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Directed Mammalian Gene Regulatory Networks Using
Expression and Comparative Genomic Hybridization
Microarray Data from Radiation Hybrids
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Desmond J. Smith2*
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Abstract

Meiotic mapping of quantitative trait loci regulating expression (eQTLs) has allowed the construction of gene networks.
However, the limited mapping resolution of these studies has meant that genotype data are largely ignored, leading to
undirected networks that fail to capture regulatory hierarchies. Here we use high resolution mapping of copy number eQTLs
(ceQTLs) in a mouse-hamster radiation hybrid (RH) panel to construct directed genetic networks in the mammalian cell. The
RH network covering 20,145 mouse genes had significant overlap with, and similar topological structures to, existing
biological networks. Upregulated edges in the RH network had significantly more overlap than downregulated. This
suggests repressive relationships between genes are missed by existing approaches, perhaps because the corresponding
proteins are not present in the cell at the same time and therefore unlikely to interact. Gene essentiality was positively
correlated with connectivity and betweenness centrality in the RH network, strengthening the centrality-lethality principle
in mammals. Consistent with their regulatory role, transcription factors had significantly more outgoing edges (regulating)
than incoming (regulated) in the RH network, a feature hidden by conventional undirected networks. Directed RH genetic
networks thus showed concordance with pre-existing networks while also yielding information inaccessible to current
undirected approaches.
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Introduction

Interrogating genome-scale datasets is a necessary step to a systems

biology of the mammalian cell [1,2]. Networks have been constructed

using various approaches. In the transcriptome, coexpression

networks have been constructed by linking genes whose correlations

exceed a selected p-value based on transcript profiling data across

different samples [3]. In the proteome, genes can be linked if their

corresponding proteins bind each other based on yeast two-hybrid

(Y2H) or co-affinity immunoprecipitation assays [4,5]. Protein-

protein interactions can also be ascertained from literature-curated

(LC) databases [6,7]. The Human Protein Reference Database

(HPRD) consists of ,8,800 proteins and ,25,000 interactions and

was constructed using Y2H, co-affinity purification and LC data [6].

Genes can also be linked by virtue of membership of a common

pathway [8,9], an example being the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway [10–12].

Networks constructed using these various approaches are

correlated, with some exceptions. While a single dataset often

has a large number of false positives and false negatives and

reflects only one facet of gene function, accessing multiple

independent datasets increases the reliability of gene functional

annotation. Integrating diverse gene networks has been shown

predictive of loss-of-function phenotypes in yeast [8,13] and

Caenorhabditis elegans [9].

Recently transcriptional networks have been constructed using

expression data from genetically polymorphic individuals [14–16].

This approach allows the identification of quantitative trait loci

(QTLs) regulating expression, or eQTLs. Mapping of eQTLs

relies on expression perturbations due to naturally occurring

polymorphisms. These sequence variants may be lacking in critical

pathways because of selective pressure, rendering inaccessible

important regions of the genetic network.

A disadvantage of most currently available networks is that it is

difficult to infer functional relationships between interacting genes.

Consequently, the edges between genes are undirected and have no

regulatory hierarchy. This is also true of eQTL networks where,

because of limited mapping power, genotype information has been

generally ignored and coexpression networks have been constructed

instead [17]. Causality between expression and clinical traits has

been inferred from eQTL data using conditional correlation

measures [18] and structural model analysis [19,20]. However, this

approach has been restricted to a small subset of markers and traits

and cannot be easily extended to constructing gene networks.

Radiation hybrid panels have been used to construct high

resolution maps of mammalian genomes [21–23]. Fragmenting a
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mammalian genome using radiation yields many more break-

points than meiotic mapping and hence greatly enhanced

resolution. The T31 mouse-hamster hybrid panel was constructed

by lethally irradiating mouse cells harboring the thymidine kinase

gene (Tk1+) [22]. These cells were then fused to Tk12 hamster A23

cells. Selection for the Tk1+ gene using HAT medium resulted in a

panel of 100 hybrid cell lines, each of which contained a random

sampling of the mouse genome. Mouse autosomal genes retained

in a hybrid clone have two hamster copies plus one mouse copy,

compared to two copies otherwise.

We recently used the T31 RH panel for high-resolution

mapping of QTLs for gene expression [24]. The QTLs regulate

expression because of copy number changes and they are therefore

called copy number expression QTLs or ceQTLs. We re-

genotyped the T31 panel at 232,626 markers using array

comparative genomic hybridization (aCGH). The average reten-

tion frequency of mouse markers in the panel was 23.9% and the

average length of the mouse fragments was 7.17 Mb. We also

analyzed the panel using expression microarrays interrogating

20,145 genes.

Using regression, we found 29,769 trans ceQTLs regulating

9,538 genes at a false discovery rate (FDR) = 0.4 in the T31 panel.

At the same FDR threshold, we also found 18,810 cis ceQTLs.

Consistent with the average fragment length, a ceQTL was

identified as trans if .10 Mb from a regulated gene and cis

otherwise. The {2 log10 p interval for the ceQTLs was ,150 kb,

thus localizing them to an average of only 2–3 genes.

