
Directed Incremental Symbolic Execution

Suzette Person
NASA Langley Research Center

suzette.person@nasa.gov

Guowei Yang
University of Texas at Austin

gyang@ece.utexas.edu

Neha Rungta
NASA Ames Research Center

neha.s.rungta@nasa.gov

Sarfraz Khurshid
University of Texas at Austin
khurshid@ece.utexas.edu

Abstract
The last few years have seen a resurgence of interest in the use of
symbolic execution – a program analysis technique developed more
than three decades ago to analyze program execution paths. Scaling
symbolic execution and other path-sensitive analysis techniques to
large systems remains challenging despite recent algorithmic and
technological advances. An alternative to solving the problem of
scalability is to reduce the scope of the analysis. One approach that
is widely studied in the context of regression analysis is to analyze
the differences between two related program versions. While such
an approach is intuitive in theory, finding efficient and precise ways
to identify program differences, and characterize their effects on
how the program executes has proved challenging in practice.

In this paper, we present Directed Incremental Symbolic Exe-
cution (DiSE), a novel technique for detecting and characterizing
the effects of program changes. The novelty of DiSE is to combine
the efficiencies of static analysis techniques to compute program
difference information with the precision of symbolic execution to
explore program execution paths and generate path conditions af-
fected by the differences. DiSE is a complementary technique to
other reduction or bounding techniques developed to improve sym-
bolic execution. Furthermore, DiSE does not require analysis re-
sults to be carried forward as the software evolves—only the source
code for two related program versions is required. A case-study of
our implementation of DiSE illustrates its effectiveness at detecting
and characterizing the effects of program changes.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Symbolic execution

General Terms Verification, Algorithms

Keywords Program Differencing, Symbolic Execution, Software
Evolution

Copyright 2011 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by a contractor or affiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
PLDI ’11 June 4–8, San Jose, California, USA
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

1. Introduction
Over the last three decades, symbolic execution [7, 22]—a program
analysis technique for systematic exploration of program execu-
tion paths using symbolic input values—has provided a basis for
various software testing and verification techniques. For each path
it explores, symbolic execution builds a path condition, i.e., con-
straints on the symbolic inputs, that characterizes the program ex-
ecution path. During symbolic execution, satisfiability checks are
performed each time a constraint is added to the path condition to
determine the feasibility of the path; if a path condition becomes
unsatisfiable, it represents an infeasible path and symbolic execu-
tion does not consider any other paths that contain the known infea-
sible path as its prefix. The set of path conditions computed by sym-
bolic execution can be used to perform various analyses of program
behavior, for example, to check conformance of code to rich behav-
ioral specifications using automated test input generation [10, 19].

Initial work on symbolic execution largely focused on checking
properties of programs with primitive types, such as integers and
booleans [7, 22]. Several recent projects generalized the core ideas
of symbolic execution which enabled it to be applied to programs
with more general types, including references and arrays [4, 10,
12, 19, 32]. These generalizations have been complimented by
recent advances in constraint solving, which is the key supporting
technology that affects the effectiveness of symbolic execution—
checking path conditions for satisfiability relies heavily on the
capabilities of the underlying constraint solvers. During the last few
years, not only has raw computing power increased, enabling more
efficient constraint solving, but basic constraint solving technology
has also advanced considerably, specifically in leveraging multiple
decision procedures in synergy, for example, as in Satisfiability
Modulo Theory (SMT) solvers [9].

Scaling symbolic execution, as with other path-sensitive anal-
yses, remains challenging because of the large number of execu-
tion paths generated during the symbolic analysis. This is known
as the path explosion problem, and despite recent advances in re-
duction and abstraction techniques, remains a fundamental chal-
lenge to path-sensitive analysis techniques. A large body of work
has been dedicated to developing techniques that try to achieve bet-
ter scalability [1, 3, 11, 20]. One alternative approach to solving the
problem of scalability is to reduce the scope of the analysis to only
certain parts of the program.

Regression analysis is a well known example where the differ-
ences between program versions serve as the basis to reduce the
scope of the analysis [14, 35, 38]. Analyses based on program

differences are attractive and have considerable potential benefits
since most software is developed following an evolutionary pro-
cess. And, with the recent push toward agile development, differ-
ences between two program versions tend to be small and local-
ized. The challenge, however, lies in determining precisely which
program execution behaviors are affected by the program changes.
Techniques to identify modified parts of the program can be broadly
classified into two categories: syntactic and semantic. Syntactic
techniques consider differences in the program source code or some
other static representation of the source and can be computed effi-
ciently. Semantic techniques are typically more expensive, but also
compute generally more precise differences by considering the dif-
ferences in the execution behaviors of the program.

In Directed Incremental Symbolic Execution (DiSE), our insight
is to combine the efficiencies of static analysis techniques that com-
pute program difference information with the precision of symbolic
execution. The path conditions computed by DiSE then charac-
terize the differences between two related program versions. The
essence of symbolic execution is that it abstracts the semantics of
program behaviors by generating constraints on the program inputs.
The constraints for a given program execution behavior (path), re-
ferred to as a path condition, encode the input values that will cause
execution to follow that path. The goal of this work is to direct
symbolic execution on a modified program version to explore path
conditions that may be affected by the changes. Consider a set of
concrete (actual) input values that generate paths p and p′ in the
original and modified versions of the program respectively. If sym-
bolic execution of p and p′ result in different path conditions, then
the path condition generated along p′ is termed as affected.

Affected path conditions can be solved to generate values for
the variables which, when used to execute the program, exhibit the
affected program behaviors. The results of DiSE can then be used
by subsequent program analysis techniques to focus on only the
program behaviors that are affected by the changes to the program.
DiSE enables other program analysis techniques to efficiently per-
form software evolution tasks such as program documentation, re-
gression testing, fault localization and program summarization.

The novelty of DiSE is to leverage the state-of-the-art in sym-
bolic execution and apply static analyses in synergy to enable more
efficient symbolic execution of programs as they evolve. Static
analysis and symbolic execution form the two phases in DiSE. Pro-
gram instructions whose execution may lead to the generation of
affected path conditions are termed as affected locations or affected
instructions. The goal of the first phase is to generate the set of af-
fected program instructions. The static analysis techniques in the
first phase are based on intra-procedural data and control flow de-
pendences. The dependence analyses are used to identify instruc-
tions in the source code that define program variables relevant to
changes in the program. Conditional branch instructions that use
those variables, or are themselves affected by the changes, are also
identified as affected. In the second phase, the information gener-
ated by the static analysis is used to direct symbolic execution to ex-
plore only the parts of the programs affected by the changes, poten-
tially avoiding a large number of unaffected execution paths. DiSE
generates, as output, path conditions only on conditional branch in-
structions that use variables affected by the change or are otherwise
affected by the changes.

In this work, we develop a conceptual framework for DiSE,
implement a prototype of our framework in the Java PathFinder
symbolic execution framework [26, 28, 36], present a case-study
to demonstrate the effectiveness of our approach, and demonstrate,
as a proof of concept, how the framework enables incremental pro-
gram analysis to perform software evolution related tasks. For the
examples used in our case-study, DiSE consistently explores fewer
states and takes less time to generate fewer path conditions com-

pared to standard symbolic execution when the changes affect only
a subset of the program execution paths. This demonstrates the ef-
fectiveness of DiSE in terms of reducing the cost of symbolic ex-
ecution of evolving software. Furthermore, we apply the results of
our analysis to test case selection and augmentation to demonstrate
the utility of such an analysis.

We make the following contributions:

• A novel incremental analysis that leverages the state-of-the-art
in symbolic execution and applies a static analysis in synergy
to enable efficient symbolic execution of programs as they un-
dergo changes.

• A technique for characterizing program differences by generat-
ing path conditions affected by the changes.

• A case-study that demonstrates the effectiveness of DiSE in re-
ducing the cost of performing symbolic execution and illus-
trates how DiSE results can be used to support software evo-
lution tasks.

2. Background and Motivation
We begin with a brief explanation of symbolic execution, the un-
derlying algorithm used in DiSE. Next, we present an example to
demonstrate the motivation for the development of DiSE.

2.1 Symbolic Execution
Symbolic execution is a program analysis technique for systemati-
cally exploring a large number of program execution paths [7, 22].
It uses symbolic values in place of concrete (actual) values as pro-
gram inputs. The resulting output values are computed as expres-
sions defined over constants and symbolic input values, using a
specified set of operators.

A symbolic execution tree characterizes all execution paths ex-
plored during symbolic execution. Each node in the tree represents
a symbolic program state, and each edge represents a transition be-
tween two states. A symbolic program state contains a unique pro-
gram location identifier (Loc), symbolic expressions for the sym-
bolic input variables, and a path condition (PC). During symbolic
execution, the path condition is used to collect constraints on the
program expressions, and describes the current path through the
symbolic execution tree. Path conditions are checked for satisfia-
bility during symbolic execution; when a path condition is infea-
sible, symbolic execution stops exploration of that path and back-
tracks. In programs with loops and recursion, infinitely long exe-
cution paths may be generated. In order to guarantee termination
of the execution in such cases, a user-specified depth bound is pro-
vided as input to symbolic execution.

