated energy is only 

60% that of  omniscient multicast. As with omniscient multi- 

cast, it also achieves significant energy savings by reducing the 

number of  paths over which redundant data is delivered. In ad- 

dition, diffusion benefits significantly from in-network aggre- 

gation. In our experiments, the sources deliver identical loca- 

tion estimates and intermediate nodes suppress duplicate loca- 

tion estimates. This corresponds to the situation where there is, 

for example, a single vehicle in the specified region. 

Why then, given that there are five sources, is diffusion 

(with negative reinforcement) not nearly five times more en- 

ergy efficient than omniscient multicast? First, both schemes 

expend comparable--and nonnegligible----energy listening 

for transmissions. Second, our choice of reinforcement and 
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Fig. 7. Directed diffusion compared to flooding and omniscient multicast. 

(a) Average dissipated energy. (b) Average delay. 

negative reinforcement results in directed diffusion frequently 

drawing down high-quality data along multiple paths, thereby 

expending more energy. Specifically, our reinforcement rule that 

reinforces a neighbor who sends a previously unseen event is 

very aggressive. Conversely, our negative reinforcement rule, 

which negatively reinforces neighbors who only consistently 

send duplicate (i.e., previously seen) events, is very conservative. 

Fig. 7(b) plots the average delay observed as a function of 

network size. Directed diffusion has a delay comparable to om- 

niscient multicast. This is encouraging. To a first approximation, 

in an uncongested sensor network and in the absence of obstruc- 

tions, the shortest path is also the lowest delay path. Thus, our re- 

inforcement rules seem to be finding the low-delay paths. How- 

ever, the delay experienced by flooding is almost an order of 

magnitude higher than other schemes. This is an artifact of the 

MAC layer: to avoid broadcast collisions, a randomly chosen 

delay is imposed on all MAC broadcasts. Flooding uses MAC 

broadcasts exclusively. Diffusion only uses such broadcasts to 

propagate the initial interests. On a sensor radio that employs a 

TDMA MAC-layer, we might expect flooding to exhibit a delay 

comparable to the other schemes. 

In summary, directed diffusion exhibits better energy dissi- 

pation than omniscient multicast and has good latency proper- 

ties. Finally, all three schemes incurred an event delivery ratio of 

nearly one (not shown), since this experiment ignored network 

dynamics and was congestion free. 

C. Impact of Dynamics 

To study the impact of dynamics on directed diffusion, we 

simulated node failures as follows. For each sensor field, we re- 

peatedly turned off a fixed fraction (10% or 20%) of nodes for 

30 s. These nodes were uniformly chosen from the sensor field, 

with the additional constraint that an equal fraction of nodes on 

the sources to sinks shortest path trees was also turned off for 

the same duration. The intent was to create node failures in the 

paths diffusion is most likely to use and to create random fail- 

ures elsewhere in the network. Furthermore, unlike the previous 

experiment, each source sends different location estimates (cor- 

responding to the situation in which each source "sees" different 

vehicles). We did this because the impact of dynamics is less 

evident when diffusion suppresses identical location estimates 

from other sources. We could also have studied the impact of 

dynamics on other protocols, but, because omniscient multicast 

is an idealized scheme that does not factor in the cost of route 

recomputation, it is not entirely clear that such a comparison is 

meaningful. 

Our dynamics experiment imposes fairly adverse conditions 

for a data-dissemination protocol. At any instant, 10% or 20% of 

the nodes in the network are unusable. Furthermore, we do not 

permit any "settling time" between node failures. Even so, dif- 

fusion is able to maintain reasonable, if not stellar, event delivery 

[Fig. 8(c)] while incurring less than 20% additional average delay 

[Fig. 8(b)]. Moreover, the average dissipated energy actually im- 

proves, in some cases, in the presence of node failures. This is a 

bit counterintuitive, since one would expect that directed diffu- 

sion would expend energy to find alternative paths. As it turns 

out, however, our negative reinforcement rules are conservative 

enough that several reinforced paths (high-quality paths) are kept 

alive in normal operation. Thus, at the levels of dynamics we sim- 

ulate, diffusion does not need to do extra work. The lower energy 

dissipation results from the failure of some high-quality paths. 

We take these results to indicate that the mechanisms in dif- 

fusion are relatively stable at the levels of dynamics we have 

explored. By this, we mean that diffusion does not, under dy- 

namics, incur remarkably higher energy dissipation or event de- 

livery delays. 