In this paper we evaluate gene networks constructed from

ceQTL mapping. In contrast to undirected networks from

meiotically mapped eQTLs and protein binding approaches, the

high resolution mapping and dense genotyping of ceQTLs in the

RH panel allowed the use of genotype information to construct

directed networks. This directionality permits insights that cannot

be obtained from undirected networks.

Results

A Directed Gene Network from Radiation Hybrids
We previously analyzed a mouse-hamster radiation hybrid

panel, T31 [24]. The donor cells were male primary embryonic

fibroblasts from the inbred mouse strain 129 and the recipient cells

were from the A23 male Chinese hamster lung fibroblast-derived

cell line [22]. A total of 99 cell lines from the original panel were

available. RH clones with retained autosomal mouse genes in the

panel have two hamster copies plus usually one extra mouse copy,

compared to two hamster copies otherwise. The variation in gene

dosage drives changes in mRNA expression.

Transcript abundance and marker dosage were measured by

mouse expression arrays and comparative genomic hybridization

arrays (aCGH), respectively. A total of 20,145 transcript levels

were assayed by the expression arrays and 232,626 markers by the

aCGH. We mapped ceQTLs by regressing the expression array

data on the aCGH data. Mouse and hamster genes were detected

with comparable efficiency and behaved equivalently in terms of

regulation [24].

To construct the RH network, the copy number of each gene

was estimated by linear interpolation using the two neighboring

aCGH markers. The linear interpolation based estimation is

reasonable, considering the high density of aCGH markers.

Measured transcripts were denoted by y
ið Þ

k , where i and k are

gene and RH clone index, respectively. The estimated gene copy

number was denoted by x
jð Þ

k for gene j in RH clone k. For each

ordered pair of genes i and j, a Pearson correlation coefficient rji

between x jð Þ and y ið Þ was calculated from the 99 observations. In a

linear model y ið Þ~mjizajix
jð Þ, where mji and aji are regression

parameters, the correlation coefficient rji can be viewed as a

standardized slope aji and measures the goodness of fit for the

linear model. A significantly large positive rji value implies

induction and a significantly large negative value implies

repression.

Previously, we used an F-statistic, which is monotonic in the

absolute value rji

�� �� of the correlation coefficient rji, to test for

significant association in a context of the linear model [24]. Here

we preserved the sign and used the correlation coefficient rji as a

test statistic. We found that rji yielded more significant overlaps

with other biological datasets than rji

�� �� (below). The number of

directed edges and number of nodes with $1 edge for right-tailed,

left-tailed and both-tailed thresholding are shown in Table S1 and

Figure S1 (see Methods).

We constructed an adjacency matrix A by assigning rji to its

j,ið Þth entry, which gives information on whether gene j regulates

gene i, either directly or indirectly. Since A has real number

entries and is not symmetric, the network represented by A is

weighted and directed. We used the correlation coefficients for

thresholding and calculated the statistical significance of similar-

ities to existing biological datasets. This is in contrast to

transforming the correlation coefficients into FDR (false discovery

rate) corrected p-values and then performing statistical threshold-

ing [24]. Our strategy in this study is similar, in spirit, to the

integration approach taken in [8,9] where the reliability of each

dataset is measured by comparing with a benchmark dataset.

Since nearly all genes show a copy number increase in a portion

of the RH panel, the bulk of genes (94%) also showed a cis ceQTL

[24]. To remove these cis ceQTLs as an artifactual source of edges

in the RH network, we omitted all markers within 10 Mb of the

gene being considered. Thus, only trans ceQTLs were employed in

the analysis.

Overlap with Existing Datasets
We examined the similarity of our network to existing datasets

including protein-protein interactions from HPRD (Human

Protein Reference Database) [6], the KEGG (Kyoto Encyclopedia

of Genes and Genomes) pathway database [10–12], Gene

Ontology (GO) annotations [25] and a coexpression network

obtained from the SymAtlas microarray database of normal mouse

Author Summary

An important problem in systems biology is to map gene
networks, which help identify gene functions and discover
critical disease pathways. Current methods for construct-
ing gene networks have identified a number of biologically
significant functional modules. However, these networks
do not reveal directionality, that is, which gene regulates
which, an important aspect of gene regulation. Radiation
hybrid panels are a venerable method for high resolution
genetic mapping. Recently we have used radiation hybrids
to map loci based on their effects on gene expression.
Because these regulatory loci are finely mapped, we can
identify which gene turns on another gene, that is,
directionality. In this paper, we constructed directed
networks from radiation hybrid expression data. We found
the radiation hybrid networks concordant with available
datasets but also demonstrate that they can reveal
information inaccessible to existing approaches. Impor-
tantly, directionality can help dissect cause and effect in
genetic networks, aiding in understanding and ultimately
rational intervention.