We illustrate symbolic execution with the following example:

int y;
...

int testX(int x){
1: if (x > 0)
2: y = y + x;
3: else
4: y = y - x;
5: }

This code fragment introduces two symbolic variables: Y , the sym-
bolic representation of the integer field y, andX , the symbolic rep-
resentation of the integer argument x to procedure testX. For this
example, symbolic execution explores the two feasible behaviors
shown in the symbolic execution tree in Figure 1. When program
execution begins, the path condition is set to true. When X > 0
evaluates to TRUE at line 1 in the source code, the expression Y +X

Loc: 1

x: X, y: Y

PC: true

Loc: 2

x: X, y: Y

PC: X > 0

Loc: 5

x: X, y: Y + X

PC: X > 0

Loc: 4

x: X, y: Y

PC: !(X > 0)

Loc: 5

x: X, y: Y - X

PC: !(X > 0)

1: if (x > 0)

2: y = y + x;

1: if (x > 0)

4: y = y - x;

Figure 1. Symbolic execution tree for testX()

is computed and stored as the value of y. When !(X > 0), the
expression Y − X is computed and stored as the value of y. A
symbolic summary for procedure testX is made up of path con-
ditions that represent the feasible execution paths in testX. The
path conditions in the symbolic summary can be used as input to a
subsequent analysis, e.g., the solved path conditions can be used as
regression test case inputs.

2.2 Motivating Example
We use the example in Fig. 2 to illustrate how DiSE lever-

ages information about program changes to direct symbolic exe-
cution and generate path conditions affected by the changes. Con-
sider the source code for method update(int PedalPos, int
BSwitch, int PedalCmd) shown in Fig. 2(a). The update pro-
cedure sets the value of two global variables, AltPress and Meter,
based on the input values of its arguments. Assume a change was
made to the update method at line 2 in Fig. 2(a) where the compar-
ison operator is changed from == to<=, as shown in the modified
version of update presented in Fig. 2(a). Using full symbolic ex-
ecution to validate this change results in 21 path conditions, each
of which represents a program execution path of the modified ver-
sion of update. As expected, the results of full symbolic execution
include all execution paths for update, and no distinction is made
between affected and unaffected program paths. And, as a result,
any validation technique which uses these results may unneces-
sarily analyze unaffected program behaviors. For a small example
such as this, a full analysis may be feasible; however, for larger
methods or when complex constraints are involved, a full analysis
may be infeasible.

To characterize the effects of the change to update using DiSE,
we first compute the set of affected program locations. Consider
the CFG computed for the modified version of update shown
in Fig. 2(b). Each node corresponds to a program location in the
source code; we use the node label to identify the corresponding
code statement(s), and a node identifier appears in italics just out-
side the node, e.g., n1, n2, etc. Edges between the nodes represent
possible flow of execution between the nodes. Nodes in the CFG
that correspond to affected and changed program instructions are
termed as affected and changed nodes respectively.

DiSE uses the results of a lightweight source file differential
analysis to identify n0 as having a direct correspondence to the
change at line 2. The results of the static analysis computing af-
fected locations indicate that nodes n1, n3, n4, n5, n11, n13, and
n14 are affected write nodes–nodes that because of the change at
line 2, may affect subsequent execution of a control node. Nodes
n0, n2, n10, and n12 are affected control nodes–nodes that may
be affected by the change and that may affect the path condition.
The information about affected locations is used to direct symbolic

1: int AltPress := 0; int Meter := 2 /∗ Global Vars ∗/
procedure update(int PedalPos, int BSwitch, int PedalCmd)

2: if PedalPos <= 0/∗ changed conditional ∗/ then
3: PedalCmd = PedalCmd + 1
4: else if PedalPos == 1 then
5: PedalCmd = PedalCmd + 2
6: else PedalCmd = PedalPos
7:
8: PedalCmd = PedalCmd + 1
9:

10: if BSwitch == 0 then
11: Meter = 1
12: else if BSwitch == 1 then
13: Meter = 2
14:
15: if PedalCmd == 2 then
16: AltPress = 0
17: else if PedalCmd == 3 then
18: AltPress = 1/4
19: else AltPress = 1/2

(a)

19 : AltPress = 1/2

2 : PedalPos <= 0

4 : PedalPos == 1

nend

nbegin

true

true

true

true

true

false

false

false

false

n6

n8

n12

n14

n9

n10

10 : BSwitch == 0

n3

n1

n11

n7

n13

n5

false

11 : Meter = 1 12 : BSwitch == 1

13 : Meter = 2

16 : AltPress = 0

18 : AltPress = 1/4

3 : PedalCmd = PedalCmd + 1

5 : PedalCmd = PedalCmd + 2 6 : PedalCmd = PedalPos

8 : PedalCmd = PedalCmd + 1

15 : PedalCmd == 2

17 : PedalCmd == 3

n2

n4

n0 : changed conditional

(b)

Figure 2. A simplified version of a Wheel Brake System. (a)
Example program. (b) Control flow graph.

execution of the modified version of update to explore only the
program behaviors affected by the change.

Pruning. To illustrate how DiSE prunes symbolic execution
using the set of affected locations, consider a feasible execution
path, p0 := 〈n0, n1, n5, n6, n7, n10, n11〉, generated during di-
rected symbolic execution. The path p0 contains the sequence of
affected nodes, 〈n0, n1, n5, n10, n11〉, and the sequence of un-
affected nodes, 〈n6, n7〉. However, another feasible path, p1 :=
〈n0, n1, n5, n6, n8, n9, n10, n11〉, is pruned during symbolic exe-
cution because the sequence of affected nodes is already covered by
p0. The only difference between p0 and p1 is the sequence of un-
affected nodes—p1 contains 〈n6, n8, n9〉 as the sequence of unaf-
fected nodes. DiSE applies the same pruning technique throughout
symbolic execution to generate a total of seven path conditions for
update, versus the 21 path conditions generated by full symbolic
execution. Each path condition generated by DiSE characterizes a
program execution path that is affected by the change to update.

3. Directed Incremental Symbolic Execution
In this section we first provide a high level overview of our DiSE
technique. We then present the two main algorithms of DiSE that
compute the set of affected path conditions.

3.1 Overview
Inputs to DiSE. The inputs to DiSE are the control flow graphs
(CFGs) for two versions of a procedure, base and mod, and the
results of a lightweight differential (diff) analysis (e.g., source line
or abstract syntax tree diff) comparing the two versions of the
procedure. The results of the diff analysis identify the locations of
the differences in the source code between base and mod. During
a pre-processing step, DiSE maps the change information to the
corresponding nodes in each CFG. The CFG for the base version,
CFGbase , has nodes marked as removed, changed, or unchanged
with respect to the CFG of the modified version, CFGmod . The
nodes in CFGmod are marked as added, changed, or unchanged
with respect to CFGbase . The results of the diff analysis are also
used to compute a map (diffMap) that stores information relating
nodes in CFGbase to their corresponding nodes in CFGmod .

Computing Affected Locations. DiSE begins by performing a
conservative, intra-procedural analysis to compute the set of nodes
in CFGmod that may be affected by the removed nodes in CFGbase

or by the changed and added nodes in CFGmod . This static anal-
ysis uses control dependence and data flow information to gener-
ate the set of affected CFG nodes in CFGmod . These nodes corre-
spond to conditional branch statements and to write statements in
the modified version of the program that either influence, or may
be influenced by the modifications made to the procedure, and as a
result, may affect the path conditions computed by symbolic exe-
cution. Affected conditional branch nodes directly lead to the gen-
eration of affected path conditions. Affected write nodes indirectly
lead to the generation of affected path condition–they either define
a variable that may be subsequently read at an affected branch node,
or the reachability of the affected write nodes is control dependent
on an affected conditional branch node.

Directed Symbolic Execution. During this step, DiSE per-
forms a form of incremental symbolic execution on the modified
version of the procedure, leveraging the information computed dur-
ing the previous step to explore only the parts of the program that
are changed with respect to the base version of the procedure. The
affected nodes information directs DiSE to explore only (feasible)
paths where one or more affected nodes in CFGmod are reachable
on that path, and that sequence of affected nodes has not yet been
explored. If either of these conditions is not met, then symbolic
execution backtracks. By effectively “pruning” paths that generate
unaffected path conditions, DiSE avoids the cost of exploring exe-
cution paths in the modified program version that are not affected
by the change(s) to the program. The resulting set of path condi-
tions computed by DiSE then characterizes the set of program ex-
ecution behaviors in the modified version of the procedure that are
affected by the change(s). Each (directly or indirectly) affected con-
ditional branch node on the path is represented by a constraint in
the path condition; conditional branch nodes that are not affected
by the changes are represented by a constraint that represents a fea-
sible path through the unaffected parts of the program.