D. Impact of Data Aggregation and Negative Reinforcement 

To explain what contributes to directed diffusion's energy ef- 

ficiency, we now describe two separate experiments. In both 

of these experiments, we do not simulate node failures. First, 

we compute the energy efficiency of diffusion with and without 

aggregation. Recall from Section IV-B that in our simulations, 

we implement a simple aggregation strategy, in which a node 

suppresses identical data sent by different sources. As Fig. 9(b) 

shows, diffusion expends nearly five times as much energy, in 

smaller sensor fields, as when it can suppress duplicates. In 

larger sensor fields, the ratio is 3. Our conservative negative re- 

inforcement rule accounts for the difference in the performance 

of diffusion without suppression as a function of network size. 

With the same number of sources and sinks, the larger network 

has longer alternate paths. These alternate paths are truncated by 

negative reinforcement because they consistently deliver events 
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with higher latency. As a result, the larger network expends less 

energy without suppression. We believe that suppression also 

exhibits the same behavior, but the energy difference is rela- 

tively small. 

The second mechanism whose benefits we quantify is nega- 

tive reinforcement. This mechanism prunes off higher latency 

paths and can contribute significantly to energy savings. In this 

experiment, we selectively turn off negative reinforcement and 

compare the performance of directed diffusion with and without 

reinforcement. Intuitively, one would expect negative reinforce- 

ment to contribute significantly to energy savings. Indeed, as 

Fig. 9(a) shows, diffusion without negative reinforcement ex- 

pends nearly twice as much energy as when negative reinforce- 

ment is employed. This suggests that even our conservative neg- 

ative reinforcement rules prune off paths which deliver consis- 

tently higher latency. 

In the absence of negative reinforcement or suppression, dif- 

fusion delay increases by factors of  three to eight (the graphs 

are not included for lack of space). This is an artifact of  the 

802.11 MAC layer. In diffusion, data traffic is transmitted using 

MAC unicast. As more paths are used (in the absence of negative 

reinforcement), or more copies of  data are sent (without sup- 

pression), MAC-layer channel contention increases, resulting in 

backoffs and subsequent delays. 

E. Sensitivity Analysis 

Finally, we evaluate the sensitivity of  our comparisons (Sec- 

tion IV-B) to our choice of  energy model. Sensitivity of  diffu- 

sion to other factors (numbers of  sinks, size of  source region) is 

discussed in greater detail in [18]. 

In our comparisons, we selected radio power dissipation pa- 

rameters to more closely mimic realistic sensor radios [21]. We 

reran the comparisons of Section IV-B, but with power dissi- 

pation comparable to the AT&T Wavelan: 1.6-W transmission, 

1.2-W reception, and 1.15-W idle [30]. In this case, as Fig. 9(c) 

shows, the distinction between the schemes disappears. In this 

regime, we are better off flooding all events. This is because 

idle-time energy utilization completely dominates the perfor- 

mance of all schemes. This is the reason why sensor radios try 

very hard to minimize listening for transmissions. 

W. IMPLEMENTATION 

We have so far described directed diffusion using a specific 

application as an example. However, it is desirable to avoid 

reimplementing diffusion mechanisms for every new appli- 

cation. To this end, we have implemented a generic diffusion 

substrate and ported this code to multiple platforms including 

WINSng 2.0 nodes, USC/ISI PC/104 nodes, Motes, and as 
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a module in the ns-2 simulator (the diffusion code can be 

downloaded from http://www.isi.edu/scadds/testbeds.html). 

On top of this substrate, several applications (e.g., collabora- 

tive detection, nested query, adaptive fidelity) are developed 

in collaboration with researchers at BAE Systems, Cornell 

University, and Pennsylvania State University. Details of our 

platforms, applications, experiences, and how the attribute 

system affects applications are available elsewhere [14]. 

Our generic diffusion substrate exports two application pro- 

gramming interfaces (APIs) [6]: a network routing API and a 

filter API. The former is invoked on sources and sinks, while 

the latter enables in-network processing of events. 

A. Network API 

The network routing API is based on a publish/subscribe par- 

adigm and was developed with D. Coffin and D. van Hook of 

Lincoln Laboratories, Massachusetts Institute of Technology. 

The interface supports two operations. Sinks can subscribe to 

named events and sources canpublish events. The diffusion sub- 

strate hides the details of how published data is delivered to 

subscribers, namely, the routing algorithms we have described 

in Section II. Events are sent and arrive asynchronously. When 

events arrive at a node, they trigger callbacks to relevant appli- 

cations (those that have subscribed with matching attributes). 

In diffusion, data is named using a collection of attribute- 

value pairs. A key feature of the network routing API is that it 

defines a generic attribute class. Each attribute has several fields, 

as follows: 

• the key, which indicates the semantics of the attribute (lat- 

itude, longitude, frequency); 

• the operator, which describes how the attribute will 

match when two attributes are compared [operators 

include equality, other simple comparisons (inequality, 

less than, greater than, etc.) and "attribute present" 

(equals-anything)]; 

• the type, which indicates what algorithms to run when 

matching attributes [we have currently implemented 

32-bit integer, 32- and 64-bit floats, string, and blob 

(uninterpreted) attributes]; 

• the value of the attribute (its data) and its length (if length 

is not implicit from the type). 