Directed Genetic Networks
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tissues [26] (see Methods). We used two different approaches to

compare the directed RH and undirected networks. In the first

approach, we discarded the edge directions of the RH network

and calculated an overlap of undirected edges between the RH

and existing networks. It is not uncommon to disregard directions

in a network for modeling and analysis purposes [27–33] and

projecting a directed network onto a space of undirected networks

by forgoing information on edge directions seems reasonable. In

the second approach, we assumed a hidden directed random

network for each undirected existing network and estimated the

resulting overlap of directed edges.

Undirecting the RH network. To compare the directed RH

network and the other undirected networks, we ignored the edge

directions in the RH network and calculated the resulting overlap.

To test overlap significance, we used a one-sided Fisher’s exact test

based on a two by two contingency table, replaced with a one-

sided chi-square test when the expected values in all table cells

exceeded 50 [34] (see Methods). The one-sided Fisher’s exact test

is equivalent to the hypergeometric test, widely used in Gene

Ontology enrichment analysis [35–38] and also for evaluating

overlap significance between different protein-protein interaction

datasets [39]. It is noteworthy that the one-sided chi-square test is

closely related to the Bayesian log-likelihood score (LLS) approach

to integrating diverse datasets into a single network [8,9]. That is,

the chi-square statistic has a monotonic relationship with the LLS

score for evaluating dataset quality (see Text S1).

Figure 1 shows p-values representing overlap significance of the

RH network with various datasets for a range of correlation

coefficient thresholds (Dataset S1). False discovery rates (FDRs)

were calculated following the Benjamini-Hochberg procedure

[40]. For correlation coefficient thresholds between about 0 and

0.2, the RH network showed significant overlaps with all datasets

(FDR = 0.01) except the GO cellular component annotation

network. Although only the biological process annotations from

GO were previously used as benchmarks in integrating heteroge-

neous datasets [8,9,13,41], we also found significant overlap with

the GO molecular function annotation.

The existing networks we used for comparison vary in size from

20,957 edges (HPRD network) to 18,754,380 (SymAtlas coex-

pression network) (see Methods). Nevertheless, the significance of

overlaps quantified by p-values was comparable for the different

networks (cf. [8,9]). Figure 1H combines the comparisons of the

RH and existing networks by averaging {log10 p values. The

numbers of undirected edges shared with each dataset are shown

in Figure S2. The non-monotonic relationships between {log10 p
values (Figure 1) and overlap (Figure S2) imply that large

{log10 p values are likely real and not due to random effects of

large numbers of observations. Similarly, the decline in {log10 p
with increasing correlation coefficient thresholds is due to the

unavoidable loss of statistical power as edge number decreases.

The results suggest that our network possesses biological

information relevant to other functional annotations.

The maximum overlap significance occurred at low correlation

coefficient thresholds between 0 and 0.2 (Figure 1). To test

whether this is simply because large thresholds (.0.2) yield too few

edges and small thresholds (,0) give too many edges for significant

overlap, we randomly permuted the elements of the adjacency

matrix for the RH network and repeated the one-sided Fisher’s

exact and chi-square tests. The permuted network had the same

size (number of edges) as the non-permuted RH network. As

shown in Figures 2A (overlap with HPRD network) and 2B

(overlap significance averaged over existing networks), the

permuted networks did not show any significant overlap with

the existing datasets (FDR-corrected pw0:5). These computation-

al controls imply that the low correlation coefficient thresholds for

maximum overlap significance are not simply a statistical artifact.

Next we investigated how the number of RH clones affects the

overlap. The sensitivity and resolution of the RH network should

improve as the number of RH clones increases. To test this, we

randomly selected a subset of the 99 RH clones (40, 60, 80 and 99

clones) and calculated the significance of overlap with the HPRD

network using the one-sided Fisher’s exact and chi-square tests

(Figure 2C). Similarly, Figure 2D shows the {log10 p values

averaged over the existing datasets. The maximum overlap

significance over correlation coefficient thresholds, that is,

sensitivity, increased with the number of RH clones (Figures 2C

and 2D). However, the correlation coefficient thresholds of

maximum overlap significance remained nearly constant between

0 and 0.2 across different numbers of clones (Figures 2C and 2D).

This observation implies that the relatively low correlation

coefficients of maximum overlap significance may be due to RH

network properties orthogonal to existing networks rather than

random noise in the array measurements or insufficient RH clones

(see Discussion).

Hidden directed random network model. We assume that

for each undirected network there is a hidden directed random

network, modeled as in [42] (see Methods). Since the hidden

directed network is not directly observable, we estimated the

overlap of directed edges between the directed RH and the

unobserved directed networks by a conditional expectation given

the undirected existing dataset. P-values representing overlap

significance were calculated based on the random network model.

The results of the comparison of the directed RH network and

the hidden directed random network are shown in Figure 3. The

findings were remarkably similar to those where the directionality

of the RH network was discarded (Figures 1) except for scaling

factors. The similarity is because the random network model of a

hidden directed network, where both directions for an edge are

equally probable, does not contain more information than its

undirected counterpart. We did not use any topological informa-

tion on directionality obtained from RH networks since the

purpose of the overlap analysis was to explore and validate the RH

networks by comparison with independent datasets. In addition,

orienting the edges of undirected networks, such as protein-protein

interaction networks, is a difficult task since there is no genotype

information in these datasets.