3.2 Computing Affected Locations
The set of affected program locations is computed using conserva-
tive static analyses based on control and data dependences. The
analysis is performed at an intra-procedural (per-method) level.
The corresponding ramification is that DiSE does not generate af-
fected path conditions arising from changes at the inter-procedural
(sequence of methods) level. Extending the technique for inter-
procedural system level analysis is part of our future work. We first

present background definitions related to control flow graphs, con-
trol dependence, and data flow in order to define the rules DiSE
uses to generate the affected locations sets.

Definition 3.1. A Control flow graph (CFG) of a procedure in
the program is a directed-graph represented formally by a tuple
〈N,E〉. N is the set of nodes, where each node is labeled with
a unique program location identifier. The edges, E ⊆ N × N ,
represent possible flow of execution between the nodes in the CFG.
Each CFG has a single begin, nbegin , and end, nend , node. All the
nodes in the CFG are reachable from the nbegin and the nend node
is reachable from all nodes in the CFG.

Definition 3.2. (Check for a CFG Path) is a map IsCFGPath :
N × N 7→ {T, F} that returns true for a pair of nodes (ni, nj)
if there exists a sequence of nodes π := 〈n0, n1, . . .〉 such that
(nk, nk+1) ∈ E for 0 ≤ k ≤ |π| − 1 and n0 = ni, n|π|−1 = nj;
otherwise it returns false.

Definition 3.3. Vars is the set of variable names that are either
read or written to in a procedure.

Definition 3.4. Cond is the set of nodes Cond ⊆ N where
n ∈ Cond is a conditional branch instruction.

Definition 3.5. Write is the set of nodes Write ⊆ N where
n ∈Write is a write instruction.

Definition 3.6. (Variable Definitions) is a map Def : N 7→
Vars ∪ {⊥} that returns a variable v ∈ Vars if the variable, v, is
defined at node n ∈ N ; otherwise returns ⊥.

Definition 3.7. (Variable Uses) is a map Use : N 7→ 2Vars ∪ {⊥}
that returns a set of variables V ⊆ Vars where v ∈ V is a variable
being read at node n; otherwise returns ⊥.

Definition 3.8. (Post Dominance) is a map postDom : N ×N 7→
{T, F} that returns true for an input pair of nodes (ni, nj) if, for
each CFG path from ni to nend , π := 〈ni, . . . , nend〉, there exists
a k such that nj = nk where i ≤ k ≤ |π| − 1 (nj post dominates
ni); otherwise it returns false.

Definition 3.9. (Control Dependence) is a map controlD :
N × N 7→ {T, F} that returns true for an input pair of nodes
(ni, nj) if node ni has two successors nk and nl such that
(ni, nk), (ni, nl) ∈ E, nk 6= nl, postDom(nk, nj) == T , and
postDom(nl, nj) == F ; otherwise it returns false.

We provide intuitive descriptions for some definitions above us-
ing the example in Fig. 2. The set of Vars contains variables
AltPress , PedalPos , PedalCmd , BSwitch , andMeter. Def(n9)
returns the variable Meter which is defined at line 13. Similarly
the map Uses(n10) returns PedalCmd , the variable being used
at line 15. The map postDom(n0, n5) returns true because all
paths from node n0 to nend have to go through n5; an example
path is 〈n0, n1, n3, n5, . . . , nend〉. Finally, node n1 is control de-
pendent n0. The node n0 has two successors n1 and n2, where
postDom(n1, n1) is true and postDom(n1, n2) is false.

Approach. Two sets of affected nodes are computed and used
by DiSE– the set of affected conditional (branch) nodes, ACN , and
the set of affected write nodes, AWN . These sets contain nodes
in CFGmod that are marked as changed or added by the source
line diff analysis. (Handling changes arising from remove nodes in
CFGbase is described later in this section.) The ACN and AWN
sets are updated by applying the rules specified in Fig. 3 until the
sets reach a fixed-point. The analysis is guaranteed to terminate
since the ACN and AWN sets contain nodes in a CFG – even
nodes that are part of a loop are added at most once to these sets.

The rules in Fig. 3 specify the conditions under which DiSE
adds nodes from CFGmod to the affected sets based on the con-

if ni ∈ ACN ∧ nj ∈ Cond ∧ controlD(ni, nj)

then ACN := ACN ∪ {nj} (1)

if ni ∈ ACN ∧ nj ∈Write ∧ controlD(ni, nj)

then AWN := AWN ∪ {nj} (2)

if ni ∈ AWN ∧ nj ∈ Cond ∧ Def(ni) ∈ Use(nj)

∧ Def(ni) 6= ⊥ ∧ IsCFGPath(ni, nj)

then ACN := ACN ∪ {nj} (3)

Figure 3. Updating affected sets based on control and data flow
dependence.

if ni ∈Write ∧ (nj ∈ AWN ∨ nj ∈ ACN)

∧ Def(ni) ∈ Use(nj) ∧ Def(ni) 6= ⊥
∧ IsCFGPath(ni, nj) then AWN := AWN ∪ {ni} (4)

Figure 4. Updating AWN set based on reaching definitions.

trol dependence relation and the resulting data flow information.
The first two rules Eq. (1) and Eq. (2) in Fig. 3 specify that con-
ditional branches and write statements that are control dependent
on a changed or added node in the CFGmod , are added to the af-
fected set. Other nodes are added to the affected sets by repeatedly
applying the rules that, in essence compute the transitive closure on
the control dependences between the nodes. Eq. (1) states that if
there exists a node ni in ACN , and a conditional node nj such that
nj is control dependent on ni, then nj is added to the set ACN .
Similarly in Eq. (2) if nj is a write statement that is control depen-
dent on ni, an element in ACN , then nj is added to AWN . Eq. (3)
intuitively specifies that conditional branches that use variables de-
fined in the affected write set are added to the affected conditional
set. If the definition of a variable in a write statement, ni, in AWN
is used in a conditional branch statement, nj , and there is a path
in the CFG from ni to nj , then nj is added to ACN . The rules
are iteratively applied until the sizes of ACN and AWN do not
change.

Eq. (4) in Fig. 4 is applied to update AWN based on the
definitions of variables that reach the nodes in the affected sets,
after the analysis in Fig. 3 reaches a fixed-point. Eq. (4) specifies
that if a variable is defined at a write statement ni that is used at
node nj such that nj is in one of the affected sets, and there exists
a CFG path from ni to nj then ni is added to the AWN set. The
rule specified in Eq. (4) is also guaranteed to reach a fixed-point
and terminate since the rule is applied to the nodes in the CFG.

Handling Removed Instructions. When there are nodes marked
as removed in CFGbase , it indicates that the corresponding node
does not exist in CFGmod . The removed node may, however, af-
fect the execution of other nodes in CFGmod . The algorithm to
compute the effects of the removed nodes is shown in Fig. 5(a).

The removeNodes algorithm in Fig. 5 computes the con-
trol and data dependence flow information on CFGbase . The af-
fected sets are initialized to removed nodes, and after applying the
rules in Fig. 3 and Fig. 4, the affected sets contain all the nodes
in CFGbase that are influenced by the remove nodes (lines 1-3
in Fig. 5(a)). Next, for each of the CFGbase nodes in the affected
sets the corresponding node mapping to CFGmod found in the

procedure removeNodes(CFGbase , diffMap)
1: ACN := getRemovedConditionalNodes(CFGbase)
2: AWN := getRemovedWriteNodes(CFGbase)
3: Apply rules in Fig. 3 and Fig. 4
4: ACN := updateSets(ACN, diffMap)
5: AWN := updateSets(AWN, diffMap)

procedure updateSets(AN , diffMap)
6: ModN := {}
7: for each n ∈ AN do
8: ModN := ModN ∪ {diffMap.get(n)}
9: return ModN

(a)

ACN AWN ni nj Rule
{n0} {}
{n0, n2} {} n0 n2 Eq. (1)
{n0, n2} {n1} n0 n1 Eq. (2)
{n0, n2} {n1, n3} n2 n3 Eq. (2)
{n0, n2} {n1, n3, n4} n2 n4 Eq. (2)
{n0, n2, n10} {n1, n3, n4} n1 n10 Eq. (3)
{n0, n2, n10} {n1, n3, n4, n11} n10 n11 Eq. (2)
{n0, n2, n10, n12} {n1, n3, n4, n11} n1 n12 Eq. (3)
{n0, n2, n10, n12} {n1, n3, n4, n11, n13} n12 n13 Eq. (2)
{n0, n2, n10, n12} {n1, n3, n4, n11, n13, n14} n12 n14 Eq. (2)
{n0, n2, n10, n12} {n1, n3, n4, n5, n11, n13, n14} n5 n10 Eq. (4)

(b)

Figure 5. Computing affected nodes. (a) Algorithm to compute af-
fected nodes resulting from removing certain program instructions.
(b) Demonstration of the computation of affected node set for the
example in Fig. 2.

diffMap is used to replace the elements in the affected sets (lines
4-9 in Fig. 5(a)). Recall that the source line differential analysis
provides diffMap that maps unchanged and changed nodes cor-
responding from CFGbase to CFGmod . For the nodes marked as
removed in CFGbase the get method on diffMap returns the empty
set.

