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ABSTRACT

Fault-localization techniques that apply statistical analyses to exe-
cution data gathered from multiple tests are quite effective when a
large test suite is available. However, if no test suite is available,
what is the best approach to generate one? This paper investigates
the fault-localization effectiveness of test suites generated accord-
ing to several test-generation techniques based on combined con-
crete and symbolic (concolic) execution. We evaluate these tech-
niques by applying the Ochiai fault-localization technique to gener-
ated test suites in order to localize 35 faults in four PHP Web appli-
cations. Our results show that the test-generation techniques under
consideration produce test suites with similar high fault-localization
effectiveness, when given a large time budget. However, a new, “di-
rected” test-generation technique, which aims to maximize the sim-
ilarity between the path constraints of the generated tests and those
of faulty executions, reaches this level of effectiveness with much
smaller test suites. On average, when compared to test generation
based on standard concolic execution techniques that aims to max-
imize code coverage, the new directed technique preserves fault-
localization effectiveness while reducing test-suite size by 86.1%
and test-suite generation time by 88.6%.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—T7esting
tools

General Terms

Experimentation, Reliability, Security

Keywords

Automated testing, Concolic testing, Testing Web applications

1. INTRODUCTION

When a test fails, developers need to find the location of the fault
in the source code before they can fix the problem. In recent years,
a number of automated techniques have been proposed to assist
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programmers with this task, which is usually called fault localiza-
tion. Many fault-localization techniques attempt to predict the loca-
tion of a fault by applying statistical analyses to data obtained from
the execution of multiple tests (see, for example, [18, 19, 20, 17,
2, 26]). The basic idea is that a statement [18], control-flow predi-
cate [19], or def-use pair [26] is more suspicious (or more likely to
be responsible for a test failure) if it correlates strongly with failing
tests, and less suspicious if it correlates strongly with passing tests.

For a given application that contains a fault and a given fault-
localization algorithm, one way to measure a test suite’s suitability
for fault localization is in terms of the number of statements that
must be explored until the fault is found, assuming that statements
are explored in order of decreasing suspiciousness. In particular,
as in previous work on fault localization [17, 4], we concentrate
on the percentage of faults that are well-localized—these are faults
for which less than 1% of all executed statements need to be ex-
amined until the fault is found, assuming that statements are exam-
ined in order of decreasing suspiciousness. In this paper, we ex-
plore a number of strategies for generating test suites and measure
their fault-localization effectiveness, defined as the percentage of
well-localized faults for that suite. Our goal is to determine which
test-generation strategy achieves the best tradeoff between size and
effectiveness for the test suites that it generates.

The research presented in this paper was conducted in the context
of Apollo [5, 6, 4], a tool that uses combined concrete and symbolic
(concolic) execution [12, 27,9, 13, 31] to generate failure-inducing
inputs for PHP Web applications. Apollo currently targets two
kinds of failures: (i) HTML failures, in which the application gener-
ates malformed HTML, and (ii) execution failures, which manifest
themselves by a program crash or an obtrusive error message. In
recent work [4], we incorporated several variations of the Taran-
tula fault-localization technique [18] in Apollo, and demonstrated
that these can localize faults quite well using a test suite that was
generated using concolic execution. However, in those previous ex-
periments, the test suites were not generated with fault localization
in mind, but with the dual objective of maximizing code coverage
and finding as many failures as possible. Therefore, it is not clear
whether the test suites used in [4] have maximal effectiveness for
fault localization. In particular, the question is if even better fault
localization can be achieved using test suites that are generated with
other test-generation strategies. Furthermore, it is possible that the
use of other test-generation strategies might enable equally effec-
tive fault localization using much smaller test suites.

In this paper, we assume a scenario where a user has just encoun-
tered a failure and where no test suite is available. For such situ-
ations, we want to answer the following research question: What
is the best strategy for generating a test suite that has maximal
effectiveness for fault localization? ~ Note that the effectiveness



of statistical fault-localization techniques is premised on the avail-
ability of a high-quality test suite that provides good coverage of
the application’s statements. However, even 100% coverage does
not guarantee good fault localization.