Upregulation Gives More Significant Overlap with
Existing Datasets

We examined whether upregulation in the RH data, represent-

ed by positive correlation coefficients, rjiw0, showed a different

significance of overlap with existing datasets than downregulation,

represented by rjiv0. We defined an unweighted adjacency

matrix A
left dð Þ
ji by left-tailed thresholding of the RH data, where

A
left dð Þ
ji ~1 if Ajivd for a given correlation coefficient threshold d,

and A
left dð Þ
ji ~0 otherwise. This network emphasized downregula-

tion in the RH data. We also defined A
both dð Þ
ji by both-tailed

thresholding, where A
both dð Þ
ji ~1 if Aji

�� ��wd, and A
both dð Þ
ji ~0

otherwise. This network gave equal weight to up- and downreg-

ulation in the RH data and is equivalent to previous datasets

produced from F-tests [24]. The unweighted adjacency matrix for

right-tailed thresholding is defined as A
right dð Þ
ji ~1 if Ajiwd, and

A
right dð Þ
ji ~0, emphasizing upregulation in the RH data.

Unweighted RH networks obtained from left-tailed thresholding,

which emphasized downregulation, did not show any significant

overlap (FDR-corrected pw0:05) with existing datasets (Figure S3,

Dataset S1), except the GO cellular component annotation. Even

this significance was modest. Unweighted networks obtained by

Directed Genetic Networks
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both-tailed thresholding, which equally weighted up- and down-

regulation, also did not show any significant overlap (FDR-

corrected pw0:05) with existing datasets, except the GO biological

process annotation (Figure S4, Dataset S1).

Figure 2E compares the maximum significance {log10 p over

correlation coefficient thresholds for the different thresholding

approaches. Overall, the results suggest upregulation in the RH

network yields more significant overlap with existing datasets than

downregulation. This may reflect the fact that if a gene represses

another gene in trans the two protein products are unlikely to co-

exist in the cell and hence unlikely to interact. A corollary is that

protein binding methods such as yeast two-hybrid and co-affinity

immunoprecipitation may miss negative regulatory interactions.

Our finding is reminiscent of the observation that interacting

protein pairs have significantly higher transcript abundance

correlations than chance [43,44].

Topological Properties
The overlap analysis based on edge-comparison may fail to

capture some indirect interactions or other topologies. We

therefore compared the topological properties of the RH and

HPRD networks.

The degrees (number of edges for each node, or connectivity) of

the weighted (unthresholded) RH and HPRD networks were

significantly correlated (Spearman’s correlation coeffi-

cient = 0.055, p~1:8|10{5). However, the similarity to the

HPRD network disappeared when we used absolute values of the

correlation coefficients of the RH network in the adjacency matrix,

A (Spearman’s correlation coefficient = 20.0081, p~0:53). These

observations imply that the degree distribution for upregulated but

not downregulated edges in the RH network is significantly

correlated with the HPRD network. This is consistent with the

notion that repressive relationships are not well represented in

HPRD.

Next, we compared the betweenness centralities of the RH and

HPRD networks. The betweenness centrality measures the total

number of nonredundant shortest paths going through each node,

representing the severity of bottlenecks in the network [45,46].

The betweenness centralities of the RH and HPRD networks were

significantly correlated (FDR = 0.05) when the right-tailed corre-

lation coefficient thresholds for RH network were between 20.1

and 0.1 (Figure 2F).

We calculated the diameters (average minimum distance

between pairs of nodes) of the RH and HPRD networks. The

diameter of a giant connected component, consisting of 5,433

nodes with 20,859 undirected edges excepting self-loops, of the

HPRD network was 4.13. For the RH network, we considered

those 5,433 genes that were in the HPRD network and used a

right-tailed threshold of 0.37544, yielding 20,859 undirected

edges, to make its size (node and edge numbers) comparable to

the HPRD network. The diameter of the RH network was 4.11,

close to that (4.13) of the HPRD network.

We also compared the clustering coefficients of the RH and

HPRD networks, a measure of local cliqueness [47], but found no

significant positive correlation. In summary, the RH network

showed similarities with the HPRD network in terms of

connectivity, betweenness centrality and diameter, but not

cliqueness.

Essentiality
Previous studies in other networks showed that essentiality is

positively correlated with connectivity and betweenness centrality

[9,46,48–56]. However, some authors have questioned the

association between essentiality and connectivity, attributing it to

dataset bias [6,57]. We tested whether essentiality is associated

with connectivity and betweenness centrality in the RH network.

Essential genes had significantly more edges than non-essential

genes for a range of right-tailed correlation coefficient thresholds

from 20.12 to 0.16 (FDR = 0.01) using a one-sided Wilcoxon

rank-sum test [34] (Figure 4A). This range is similar to that for

significant overlaps with existing datasets. Also, the fraction of

essential genes was positively correlated with the degree of the

weighted RH network (Pearson’s correlation coefficient = 0.70,

p~2:6|10{3) (Figure 4B).