The removeNodes algorithm in Fig. 5(a) generates all nodes
affected by program instructions removed from the base version.
Finally, the affected set is updated with any other changed or added
nodes present in CFGmod and the computing affected set algorithm
as presented earlier is applied to generate the final affected sets.

Example. To illustrate how affected sets are generated, consider
the example in Fig. 2. Suppose, the conditional branch at line 2 has
the predicate PedalPos == 0 in the base program version that is
modified to PedalPos <= 0 as shown in Fig. 2. The CFG node
corresponding to line 2 in Fig. 2(a) is n0 in Fig. 2(b). The ACN
set is initialized to the lone element n0 (a changed node) and the
AWN set is initialized as empty. The sets are updated based on the
rules in Fig. 3 as shown in Fig. 5(b).

Node n2 in Fig. 2(b) is a conditional branch statement that is
control dependent on n0 causing n2 to be added to ACN . The
write statements at nodes n1, n3, and n4 are added since they are
control dependent on nodes n0 or n2. Nodes n10 and n12 are added
to ACN since they use the variable PedalCmd that is defined in
nodes n1, n3, and n4 contained in AWN . The write statement at
node n11 is control dependent on n10, while the write statements
at nodes n13 and n14 are control dependent on n12; hence nodes
n11, n13, and n14 are added to AWN . Finally, when the sets ACN
and AWN reach a fixed-point after applying the rules in Fig. 3,
the Eq. (4) in Fig. 4 is applied. Applying the Eq. (4) rule adds the
write statement at node n5 that defines the variable PedalCmd and
is also used at nodes n10 and n12.

The affected sets are used to direct the symbolic execution in
the next phase of DiSE.

3.3 Directed Symbolic Execution
The directed symbolic execution technique executes the feasible
paths that contain sequences of affected nodes generated in the
static analysis. The analysis generates path conditions that contain
constraints related to the modifications in the program. All feasible
path conditions related to the affected nodes are generated during
the analysis. Each path condition contains a feasible instance of
the conditions generated from the unchanged parts of the code. As
a result, the directed symbolic execution process generates fully
formed path conditions, while at the same time avoids generating
many path conditions arising from sequences of unaffected nodes
in the program. This enables directed symbolic execution to not
only explore all branches in the symbolic execution tree influenced
by the affected nodes but, also to prune the paths related to the
unaffected parts of the code.

The algorithm for directed symbolic execution is shown in Fig. 6.
The inputs to the algorithm are the affected sets ACN and AWN ,
and a user-specified depth bound for the symbolic execution. The
DiSE procedure is invoked with the initial symbolic state of the
program. Recall that the symbolic state contains a current pro-
gram location, a symbolic representation of the variables, and a
path condition. There are four global sets initialized on lines 3 and
4 in Fig. 6. The sets ExCond and ExWrite track which of the
affected nodes have been “explored” during symbolic execution
while the sets UnExCond and UnExWrite track those nodes that
are “unexplored” and still need to be explored. Hence, ExCond
and ExWrite are initialized as empty whereas UnExCond and
UnExWrite are initialized to the ACN and AWN sets respec-
tively.

The DiSE procedure in Fig. 6 provides the basic search strategy.
At line 5, if the current state is at a depth bound greater than the
user-specified depth bound or the state is an error, then the search
returns to explore an alternate path; otherwise exploration contin-
ues along the same path. The getCFGNode method on line 6 takes
as input the symbolic state, s, and returns the corresponding CFG
node, n. Note that the current program location of the symbolic
state is used to map a symbolic state to its CFG node. The proce-
dure UpdateExploredSet is invoked with CFG node n. For each
successor state of s that the procedure AffectedLocIsReachable
returns true the DiSE procedure is invoked with the corresponding
successor state, exploring the relevant states in a depth-first manner.

The procedure UpdateExploredSet checks whether the input
node n is contained in one of the unexplored sets (UnExWrite
or UnExCond) in order to track the affected nodes explored dur-
ing symbolic execution (lines 30–35). If the node n is contained
in the unexplored write set, UnExWrite , then n is removed from
UnExWrite and added to the explored write set, ExWrite . Sim-
ilarly, a corresponding update is performed on UnExCond and
ExCond when n is contained within UnExCond . The procedure
ResetUnExploredSet, shown at lines 37–42, does the reverse;
removes the input node from the explored sets and adds it to the
respective unexplored set.

The AffectedLocIsReachable returns true if the CFG node,
ni, corresponding to the input symbolic state, si, can reach a node
in the set of unexplored affected nodes to indicate that exploration
should continue along the path that contains si; else, it returns false
indicating that the path containing si is not influenced by the mod-
ifications to the program and should be pruned. The CheckLoops
procedure is invoked to handle generating sequences of affected
nodes through loops at line 15. A temporary set UnExplored is
initialized with the nodes in UnExWrite and UnExCond , while
Explored is initialized with nodes from ExWrite and ExCond at
lines 16 and 17. Next, when an affected node in UnExplored , nj , is
reachable from ni; first, the variable isReachable is set to true, and

procedure init()/∗ Input := ACN ; AWN ; bound ∗/
1: DiSE(getInitState())
2:
3: /∗ ExCond := ∅; ExWrite := ∅ ∗/
4: /∗ UnExCond := ACN ; UnExWrite := AWN ∗/

procedure DiSE(s)
5: if GetDepth(s) > bound ∨ error(s) then return
6: n := GetCFGNode(s)
7: UpdateExploredSet(n)
8: for each si ∈ GetSuccessors(s) do
9: if AffectedLocIsReachable(si) then

10: DiSE(si)
11: return
12:
procedure AffectedLocIsReachable(si)
13: IsReachable := false
14: ni := getCFGNode(si)
15: CheckLoops(ni)
16: UnExplored := UnExWrite ∪UnExCond
17: Explored := ExWrite ∪ ExCond
18: for each nj ∈ UnExplored do
19: if ¬IsCFGPath(ni, nj) then continue
20: IsReachable := true
21: for each nk ∈ Explored do
22: if ¬IsCFGPath(nj , nk) then continue
23: ResetUnExploredSet(nk)
24: return IsReachable
25:
procedure CheckLoops(n)
26: if IsLoopEntryNode(ni) then
27: for each n′ ∈ GetSCC(n) do
28: ResetUnExploredSet(n′)
29:
procedure UpdateExploredSet(n)
30: if n ∈ UnExWrite then
31: ExWrite := ExWrite ∪ {n}
32: UnExWrite := UnExWrite \ {n}
33: if n ∈ UnExCond then
34: ExCond := ExCond ∪ {n}
35: UnExCond := UnExCond \ {n}
36:
procedure ResetUnExploredSet(n)
37: if n ∈ ExWrite then
38: UnExWrite := UnExWrite ∪ {n}
39: ExWrite := ExWrite \ {n}
40: if n ∈ ExCond then
41: UnExCond := UnExCond ∪ {n}
42: ExCond := ExCond \ {n}

Figure 6. Pseudocode for the directed symbolic execution algo-
rithm using affected sets.

second the nodes in the explored sets that are reachable from unex-
plored sets along the execution path containing ni are moved back
to the unexplored set (by invoking the ResetUnExploredSet pro-
cedure). Resetting the unexplored sets enables directed symbolic
execution to explore all sequences of affected nodes that lie along
feasible execution paths.

The CheckLoops procedure allows DiSE to explore sequences
of affected nodes that are contained within loops. If the input node,
n to CheckLoops is the entry node to a loop (line 26), then for all
the nodes that are part of loop (strongly connected component con-
taining n—GetSCC(n)) are added to the unexplored set if they have
been previously explored by invoking the ResetUnExploredSet.
A strongly connected component is a set of nodes where each node
can be reached from all of the other nodes, and a strongly connected
component has a single entry and a single exit point.

Example. In Table 1 we show part of the directed symbolic exe-
cution performed for the example in Fig. 2. For brevity, we refer to

CFG Node for symbolic states ExWrite ExCond UnExWrite UnExCond
1 〈〉 {} {} {n1, n3, n4, n5, n11, n13, n14} {n0, n2, n10, n12}
2 〈n0〉 {} {n0} {n1, n3, n4, n5, n11, n13, n14} {n2, n10, n12}
3 〈n0, n1〉 {n1} {n0} {n3, n4, n5, n11, n13, n14} {n2, n10, n12}
4 〈n0, n1, n5〉 {n1, n5} {n0} {n3, n4, , n11, n13, n14} {n2, n10, n12}
5 〈n0, n1, n5, n6, n7, n10〉 {n1, n5} {n0, n10} {n3, n4, n11, n13, n14} {n2, n12}
6 〈n0, n1, n5, n6, n7, n10, n11〉 {n1, n5, n11} {n0, n10} {n3, n4, n13, n14} {n2, n12}
7 〈n0, n1, n5, n6, n7, n10, n12〉 {n1, n5, n11} {n0, n10, n12} {n3, n4} {n2}
8 〈n0, n1, n5, n6, n7, n10, n12, n13〉 {n1, n5, n11, n13} {n0, n10, n12} {n3, n4, n14} {n2}
9 〈n0, n1, n5, n6, n7, n10, n12, n14〉 {n1, n5, n11, n13, n14} {n0, n10, n12} {n3, n4} {n2}
10 〈n0, n1, n5, n6, n8(no path)〉 {n1, n5, n11, n13, n14} {n0, n10, n12} {n3, n4} {n2}
11 〈n0, n2〉 {n1} {n0, n2} {n3, n4, n5, n11, n13, n14} {n10, n12}

Table 1. Part of the directed symbolic execution performed on the example in Fig. 2.