This approach has the advantage of standardizing the syntax 

and structure of attributes and allowing applications to reuse 

attribute handling and matching code. 

B. Filter API 

While the publish/subscribe API allows end-points to send 

and receive data, in-network processing with the filter API is key 
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to diffusion performance. Application-specific modules can in- 

stall filters in the diffusion substrate to influence data as it moves 

through the network. Each filter is specified using a list of at- 

tributes to match incoming data. When a data event that matches 

a filter is received, the substrate passes the event to the applica- 

tion module. The module may perform some application-spe- 

cific processing on the event; it may aggregate the data, generate 

reinforcements, or even issue new subscriptions using the net- 

work routing API. In case the event matches filters belonging to 

more than one application module, a static priority ordering de- 

termines which module is handed the event first. That module 

may then decide to also allow other application modules cor- 

responding to lower priority filters to handle the event, or may 

choose not to do so. 

VI.  RELATED WORK 

Distributed sensor networks have begun to receive attention 

during the last few years. However, our work has been informed 

and influenced by a variety of other research efforts, which we 

now describe. 

Distributed sensor networks are a specific instance of ubiqui- 

tous computing as envisioned by Weiser [33]. Early ubiquitous 

computing efforts, however, did not approach the issues of scal- 

able node coordination, focusing more on issues in the design 

and packaging of small, wireless devices. More recent efforts, 

such as WINS [28] and Piconet [3] considered networking and 

communication issues for small wireless devices. The WINS 

project made significant progress in identifying feasible radio 

designs for low-power environmental sensing. Their project has 

focused also on low-level network synchronization necessary 

for network self-assembly. Our directed-diffusion primitives 

provide inter-node communication once network self-assembly 

is complete. The Piconet project is more focused on enabling 

home and office information discovery. Their work relies on 

centralized infrastructures rather than self-assembly networks. 

In addition, recent efforts, including SPIN [24] and LEACH 

[15], have pointed out some of the advantages of diffusion-like 

application-specificity in the context of sensor networks. Partic- 

ularly, SPIN showed how embedding application semantics in 

flooding can help achieve energy efficiency. LEACH and diffu- 

sion explore some of these same ideas in the context of more so- 

phisticated distributed sensing algorithms. Specifically, LEACH 

can achieve energy savings by processing application-level data 

at its cluster heads, whereas diffusion can process such data any- 

where in the network. 

Some of the inspiration for directed diffusion comes from bi- 

ological metaphors, such as reaction-diffusion models for mor- 

phogenesis [31] and models of ant-colony behavior [5]. 

Directed diffusion borrows heavily from the literature on ad 

hoc unicast routing. Specifically, it is a close kin of the class 

of several reactive routing protocols proposed in the literature 

[20], [26], [27]. Of these, it is possibly closest to [26] in its 

attempt to localize repair of node failures and its deemphasis 

of optimal routes. The differences between ad hoc routing and 

directed diffusion were discussed in Section II-E. 

Directed diffusion is influenced by the design of multicast 

routing protocols. In particular, propagation of reinforcements 

and negative reinforcements are similar to joins and prunes in 

shared-tree construction [10]. The initial interest dissemination 

and gradient setup is similar to data-driven shortest path tree 

setup [9]. The difference, of course, is that where Interuet 

protocols rely on underlying unicast routing to aid tree setup, 

diffusion cannot. Diffusion can, however, do in-network 

processing of data (caching and aggregation) unlike existing 

multicast routing schemes. 

Finally, interest dissemination, data propagation, and caching 

in directed diffusion are all similar to some of the ideas used 

in adaptive Web caching [35]. In these schemes, caches self- 

organize into a hierarchy of cooperative caches through which 

requests for pages are effectively diffused. 

VII. CONCLUSION 

In this paper, we described the directed-diffusion paradigm 

for designing distributed sensing algorithms. There are several 

lessons we can draw from our preliminary evaluation of diffu- 

sion. First, directed diffusion has the potential for significant 

energy efficiency. Even with relatively unoptimized path se- 

lection, it outperforms an idealized traditional data dissemina- 

tion scheme like omniscient multicast. Second, diffusion mech- 

anisms are stable under the range of network dynamics consid- 

ered in this paper. Finally, for directed diffusion to achieve its 

full potential, careful attention has to be paid to the design of 

sensor radio MAC layers. 
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