Similarly, essential genes had significantly larger betweenness

centralities for a range of right-tailed correlation coefficient

thresholds from 20.14 to 0.16 (FDR = 0.01) using a one-sided

Wilcoxon rank-sum test (Figure 4C). Figure 4D shows that the

fraction of essential genes was positively correlated with between-

ness centrality for the RH network constructed from a typically

optimal right-tailed correlation coefficient threshold for overlap of

0.1 (Pearson’s correlation coefficient = 0.72, p~1:6|10{3).

Transcription Factors Have More Outgoing Than
Incoming Edges

It is natural to suppose that transcription factors would have

more outgoing than incoming edges since transcription factors

regulate other genes. This proposition cannot be tested in

conventional undirected networks, but can be tested in the

directed RH network. Using a one-sided paired signed rank test

[34] we found that transcription factors had significantly more

outgoing edges than by chance (FDR = 0.01) for a range of

correlation coefficient thresholds from 0.23 to 0.46 (Figure 5A).

We also used a one-sided Fisher’s exact and chi-square test to

evaluate the association between transcription factors and genes

having $1 outgoing edge in the RH network. The significance of

the association was modest but significant (FDR = 0.05)

(Figure 5B). In contrast, the association between transcription

factors and genes having $1 incoming edge was not significant

(FDR = 0.05) (Figure 5B). Together, these results imply that

transcription factors are more likely to regulate other genes than

be the target of regulation and suggest transcription factors have a

privileged role in genetic networks.

Discussion

We used high resolution mapping of ceQTLs in an RH panel to

create a directed genetic network. There was significant overlap

with existing networks such as HPRD, KEGG, GO annotation

and a SymAtlas coexpression network. The RH network also

showed similar topological properties to the HPRD network in

connectivity, betweenness centrality and diameter.

The RH network showed maximum significance of overlap with

existing networks at relatively low positive correlation coefficient

thresholds between 0 and 0.2. The low thresholds were not simply

by chance, since randomly permuted RH networks did not show

any significant overlap with existing networks. Also, the low values

Figure 1. Overlap significance between right-tailed thresholded RH networks and existing datasets. (A) HPRD protein-protein
interaction network. (B) KEGG pathway network. (C) SymAtlas coexpression network. (D) GO annotations. (E) GO molecular function annotation. (F)
GO cellular component annotation. (G) GO biological annotation. (H) Averaged {log10 p values over results from A to G. One-sided Fisher’s exact and
chi-square tests used to assess overlap significance.
doi:10.1371/journal.pcbi.1000407.g001

Directed Genetic Networks
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Figure 2. Comparison of RH networks and existing datasets. (A) Overlap between 10 randomly permuted RH networks and HPRD network.
The RH networks were constructed from right-tailed thresholding and one-sided Fisher’s exact and chi-square tests used to assess significance. (B)
Averaged {log10 p values for overlap between randomly permuted RH networks and different existing datasets (HPRD, KEGG, SymAtlas
coexpression, GO, GO-molecular function, GO-cellular component and GO-biological process annotation networks). (C) Overlap between RH networks
constructed from a subset of randomly selected RH clones and HPRD network. Mean of overlap significance (solid line) over 50 random subsets
shown with standard errors calculated by bootstrapping (dash-dot line). (D) Same as (C) except averaged {log10 p values over different existing
datasets. (E) Comparing different thresholding approaches. Maximum {log10 p over varying correlation coefficient thresholds shown. (F) Comparing
betweenness centralities of RH and HPRD networks. P-values of Spearman correlation coefficients (one-sided, positive direction) between the
betweenness centralities of RH and HPRD networks shown.
doi:10.1371/journal.pcbi.1000407.g002

Directed Genetic Networks
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did not seem to be caused by noise in the array measurements or

by lack of sufficient numbers of RH clones, since the correlation

coefficient thresholds giving maximum overlap significance

remained nearly constant for varying clone number, although

the sensitivity of overlap increased with the number of clones. This

may reflect the orthogonal nature of the RH network compared to

existing networks, suggesting the RH approach will yield

complementary information on mammalian genetic networks.

Novel and replicated edges in the RH network may thus be

balanced in the low correlation coefficient threshold range.

The overlap between the RH network and existing interaction

networks was greater for edges possessing upregulation than

downregulation. This observation may be because the corre-

sponding proteins are unlikely to interact if one gene represses

another, since the proteins will not be present in the cell at the

same time. It also implies that protein-protein interaction networks

may fail to uncover valid edges between genes if they have a

repressive relationship.