CFG nodes corresponding to symbolic states when describing the
execution and sequence of states. For example the second column
in Table 1 shows a sequence of CFG nodes corresponding to the
sequence of symbolic states generated during symbolic execution.
The ExWrite and ExCond are initialized to the empty set, while
the UnExWrite and UnExCond are initialized to the respective
affected sets. At n0, an affected conditional node is moved from
UnExCond to ExCond at line 2 in Table 1; similar updates oc-
cur at lines 3, 4, 5, and 7. At lines 4 and 5 in Table 1, execution
continues along the successor states since a node in an unexplored
set is reachable from the last node in the sequence. For example,
at line 4, node n10 in UnExCond is reachable from n5 at the end
of the sequence 〈n0, n1, n5〉. There is no path to any nodes in the
unexplored sets at line 10 in Table 1 from n8.

In Table 1, at line 11, nodes are moved from explored to the
unexplored set. The explored conditional branches n10 and n12

are reachable from node n2, and the explored write instructions
n5, n11, n13, and n14 are reachable from n2 as seen in Fig. 2(b);
as node n2 is added to explored set, nodes n5, n10, n11, n12,
n13, and n14 are added back to the unexplored sets in order for
DiSE to explore different sequences of affected nodes and generate
corresponding feasible execution paths (if possible).

Theorem 3.10. For any sequence of affected nodes that lie on some
feasible execution path within the specified depth bound, DiSE
explores one execution path containing that sequence of nodes.

Proof Sketch. By contradiction. There are two cases to consider:
I) There exists a feasible path (within the specified depth bound)
that contains a sequence of affected nodes, which DiSE does not
explore and II) DiSE explores more than one feasible execution
path for some sequence of affected nodes (within the specified
depth bound).

Case I Let q := 〈n1, . . . , nk〉 be a sequence of affected nodes,
which is not explored by DiSE but is contained in a feasible ex-
ecution path. By construction, DiSE must explore n1, since it is
an affected node that is added to UnExWrite or UnExCond
during initialization. Assume ni is the first node in q such that
DiSE explores a feasible path, p, that contains the sub-sequence
〈n1, . . . , ni−1〉 but does not explore an execution path that con-
tains the sub-sequence 〈n1, . . . , ni〉. Consider DiSE’s exploration
of p when it processes node ni−1. Since ni is reachable from ni−1

and is an affected node, ni must be contained in UnExWrite or
UnExCond (line 23). Hence DiSE will explore a path that con-
tains the sub-sequence 〈n1, . . . , ni〉. Contradiction.

Case II Assume for a sequence of affected nodes that lie on
path p explored by DiSE, it explores another path p′ containing
the same sequence of affected nodes. Let n be the last affected
node on path p such that the p and p′ have the exact same sub-
sequence of affected and unaffected nodes up to and including n.
Let q := 〈n, n1 . . . nk,m〉 be the sub-sequence of nodes on p

such that each ni is an unaffected node and m is an affected node.
Let q′ := 〈n, n′1 . . . n′j ,m〉 be the corresponding sub-sequence of
nodes on p′. By the construction of the algorithm in Fig. 6, when
DiSE considers the affected node n, it only explores one path and
prunes the others by controlling the unexplored and unexplored sets
in the UpdateExploredSets and ResetUnExploredSet until the
next affected node, which in this case is m. Hence, q and q′ are
identical. Contradiction.

4. Evaluation
In this section we evaluate the effectiveness of DiSE at generating
affected path conditions relative to the path conditions generated
by full symbolic execution of the changed methods in evolving
software. To perform our evaluation, we implemented DiSE and
performed a case-study on three Java applications, comparing the
results of DiSE with full, traditional symbolic execution of the
changed versions of the method. We begin this section with a
description of our implementation of DiSE.

4.1 Tool Support
We implemented DiSE in Symbolic PathFinder (SPF) [26, 28],
a symbolic execution extension to the Java PathFinder model
checker–a Java bytecode analysis framework [36]. SPF is an open
source execution engine that symbolically executes Java bytecode.
SPF supports a variety of constraint solvers/decision procedures for
solving path conditions; in this work we use the Choco constraint
solver [6]. In general, state matching is undecidable when states
represent path conditions on unbounded input data. Hence, SPF
does not perform any state matching and explores the symbolic
execution tree using a stateless search. Furthermore, if the solver is
unable to determine the satisfiability of the path condition within
a certain time bound, SPF treats the path condition as unsatisfi-
able. While this situation does not occur for any of the artifacts in
our study, this limitation of constraint solvers could affect DiSE,
causing it to miss generating affected path conditions in the mod-
ified program. Loops and recursion can be bounded by placing a
depth limit on the search depth in SPF or by limiting the number of
constraints encoded for any given path; SPF indicates when one of
these bounds has been reached during symbolic execution. There
are no loops or recursive calls in the artifacts used in our empirical
study, hence, we do not specify a depth bound.

DiSE extends SPF by implementing custom data and control de-
pendence analyses that compute a conservative approximation of
the the affected locations for a changed method. DiSE performs
these analyses when the the modified method is invoked during
symbolic execution, and then uses the information about the af-
fected locations to direct symbolic execution within SPF.

4.2 Case-Study
The goal of our technique is to direct symbolic execution on a
modified program version to explore only program conditions that
are affected by the changes to the source code. We evaluate the cost
and effectiveness of DiSE relative to full symbolic execution on the
changed methods by considering the following research questions:

RQ1: How does the cost of applying DiSE compare to full sym-
bolic execution on the changed method?

RQ2: How does the number of affected path conditions generated
by DiSE compare with the number of path conditions generated
by full symbolic execution?

4.2.1 Artifacts
To evaluate DiSE we compared method versions from three Java
artifacts. The first program, the Wheel Brake System (WBS), is a
synchronous reactive component from the automotive domain. The
Java model is based on a Simulink model derived from the WBS
case example found in ARP 4761 [17, 30]. We use the update(int
PedalPos, boolean AutoBrake, boolean Skid) method in
WBS to evaluate DiSE. This method determines how much braking
pressure to apply based on the environment. The Simulink model
was translated to C using tools developed at Rockwell Collins and
manually translated to Java. It consists of one class and 231 source
lines of code.

Our second artifact is a version of the Java program used to
model NASA’s On-board Abort Executive (OAE) . The OAE mod-
els the Crew Exploration Vehicle’s prototype ascent abort handling
software, receiving its inputs from sensors and other software com-
ponents. The inputs are analyzed to determine the status of the as-
cent flight rules and to evaluate which ascent abort modes are feasi-
ble. Once a flight rule is broken and an abort mode is selected, it is
relayed to the rest of the system for initiation. The version of OAE
evaluated for this work consists of five classes. The method under
analysis consists of approximately 150 source lines of code.

The third artifact we used to evaluate DiSE is the Altitude
Switch (ASW) application. This program is a synchronous reactive
component from the avionics domain. It turns power on to a Device
Of Interest (DOI) when the aircraft descends below a threshold al-
titude above ground level (AGL). It was developed as a Simulink
model, and was automatically translated to Java using tools devel-
oped at Vanderbilt University [34].

To evaluate DiSE in an empirical study we required multiple
versions of each method being analyzed. Because multiple versions
of these artifacts were not available, we generated versions by
manually creating mutants of the base version (v0) of the method
under analysis. When creating mutants, we considered a broad
range of changes that can be applied to the code: change location,
change type and number of changes. We introduced changes at the
beginning, middle and end of each method. We also considered
the control structures in the code, and make changes at various
depths in nested control structures. Each mutant has one, two or
three changed Java statements, resulting in up to nine changed
nodes in the CFG for the changed version of a method as shown
in Table 4.2.1.

In the WBS example, versions 1–6 contain a single changed
Java source statement, versions 7–11 contain two changed state-
ments and versions 12–16 contain three changed statements. For
the ASW example, we made a single change to versions 1–11, and
two changes to versions 12–15. For the OAE example, a single
change was made to versions 1–6, two changes are made to ver-
sions 7 and 8, and version 9 contains three changed Java source
statements. The versions that contain multiple changes were cre-
ated by combining the individual mutations made to versions with
a single change. For example, version 12 of the WBS example con-

tains the same individual changes as versions 1, 4, and 5. Each
change involved the addition, removal or modification of a state-
ment. Control statements were modified by mutating the compari-
son operator, e.g., from< to<=, or the operand, e.g., mutating the
program variables involved in the comparison. Non-control state-
ments were modified by changing the value assigned to a program
variable.

4.2.2 Variables and Measures
The independent variable in our study is the symbolic execution al-
gorithm used in our empirical study. We use the DiSE algorithm,
and as a control, we use full (traditional) symbolic execution as im-
plemented in the SPF framework. For our study, we selected three
dependent variables and measures: 1) time, 2) states explored, and
3) number of path conditions generated. Time is measured as the to-
tal elapsed time reported by SPF. It includes the time spent comput-
ing the affected program locations and the time spent performing
symbolic execution. States explored provides a count of the num-
ber of symbolic states generated during symbolic execution. Num-
ber of path conditions generated provides a count of the number of
program execution paths generated by a given technique. Time and
states explored are used to relate the cost of DiSE to the cost of full
symbolic execution of the changed method (RQ1), while number
of path conditions generated is used to judge the effectiveness of
DiSE relative to full symbolic execution (RQ2).

4.2.3 Experiment Setup
To perform our study, we compiled all of our artifacts using Java
version 1.6.0 22. We used a custom Java application to perform a
lightweight diff analysis comparing the abstract syntax tree (AST)
for each mutant with the AST for the base version of the program.
We then analyzed each mutant version with DiSE, using the results
of the AST diff. We also performed symbolic execution on each
mutant using standard symbolic execution in SPF (JPF v6). The
study was performed on a MacBook Pro running at 2.26 GHz with
2 GB of memory and running Mac OS X version 10.5.8.

4.2.4 Threats to Validity
The primary threats to external validity for our study are (1) the use
of SPF within which we implemented our technique, (2) the use of
Choco as the underlying constraint solver, (3) the selection of arti-
facts used to evaluate DiSE, and (4) the changes applied to create
the mutants. Implementing DiSE in another framework or using
another constraint solver/decision procedure could produce differ-
ent results; however, replicated studies with other tool frameworks
would address this threat. The artifacts selected for our study are
control applications that are amenable to symbolic execution. The
artifacts are comparable in structure and complexity to other arti-
facts that we are aware of that are used to evaluate symbolic execu-
tion techniques. The mutant versions we used to perform our study
were created manually, and may or may not reflect actual program
changes; however, the mutations were developed in a systematic
way that considered program location, change type, and number of
changes. Further evaluation of DiSE on a broader range of program
types and on programs with actual version histories would address
this threat.

The primary threats to internal validity are the potential faults
in the implementation of our algorithms and in SPF. We controlled
for this threat by testing our algorithms on examples that we can
manually verify. With respect to threats to construct validity, the
metrics we selected to evaluate the cost of DiSE are commonly
used to measure the cost of symbolic execution.

Version CFG Nodes Time (mm:ss) States Explored Path Conditions
Changed Affected DiSE Full Symbc DiSE Full Symbc DiSE Full Symbc

v1 0 0 00:19 17:19 23 3,948,476 0 1,728
v2 1 1 00:22 16:49 564 3,948,476 0 1,728
v3 1 16 00:21 17:03 30 3,948,476 1 1,728
v4 4 18 00:20 18:07 34 3,948,476 1 1,728
v5 4 18 00:20 17:56 34 3,948,476 1 1,728
v6 1 26 00:32 16:49 24,036 3,948,476 381 1,728
v7 5 12 00:29 16:37 37 3,957,692 2 1,728
v8 4 12 00:30 16:33 44 3,948,476 3 1,728
v9 4 3 00:32 16:22 23 3,948,476 0 1,728

v10 1 13 00:28 20:15 38 3,948,476 3 1,728
v11 1 0 00:31 22:14 23 3,948,476 0 1,728
v12 4 3 00:32 20:21 23 3,948,476 0 1,728
v13 1 0 00:31 17:13 23 3,948,476 0 1,728
v14 9 18 00:30 18:50 41 3,957,692 2 1,728
v15 5 30 00:47 18:36 24,148 3,948,476 383 1,728

(a) ASW Example

Version CFG Nodes Time (mm:ss) States Explored Path Conditions
Changed Affected DiSE Full Symbc DiSE Full Symbc DiSE Full Symbc

v1 1 39 03:19 02:30 677,976 677,976 24 24
v2 1 7 00:08 02:22 93 677,976 17 24
v3 1 3 00:27 02:41 65,976 677,976 12 24
v4 1 0 00:08 02:44 17 677,976 1 24
v5 7 56 00:23 03:44 59,610 1,317,048 14 24
v6 1 1 00:08 02:44 17 677,976 1 24
v7 1 39 03:07 02:51 677,976 677,976 24 24
v8 8 57 00:29 03:45 59,610 1,317,048 14 24
v9 2 4 00:33 02:41 65,976 677,976 12 24
v10 2 39 03:40 02:51 677,976 677,976 24 24
v11 7 56 00:28 03:43 59,610 1,317,048 14 24
v12 8 65 00:31 03:54 70,129 1,317,048 6 24
v13 9 57 00:29 03:44 59,610 1,317,048 14 24
v14 3 39 03:39 02:51 677,976 677,976 24 24
v15 3 42 03:37 02:51 677,976 677,976 24 24
v16 8 56 00:28 03:43 59,610 1,317,048 14 24

(b) WBS Example

Version CFG Nodes Time (mm:ss) States Explored Path Conditions
Changed Affected DiSE Full Symbc DiSE Full Symbc DiSE Full Symbc

v1 1 41 00:30 08:34 81,737 264,885 13,082 130,820
v2 1 2 00:04 08:34 23 264,885 2 130,820
v3 2 2 00:15 08:41 33,341 264,885 3,926 130,820
v4 2 2 00:04 08:39 56 264,882 3 130,820
v5 2 2 00:03 08:41 36 264,885 2 130,820
v6 3 7 00:57 10:27 134,065 264,885 26,164 130,820
v7 2 43 00:53 09:32 107,901 264,885 26,164 130,820
v8 3 4 00:17 10:32 41,193 264,885 7,852 130,820
v9 4 43 00:53 10:31 107,901 264,885 26,164 130,820

(c) OAE Example

Table 2. DiSE and Symbolic Execution Results

4.2.5 Results and Analysis
In this section, we present the results of our case-study, and an-
alyze the results with respect to our two research questions. In
Tables 4.2.1(a)–(c) we list the results of running DiSE and full
symbolic execution on each version of each Java artifact. For each
mutant version of the method, we list the number of CFG nodes
changed (Changed), the number of CFG nodes affected by the
changes (Affected), and the metrics described in Section 4.2.2 – the
time to perform DiSE and the time to perform traditional symbolic
execution of the mutant version as reported by SPF, the number of
states explored during execution of each technique, and the num-
ber of path conditions generated by each technique in the resulting
method summary. The results for DiSE are listed under the sub-
heading DiSE and the results for traditional symbolic execution are
listed under the subheading Full Symbc.

RQ1 (Cost). In Tables 4.2.1(a)–(c), we can see that for all
versions of the ASW and OAE examples, and for the majority of
versions in the WBS example, DiSE takes considerably less time
than full symbolic execution. In many cases, the differences in time
is several orders of magnitude. For all of the examples, when the
changes to the program do not affect all path conditions (program
paths), DiSE takes at most 20% of the time taken by full symbolic
execution. For the five versions of the WBS example (v1, v7, v10,
v14, and v15) where DiSE explores the same number of states as
full symbolic execution, the time taken by DiSE is 9%–30% longer
than symbolic execution. This extra execution time accounts for the
overhead of computing the affected locations and supporting data
structures.

For all of our examples, there is considerable variation in the
number of states explored by DiSE; our intuition is that other
factors beyond the number of changes, e.g., location and nature

Version v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15
Changes 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
Selected 0 0 0 1 0 59 2 2 0 3 0 0 0 2 60
Added 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
Total Tests 0 0 1 1 1 59 2 2 0 3 0 0 0 2 60

(a) ASW Example

Version v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16
Changes 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Selected 20 17 12 1 14 1 20 14 12 20 14 5 14 20 20 14
Added 4 0 0 0 0 0 4 0 0 4 0 1 0 4 4 0
Total Tests 24 17 12 1 14 1 24 14 12 24 14 6 14 24 24 14

(b) WBS Example

Version v1 v2 v3 v4 v5 v6 v7 v8 v9
Changes 1 1 1 1 1 1 2 2 3
Selected 1 0 89 2 2 2 178 2 584
Added 291 2 0 0 0 582 0 582 0
Total Tests 292 2 89 2 2 584 178 584 584

(c) OAE Example

Table 3. Regression Testing Results

of the change, also have a considerable effect on the reductions
that can be achieved by DiSE (or any other technique that can
characterize the effects of program changes). We also conjecture
that program structure, particularly with regard to the number and
complexity of the constraints generated during symbolic execution
contributes to the differences in execution time for each technique.