Previous studies found significant associations of essentiality

with connectivity and/or betweenness centrality in protein-protein

interaction networks [39,46,48–52], coexpression networks

[53,56], Bayesian integrated gene networks [9] and transcriptional

regulatory networks [46,50,54]. Most investigations focused on

yeast, worm and fly and there have been only a few studies of

mammalian gene networks [6,9]. Some authors have questioned

the association of essentiality and connectivity [6,57]. Coulomb et

al. found that essentiality was poorly related to connectivity when

biases in protein interaction databases were taken into account

Figure 4. Essentiality, connectivity and centrality in RH networks. (A) P-values for one-sided Wilcoxon rank-sum test assessing whether
essential genes have significantly more edges than non-essential. (B) Fraction of essential genes and degree of weighted RH network. (C) P-values for
one-sided Wilcoxon rank-sum test assessing whether essential genes have significantly larger betweenness centralities than non-essential. (D)
Fraction of essential genes and betweenness centrality of RH network constructed with correlation coefficient threshold of 0.1 by right-tailed
thresholding.
doi:10.1371/journal.pcbi.1000407.g004

Figure 3. Overlap significance between right-tailed thresholded RH networks and existing datasets, calculated using hidden
random directed network models. Same as Figure 1 except that a hidden random directed network was used to model existing undirected
networks.
doi:10.1371/journal.pcbi.1000407.g003

Directed Genetic Networks
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[57]. Yu et al. also found related problems due to bias in a yeast

two hybrid dataset [39]. In contrast, the RH network is free of

biases that may exist in protein interaction datasets. The

significant positive correlation between essentiality, connectivity

and betweenness centrality in the RH network adds to the

evidence of the centrality-lethality rule in the mammalian setting.

We also showed that transcription factors were likely to have

more outgoing rather than incoming edges. While this finding is

Figure 5. Transcription factors and edge directionality. (A) P-values for one-sided paired signed rank test assessing whether transcription
factors have significantly more outgoing than incoming edges. (B) Overlap between transcription factors and genes having $1 outgoing or incoming
edge. P-values from one-sided Fisher’s exact and chi-square tests.
doi:10.1371/journal.pcbi.1000407.g005
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not unexpected and helps validate the RH network, a recent study

using naturally occurring polymorphisms in yeast suggested that

transcription factors are no more likely to reside close to eQTLs

than chance [58]. The discrepancy between the RH and yeast

studies may be because an increase in copy number in the RH

cells is a more reliable way to perturb gene networks than naturally

occurring alleles. In contrast, polymorphisms may be under

selective pressure to minimize disruptions in potentially critical

nodes in gene networks, such as transcription factors.

We thresholded the adjacency matrix at different correlation

coefficients to compare unweighted RH networks with existing

unweighted datasets. However, we chose to leave the RH network

weighted rather than finalizing an unweighted form at an optimal

threshold. Such an operation is irreversible and would lose

information on linkage strength and sign. In other studies, the

sensitivity of a coexpression network was limited by thresholding

[56] and weighted coexpression networks were more robust than

unweighted networks [53]. Indeed, weighted networks are widely

used in various applications. In probabilistic integrated gene

networks, linkages between genes are represented by weighted

sums of log likelihood score (LLS) values [8,9]. Weighting was also

used for a Bayesian gene network [13] and a scientific collaboration

network [59]. In addition, weighted coexpression networks have

been extensively studied [53,60] and it is straightforward to

incorporate a weighted network into a probabilistic integrated

network by a Bayesian LLS approach [8,9].

We constructed a directed gene network from radiation hybrids

and found it concordant with existing networks. We also showed

that RH networks have the potential to provide new insights

reflecting orthogonal aspects of gene regulation. The RH networks

will be refined as more panels, including those available for other

species, are analyzed resulting in improved power and sensitivity.

Methods

Radiation Hybrid Data
Details on the analysis of the T31 RH panel cells and the

preprocessing of aCGH and expression array data can be found in

[24]. The microarray and aCGH data have been deposited in

NCBI Gene Expression Omnibus (GEO) database under

accession number GSE9052.

Network Construction
The directed RH network was constructed as described in

Results. The copy number for each gene was estimated from the

aCGH data by linear interpolation as follows. Let z
lð Þ

k denote the

array measurement for aCGH marker l in RH clone k. For gene j,
suppose marker l1 is nearest to the gene from the left on the same

chromosome and marker l2 is nearest from the right. The copy

number for gene j in clone k was estimated by

x
jð Þ

k ~
sl2

{sjj jz l1ð Þ
k

z sj{sl1j jz l2ð Þ
k

sl2
{sl1j j where sj , sl1 and sl2 denote the

genome coordinates in bp for gene j and markers l1 and l2,

respectively. If gene j did not have any marker to the left or right

on the chromosome, the array measurement for the nearest

marker was taken instead.

A protein-protein interaction network was constructed from

HPRD (Human Protein Reference Database) [6] by generating an

adjacency matrix AHPRD, where AHPRD
ji ~1 if the proteins

corresponding to annotated mouse genes j and i interact with

each other and AHPRD
ji ~0 otherwise. Note that AHPRD is

symmetric and the HPRD network is undirected. The HPRD

network had 6,015 nodes and 20,957 undirected edges, excepting

self-loops.

A network was constructed from the KEGG (Kyoto Encyclo-

pedia of Genes and Genomes) pathway database [10–12] by

generating an adjacency matrix AKEGG such that AKEGG
ji ~1 if

genes j and i participated in the same pathway and AKEGG
ji ~0

otherwise. The KEGG pathway network had 1,629 nodes and

139,664 undirected edges except self-loops.