RQ2 (Effectiveness). The number of path conditions computed
by DiSE varies greatly between versions for all three examples as
shown in Tables 4.2.1(a)–(c). For the 15 versions analyzed in the
ASW example, DiSE computes between zero and three path con-
ditions for 13 versions. For the other two versions, DiSE computes
approximately 22% of the path conditions generated by full sym-
bolic execution (381 and 383 path conditions). In v1 of the ASW
example, no CFG nodes are changed due to a compiler optimiza-
tion that effectively masks the change, and for the remaining ver-
sions where no path conditions are generated, one or more CFG
nodes was affected, however, the changes do not affect the path
conditions generated by DiSE.

While none of the changes require DiSE to explore all paths
in the ASW or OAE examples, in five of the 16 versions of the
WBS example, DiSE generate the same number of path conditions
as full symbolic execution. For these five versions, the number of
changed CFG nodes ranges from one to three (out of 100 CFG
nodes), and the number of affected CFG nodes ranges from 39 to
42. On the other hand, in v12 of the WBS example where only six
path conditions are generated by DiSE (compared with 24 by full
symbolic execution), eight CFG nodes are changed and 65 nodes
are affected. In the OAE example, the change made to v6 affects
seven CFG nodes (10%) and generates 26,164 path conditions –
20% of the path conditions computed by full symbolic execution.
In v7, the changes affect 43 CFG nodes (62%) and yet the same
number of of path conditions is generated. Based on our analysis
of the mutants created for these examples, there does not appear to
be any correlation between the number or percentage of affected
nodes and the number of affected path conditions.

Overall, our study demonstrates that for the examples used
in this study, DiSE has potential application for detecting and
characterizing affected program behaviors in evolving software.
In the artifacts used in our evaluation, DiSE was able to correctly
identify and characterize the subset of path conditions computed by
full symbolic execution as affected. In some instances, the change
affected only a small percentage of path conditions, and in others,
the change(s) had a much greater impact. When only a subset of
the path conditions were affected by the changes, DiSE was able
to consistently compute the affected path conditions in less time –
often several orders of magnitude – than full symbolic execution;
when all of the path conditions were affected by the changes, the
overhead incurred by DiSE was between nine and 30% for these
examples.

5. Discussion
The goal of DiSE is to enable more efficient symbolic execution by
focusing it on generating affected path conditions. DiSE uses a con-
servative analysis to identify affected program locations. Thus, in
principle, DiSE may generate some path conditions that represent
unchanged paths. However, as experimental results demonstrate,
DiSE is effective at focusing symbolic execution on affected pro-
gram behaviors and enables efficient incremental symbolic execu-
tion.

5.1 Bug finding using DiSE
DiSE can handle programs with assertions when the “assert” state-
ments are de-sugared into “if” and “throw” statements. In Java
programs, this de-sugaring takes place when assert statements in
Java source are compiled into Java byte code. Since DiSE performs
symbolic execution on Java byte code, DiSE will not miss detect-
ing a failed assertion violation caused by a program change. Thus,
DiSE supports finding bugs when assertions are present and asser-
tion failures characterize bugs. If the assertions were written in a
language other than the underlying programming language (e.g.,
Alloy [16] assertions in Java programs), our technique would work
with the assertions translated to Java (e.g., from Alloy).

5.2 Software evolution
The results of DiSE can be used to support various software evo-
lution tasks. We present one such application—regression testing
as it relates to test case selection and augmentation. We note that
our goal is not to demonstrate the effectiveness of test case selec-
tion and augmentation, but, rather to demonstrate one application
of DiSE results to support software evolution tasks.

SPF outputs values that can be used for the method arguments
(test inputs) based on the generated path conditions. The test inputs
are produced by solving the constraints in the path condition and
using the resulting values to generate a call to the method under
analysis. The results are output in string format. Our implementa-
tion of test case selection and augmentation is trivial in its approach
– it simply performs a string comparison of the test cases generated
for the original version (by full symbolic execution) with the tests
generated by DiSE. Tests generated for the original version of the
method represent an existing test suite. Tests generated by DiSE
that are also found in the tests generated for the original version are
marked as selected, while the other tests are considered tests to be
added to augment the test suite.

The results of using DiSE to perform test case selection and test
case augmentation for our three examples are shown in Tables 3(a)–
(c). The combination of selected and added tests execute all of
the branches in the program that are in some way affected by
the changes made to the method under analysis. Full symbolic
execution on the original version of ASW generates 256 tests, while
full symbolic execution on the WBS and OAE examples generates
24 tests and 2,920 tests respectively. Note that the number of test
cases generated by symbolic execution and by DiSE differs from
the number of path conditions generated by each technique; this is
due to the fact that the current implementation of the test generation
tool computes input values only for the method arguments, i.e., a
partial state. As a result, when fields are represented by symbolic
values, multiple path conditions generated by a given technique
may map to a single set of concrete inputs to the method under
analysis.

For all of the artifacts in our study, the results of DiSE can be
used to identify test cases that can be re-used, and the test cases
that exercise affected path conditions for which test cases must be
generated. For the ASW and WBS examples, DiSE results show
that only a small number of test cases is necessary to augment the
test suite for the new version of the program. For the OAE exam-

ple, the results of DiSE indicate that for some changes, e.g., v3,
it is unnecessary to generate any new test cases. For versions v6
and v8, however, only two of the existing test cases are valid for
the new version of the program and 584 test cases are necessary
to test the program behaviors identified as affected by DiSE. When
only a subset of the path conditions is affected by the changes to a
program, using DiSE results for test case selection and augmenta-
tion of the artifacts in our study would result in executing between
20% and 70% of the test cases that would be run in a re-test all
approach, reducing the time necessary for regression testing of the
new version of the program.

The requirements for soundness and completeness of an analy-
sis are driven by the needs of the specific evolution task that uses
the results of the analysis. For example, the test selection and aug-
mentation application considered here covers all the branches in
the method that are affected by the change. However, it does not
necessarily provide full (bounded) path coverage. To achieve full
path coverage, additional information could potentially be recorded
from a previous run, and combined with DiSE results. As future
work, we plan to investigate the use of DiSE for other software
evolution tasks.

6. Related Work
Recent years have seen a significant growth in research projects
based on symbolic execution, first introduced in the 1970’s by
Clarke [7] and King [22]. These projects have pursued three pri-
mary research directions to enhance traditional symbolic execution:
(1) to improve its effectiveness [4, 10, 12, 19, 32]; (2) to improve
its efficiency [1, 3, 5, 11, 20, 31, 37]; and (3) to improve its appli-
cability [8, 18, 27, 33]. The novelty of DiSE is to leverage state-of-
the-art symbolic execution techniques and apply a static analysis in
synergy to enable symbolic execution to perform more efficiently
as a program undergoes changes.

The projects to enhance the effectiveness of symbolic execution
have focused on two areas. First, is to enable symbolic execution to
handle programs written in commonly used languages, such as Java
and C/C++, by providing support for symbolic execution over the
core types used in these languages [4, 10, 12, 19, 32]. The second
area of focus is to enable symbolic execution to work around the
traditional limitation of undecidability of path conditions through
the use of mixed symbolic/concrete execution to attempt to prevent
the path conditions from becoming too complex [12, 32].

Research to enhance the efficiency of symbolic execution has
followed three basic directions. One, to use abstraction with sym-
bolic execution to reduce the space of exploration [1, 20]. Two,
to perform compositional symbolic execution, where summaries
of parts of code are used in place of an actual implementation
to enable the underlying constraint solvers to perform more effi-
ciently [3, 11]. Three, to enable symbolic execution to find bugs
faster through the use of heuristics, e.g., genetic algorithms [37],
that directly control the symbolic exploration and focus it on parts
that are more likely to contain bugs.

Static analysis has also been used effectively for guiding sym-
bolic execution. Chang’s recent doctoral dissertation [5] uses a def-
use analysis based on user-provided control points of interest, and
applies a program transformation that incorporates boundary con-
ditions on program inputs into the program logic to enable more ef-
ficient bug finding. Santelices and Harrold [31] use control and data
dependencies to symbolically execute groups of paths, rather than
individual paths to enable scalability. The key difference between
DiSE and previous work is the ability of DiSE to utilize informa-
tion about program differences for efficient symbolic execution as
code undergoes changes.

While several projects have made significant advances in apply-
ing symbolic execution to test input generation and program verifi-

cation – two traditional applications of symbolic execution – recent
projects have used it as an enabling technology for various novel
applications, including program differencing [27], data structure re-
pair [18], dynamic discovery of invariants [8], as well as estimation
of energy consumption on hardware devices with limited battery
capacity [33].