A network was constructed from the GO (Gene Ontology)

database [25] by generating an adjacency matrix AGO where

AGO
ji ~1 if genes j and i belong to a common GO term and

AGO
ji ~0 otherwise. Only GO terms with #200 genes were

considered. Similarly, Amolecular, Abiological and Acellular were

constructed considering only the GO molecular function terms,

GO biological process terms and GO cellular component terms,

respectively. The undirected GO, GO-molecular function, GO-

biological process and GO-cellular component networks had

10,442 nodes with 786,928 edges, 7,745 nodes with 359,006 edges,

7,653 nodes with 404,641 edges and 3,509 nodes with 140,904

edges, respectively, excepting self-loops. All edges were undirected.

We constructed an mRNA coexpression network from the

publicly available SymAtlas microarray database [26]. This

database contains transcript profiling data from 61 normal mouse

tissues. The Pearson’s correlation coefficients of mRNA expression

across the mouse tissues were calculated and an adjacency matrix

ASymAtlas was generated by right-tailed thresholding the correla-

tion coefficients with pv0:05. The SymAtlas coexpression

network had 15,190 nodes and 18,754,380 undirected edges.

Overlap Significance Using Undirected RH Network
The significance of overlap between the RH network obtained

from thresholding and, for example, the HPRD network was

tested as follows.

First, for a given threshold d, the adjacency matrix Ad of an

unweighted RH network was constructed where Ad~Aright dð Þ for

right-tailed thresholding, Ad~Aleft dð Þ for left-tailed thresholding

and Ad~Aboth dð Þ for both-tailed thresholding (see Results).

Second, for a comparison with the unweighted HPRD network,

the adjacency matrix Ad was forced to be symmetric by

constructing a symmetric matrix ~AAd for an undirected RH

network such that ~AAd
ji~1 if Ad

ji~1 or Ad
ij~1, and ~AAd

ji~0
otherwise. Third, a two by two contingency table was built

showing the relationship between ~AAd
ji (1 or 0) and AHPRD

ji (1 or 0),

where only pairs of genes in common to both networks are taken.

In addition, for all networks, only gene pairs separated by at least

10 Mb on a chromosome or on different chromosomes were

selected. This requirement was imposed to remove possible biases

due to copy number effects of a gene’s own dosage in the RH

network and to ensure gene pairs were in trans. Fourth, an overlap

was defined as the number of gene pairs such that both ~AAd
ji~1 and

AHPRD
ji ~1. Then a one-sided Fisher’s exact test was performed to

evaluate whether the overlap was significant and calculate a p-

value. If the expected values in all table cells exceeded 50, a one-

sided chi-square test was used to reduce computational cost.

We similarly calculated the significance of overlaps with the

KEGG pathway network, the SymAtlas coexpression network and

the GO annotations.

Randomized RH network. We randomly permuted the

elements of the weighted and directed adjacency matrix A that

correspond to gene pairs in trans and performed the overlap

significance test (above).

RH network from a subset of clones. We randomly

selected 40, 60 or 80 RH clones out of 99 and constructed an

adjacency matrix (see Results) using measured transcripts and

copy numbers for the selected clones. Then we calculated the
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significance of overlap with existing databases (above). We

repeated this 50 times for a fixed number of clones.

Overlap Significance Using Hidden Directed Random
Network Model

For each existing undirected dataset, for example, the HPRD

network, we assume there is a hidden directed random network

with adjacency matrix HHPRD, whose elements HHPRD
ij are

independent Bernoulli random variables with success probability

p. We suppose only the undirected version AHPRD is observed,

where AHPRD
ij ~max HHPRD

ij ,HHPRD
ji

n o
(recall only off-diagonal

elements are considered, that is, i=j). Then AHPRD
ij for ivj are

independent Bernoulli random variables with success probability

~pp~2p{p2. Therefore, using an empirical success probability r,

the ratio of 1’s to the total in AHPRD, the success probability of the

hidden directed random network can be estimated as

p̂p~1{
ffiffiffiffiffiffiffiffiffiffi
1{r
p

.

The overlap between the unweighted (thresholded) directed RH

network, represented by Ad, and the hidden directed HPRD

network is given by
P

i=j Ad
ijH

HPRD
ij . However, the overlap is not

directly observable and instead we calculate the conditional

expectation given AHPRD. Since E HHPRD
ij

���AHPRD
ij

h i
~

AHPRD
ij p=~ppð Þ, it can be seen that

E
X

i=j
Ad

ijH
HPRD
ij AHPRD

��h i
~ p=~ppð Þ

X
i=j

Ad
ijA

HPRD
ij :

Ignoring the constant scaling factor without loss of generality,

we define an overlap as OHPRD~
P

i=j Ad
ijA

HPRD
ij ~P

ivj Ad
ijzAd

ji

� �
AHPRD

ij (recall that AHPRD is symmetric whereas

Ad is not). To test whether an observed overlap OHPRD is greater

than chance, we calculate a p-value as the probability of the

overlap being greater than or equal to the observed value

assuming the HPRD network is a random network as described

above,

p-valueð Þ~Pr
X

ivj
Ad

ijzAd
ji

� �
Xij§OHPRD

� �

~Pr Y1z2Y2§OHPRD
� �

where Xij are independent Bernoulli random variables with

success probability ~pp and Y1 and Y2 are independent binomial

random variables, Y1~B N1,~ppð Þ and Y2~B N2,~ppð Þ, with Nk being

the number of unordered pairs i,jf g such that Ad
ijzAd

ji~k for

k~1 or 2. To reduce the computation cost, Y1z2Y2 is

approximated using the normal distribution when N1~ppw30,

N1 1{~ppð Þw30, N2~ppw30 and N2 1{~ppð Þw30.

Topological Measures
The node degree of the undirected, weighted adjacency matrix

~AA where ~AAji~max Aji,Aij

� �
was calculated by ki~

P
j

~AAji.

Similarly, the degree of the HPRD network was calculated by

kHPRD
i ~

P
j AHPRD

ji . Then we calculated the Spearman’s corre-

lation coefficients between ki and kHPRD
i .

The betweenness centralities and clustering coefficients of the

RH adjacency matrix ~AAd and the HPRD adjacency matrix AHPRD

were calculated using MatlabBGL (http://www.stanford.edu/

,dgleich). When we calculated the betweenness centrality of the

RH network, we used a subgraph by taking nodes that were in the

HPRD network to reduce computational cost. Then the Spear-

man’s correlation coefficients between the betweenness centralities

and also between clustering coefficients for RH and HPRD were

calculated.

Essentiality and Connectivity and Betweenness Centrality
We obtained a list of 1,409 essential genes and 1,979

nonessential genes from the Mouse Genome Database [6,61].

Those 3,388 genes were sorted by degree and binned into

successive bins of 200 genes and the correlation between mean

degree and fraction of essential genes calculated [9]. The

betweenness centrality for the RH network was calculated from
~AAright dð Þ, taking a subgraph consisting of a total of 3,388 genes of

interest to reduce computational cost and d~0:1. Similarly, the

3,388 genes were sorted by betweenness centrality and the

significance of correlation between the mean betweenness

centrality and the fraction of essential genes tested.

Transcription Factors and Edge directionality
We obtained a list of 1,053 transcription factors by finding genes

whose GO description includes a word ‘‘transcription.’’ The

number of outgoing edges was calculated by kout
j ~

P
i A

right dð Þ
ji for

gene j and the number of incoming edges by kin
i ~

P
j A

right dð Þ
ji for

gene i. We used a one-sided paired signed rank test [34] to assess

whether transcription factors have larger kout
j than kin

j .

URL
The network data are available at http://labs.pharmacology.

ucla.edu/smithlab/RHnetwork.html

Supporting Information

Text S1 Relationship between one-sided chi-square test and

Bayesian log-likelihood score (LLS) method

Found at: doi:10.1371/journal.pcbi.1000407.s001 (0.08 MB PDF)

Table S1 Size of RH network constructed from right-tailed, left-

tailed and both-tailed thresholding approaches.

Found at: doi:10.1371/journal.pcbi.1000407.s002 (0.06 MB PDF)

Figure S1 Size of RH network. (A) Number of nodes with

nonzero degree for RH network constructed from right-tailed

thresholding. (B) Number of directed edges for RH network

constructed from right-tailed thresholding. (C) Number of nodes

with nonzero degree for RH network constructed from left-tailed

thresholding. (D) Number of directed edges for RH network

constructed from left-tailed thresholding. (E) Number of nodes

with nonzero degree for RH network constructed from both-tailed

thresholding. (F) Number of directed edges for RH network

constructed from both-tailed thresholding.

Found at: doi:10.1371/journal.pcbi.1000407.s003 (0.21 MB TIF)

Figure S2 Overlap between RH network constructed from right-

tailed thresholding and existing datasets. Same as Figure 1, except

number of overlapping undirected edges shown instead of {log10 p.

Found at: doi:10.1371/journal.pcbi.1000407.s004 (0.26 MB TIF)

Figure S3 Significance of overlap between RH network

constructed from left-tailed thresholding and existing datasets.

Same as Figure 1 except left-tailed thresholding.

Found at: doi:10.1371/journal.pcbi.1000407.s005 (0.25 MB TIF)

Figure S4 Significance of overlap between RH network

constructed from both-tailed thresholding and existing datasets.

Same as Figure 1 except both-tailed thresh-olding.

Found at: doi:10.1371/journal.pcbi.1000407.s006 (0.28 MB TIF)

Dataset S1 Significance of overlap between RH network and

existing datasets. Figures 1, S3 and S4 based on this dataset using
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one-sided Fisher’s exact and chi-square tests. Expected and

observed overlap and corresponding p-values shown.

Found at: doi:10.1371/journal.pcbi.1000407.s007 (0.78 MB XLS)
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