An application of symbolic execution with a focus on program
differences is regression testing [14, 15, 25]. Several recent projects
use symbolic execution as a basis of test case selection and aug-
mentation [29, 35, 38]. DiSE differs from these projects in its focus
on the core symbolic execution technique to enable a variety of
software evolution tasks – not only regression testing.

Program differencing, in general, is a well-studied research
area with several techniques for computing differences [2, 21, 27]
as well as leveraging them to enable various software evolution
tasks [23]. Research in utilizing differences to speed-up symbolic
execution by focusing it on code changes has only recently begun.
Godefroid et al. [13] consider the problem of statically validating
symbolic test summaries against changes, specifically for compo-
sitional dynamic test generation. Our approach is complementary
since it uses change impact information to explore only the paths of
the symbolic execution tree that are affected by the change, thereby
reducing the cost of recomputing symbolic summaries.

The Java PathFinder model checker [36] has previously been
used for incremental checking of programs that undergo changes [24,
39]. Incremental state-space exploration (ISSE) [24] focuses on
evolving programs and stores the explored state space graph to
use it for checking a subsequent version of the program, and re-
duces the time necessary for state-space exploration by avoiding
the execution of some transitions and related computations that are
not necessary. Regression model checking (RMC) [39] presents a
complementary approach to ISSE and uses the difference between
two versions to drive the pruning of the state space when model
checking the new version. RMC computes reachable program cov-
erage elements, e.g., basic blocks, for each program state during a
recording mode run of RMC on the original version. Impact anal-
ysis is then used to calculate dangerous elements whose behavior
may now differ because of changes. This is done by comparing
the bytecodes and control-flow graphs for the two program ver-
sions. The dangerous elements information is then combined with
the reachable elements information to prune safe sub-state spaces
during a pruning mode run of RMC on the modified version of the
program. DiSE takes inspiration from RMC and supports incre-
mental symbolic execution, which is not addressed by RMC and
ISSE. Moreover, a key difference between DiSE and previous work
is that to analyze the current program version DiSE does not require
the availability of the internal states of the previous analysis run –
ISSE requires the state-space graph and RMC requires the dynamic
reachability information for program coverage elements.

7. Conclusions and Future Work
In this paper, we introduced Directed Incremental Symbolic Execu-
tion (DiSE), a novel technique that leverages program differences
to guide symbolic execution to explore and characterize the effects
of program changes. We implemented DiSE in the symbolic ex-
ecution extension of the Java PathFinder verification framework,
and evaluated its cost and effectiveness on methods from three
Java applications. The results of our case-study demonstrate that
DiSE efficiently generates the set of path conditions affected by the
change(s) to a program. We demonstrate the utility of our technique
by using DiSE results to perform test case selection and test input
generation for the examples in our study.

DiSE is an intra-procedural, incremental analysis technique that
generates and characterizes method-level differences. DiSE does
not generate affected path conditions arising from the control and

data flow between various methods. As a result, DiSE does not con-
sider the effects of the return value of a changed method flowing
back to its calling context, nor does DiSE capture the effects of
changes to the global state if whatever change is causing the effect
does not also affect the path condition. We plan to extend DiSE
to use an inter-procedural analysis to generate affected path condi-
tions over the entire system as part of our future work.

We observed from our study that the number of changes is
only one factor affecting which (and how many) path conditions
are changed; program structure and the nature of the change also
appear to have a considerable effect. We expect these factors to
also affect the number of path conditions that are changed when we
evaluate DiSE on a more diverse set of programs. In future work,
we plan to conduct a more comprehensive evaluation of our DiSE
technique.

Acknowledgments
The authors gratefully acknowledge the contributions of Matt
Dwyer and Gregg Rothermel to early work on DiSE. The authors
also thank Eric Mercer for the helpful comments to improve the
paper. The work of Yang and Khurshid was supported in part by
the NSF under Grant Nos. IIS-0438967 and CCF-0845628, and
AFOSR grant FA9550-09-1-0351.

References
[1] S. Anand, C. S. Pasareanu, and W. Visser. Symbolic execution with

abstraction. International Journal on Software Tools for Technology
Transfer (STTT), 11:53–67, January 2009.

[2] T. Apiwattanapong, A. Orso, and M. J. Harrold. Jdiff: A differencing
technique and tool for object-oriented programs. Automated Software
Engineering, 14(1):3–36, 2007.

[3] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding
dynamic programming errors. Software: Practice and Experience,
30(7):775–802, 2000.

[4] C. Cadar and D. R. Engler. Execution generated test cases: How to
make systems code crash itself. In SPIN, pages 2–23, 2005.

[5] W. C. Chang. Improving Dynamic Analysis with Data Flow Analysis.
PhD thesis, University of Texas at Austin, 2010.

[6] Choco. Main–page Choco. http://www.emn.fr/z-info/
choco-solver/, 2010.

[7] L. A. Clarke. A program testing system. In Proceedings of the 1976
annual conference, ACM ’76, pages 488–491, 1976.

[8] C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy: Dynamic sym-
bolic execution for invariant inference. In ICSE, pages 281–290, 2008.

[9] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
pages 337–340, 2008.

[10] X. Deng, Robby, and J. Hatcliff. Kiasan/KUnit: Automatic test case
generation and analysis feedback for open object-oriented systems. In
TAICPART-MUTATION, pages 3–12, 2007.

[11] P. Godefroid. Compositional dynamic test generation. In POPL, pages
47–54, 2007.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In PLDI, pages 213–223, 2005.

[13] P. Godefroid, S. K. Lahiri, and C. Rubio-Gonzalez. Incremental
compositional dynamic test generation. Technical Report MSR-TR-
2010-11, Microsoft Research, 2010.

[14] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel.
An empirical study of regression test selection techniques. ACM
Transactions Software Engineering and Methodology, 10(2):184–208,
2001.

[15] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi. Regression test selection for
java software. In OOPSLA, pages 312–326, 2001.

[16] D. Jackson. Software Abstractions: Logic, Language, and Analysis.
The MIT Press, Cambridge, MA, 2006.

[17] A. Joshi and M. Heimdahl. Model-Based Safety Analysis of Simulink
Models Using SCADE Design Verifier. In SAFECOMP, volume 3688
of LNCS, pages 122–135, September 2005.

[18] S. Khurshid, I. Garcı́a, and Y. L. Suen. Repairing structurally complex
data. In SPIN, pages 123–138, 2005.

[19] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In TACAS, pages 553–568,
2003.

[20] S. Khurshid and Y. L. Suen. Generalizing symbolic execution to
library classes. In PASTE, pages 103–110, 2005.

[21] M. Kim, D. Notkin, and D. Grossman. Automatic inference of struc-
tural changes for matching across program versions. In ICSE, pages
333–343, 2007.

[22] J. C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[23] S. K. Lahiri, K. Vaswani, and T. Hoare. Differential static analysis:
Opportunities, applications, and challenges. In FoSER, pages 201–
204, 2010.

[24] S. Lauterburg, A. Sobeih, D. Marinov, and M. Viswanathan. Incremen-
tal state-space exploration for programs with dynamically allocated
data. In ICSE, pages 291–300, 2008.

[25] H. Leung and L. White. Insights into regression testing. In ICSM,
pages 60–69, 1989.

[26] C. Păsăreanu and N. Rungta. Symbolic PathFinder: symbolic execu-
tion of Java bytecode. In ASE, pages 179–180, 2010.

[27] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Differential
symbolic execution. In FSE, pages 226–237, 2008.

[28] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level symbolic
execution and system-level concrete execution for testing NASA soft-
ware. In ISSTA, pages 15–25, 2008.

[29] D. Qi, A. Roychoudhury, and Z. Liang. Test generation to expose
changes in evolving programs. In ASE, pages 397–406, 2010.

[30] SAE-ARP4761. Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment. SAE
International, December 1996.

[31] R. Santelices and M. J. Harrold. Exploiting program dependencies for
scalable multiple-path symbolic execution. In ISSTA, pages 195–206,
2010.

[32] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing
engine for c. In ESEC/FSE, pages 263–272, 2005.

[33] C. Seo, S. Malek, and N. Medvidovic. An energy consumption frame-
work for distributed Java-based software systems. Technical Report
USC-CSE-2006-604, University of Southern California, 2006.

[34] J. Sztipanovits and G. Karsai. Generative programming for embedded
systems. In GPCE, pages 32–49, 2002.

[35] K. Taneja, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Guided
path exploration for regression test generation. In ICSE, New Ideas
and Emerging Results, pages 311–314, 2009.

[36] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model
checking programs. Automated Software Engineering, 10(2):203–232,
2003.

[37] Z. Xu, M. B. Cohen, and G. Rothermel. Factors affecting the use
of genetic algorithms in test suite augmentation. In GECCO, pages
1365–1372, 2010.

[38] Z. Xu and G. Rothermel. Directed test suite augmentation. In APSEC,
pages 406–413, 2009.

[39] G. Yang, M. B. Dwyer, and G. Rothermel. Regression model checking.
In ICSM, pages 115–124, 2009.