Consider, for example, a scenario where two statements s, and s,
are executed by exactly the same tests and where Tarantula [18] or
Ochiai [2] is used for fault localization. These fault-localization
techniques compute a program construct’s suspiciousness rating
from the number of passing tests and failing tests that execute it.
Hence, if 51 and s, are executed by the same tests, those techniques
will report them as being equally suspicious. In such cases, creat-
ing an additional test that executes s; but not s, (or vice versa) may
enable better fault localization. In this paper, we present a number
of strategies for generating tests that are parameterized by a sim-
ilarity criterion, and evaluate their fault-localization effectiveness.
The similarity criterion measures how similar the execution charac-
teristics associated with two tests are, and is used to direct concolic
execution towards generating tests whose execution characteristics
are similar to those of a given failing test.

We implemented the techniques in Apollo, an automated tool that
detects and localizes faults in PHP Web applications. We evaluated
the test-generation techniques by localizing 35 faults in four PHP
applications. The results that we present in Section 5 show that a
new, directed test-generation technique based on path-constraint
similarity yields the smallest test suites with the same excellent
fault-localization characteristics as test suites generated by other
techniques. In particular, when compared to test generation based
on the concolic execution algorithm of [4], which aims to maxi-
mize code coverage, our directed technique reduces test-suite size
by 86.1% and test-suite generation time by 88.6%.

The remainder of this paper is organized as follows. Section 2
gives a motivating example. Section 3 provides details on our
techniques for concolic execution and fault localization. Section 4
presents the similarity criteria with which our directed test genera-
tion algorithms are parametrized. Section 5 details the implemen-
tation and experimental results. Finally, related work is discussed
in Section 6, followed by conclusions in Section 7.

2. EXAMPLE

Figure 1 shows a simple PHP script that scales one point to have
the same magnitude as another. Object-oriented code in PHP re-
sembles code in C++ or Java. The point class in Figure 1 declares
two fields, x and y. Also declared in class point are methods
magnitude (), which computes the distance of a point from the
origin, and scale (), which scales a point to have the same magni-
tude as an argument point. Two PHP features of particular note are
the isset () construct for checking whether a variable has been de-
fined, and the $_REQUEST associative array, which is used to access
input values that were provided to a PHP script.

The script code that follows the class definition in Figure 1 cre-
ates a point object and then initializes its x and y fields with val-
ues x and y that were provided as inputs to the script by accessing
$_REQUEST. The program then calls isset() to check if input
values scale_x and scale_y have been provided to the script. If
so0, the program creates and initializes the point $scale by which
to scale the point $x. The intended use of this script is to be given
two points, and scale one of them according to the other. There are
two issues with this code:

1. This scaling is not well defined for the origin, which causes
a division by zero in the scale() method in that case. We
will assume that the desired fix for this is to leave the origin
point unscaled. Note that the division by zero is a warning

<?php
error_reporting( E_ALL );

1

2

3 class point {
4 var $x;

5 var $y;
6

7

8

function magnitude() {

return sqrt($this->x*$this->x+$this->y*$this->y);

9 1}

11 function scale($p) {
12 $factor = $p->magnitude() / $this->magnitude();

13 $this->x = $this->x * $factor;
14 $this->y = $this->y * $factor;
15 }

16 };

17

18 $x = new point();
19 $x->x = $_REQUEST[’x’];
20 $x->y = $_REQUEST[’y’];

22 if (isset($_REQUEST[’scale_x’]) &&
23 isset($_REQUEST[’scale_y’])) {
24 $scale = new point();

25 $scale->x = $_REQUEST[’scale_x’];
26 $scale->y = $_REQUEST[’scale_y’];
27 }

29 $x->scale($scale);

31 print $x->x." ".$x->y." ".$x->magnitude()."\n";

Figure 1: Example PHP Program with Bugs

rather than an error in PHP, and so execution continues using
a default value—O in this case—as the “result” of the divi-
sion.

2. There is also an inconsistency if the scaling parameters are
not provided: In this case, the scale point will not be cre-
ated, but it will be used anyway, resulting in attempting to
call magnitude() on a non-object. This error aborts the
PHP script, and execution ceases at that point. We will as-
sume that, in the absence of the scale_x and scale_y pa-
rameters, the intended behavior is not to scale the point.

Our fault-localization procedure assumes that we have some test—
either written by hand or generated by some technique, possibly

Apollo—that exposes a given failure. There are many tests that

could reveal these failures, and so we choose the following ones
arbitrarily.

1. The first fault can be revealed by any choice of inputs that
defines the scale_x and scale_y parameters and uses O for
both x and y. In this case, the if test will succeed, and so
the script will call scale(). Then the call to magnitude()
on $thisin scale() will return O, triggering the divide-by-
zero failure.

2. The second fault can be revealed by any input that does not
define either scale_x or scale_y or both. In this case, the



parameters: Program #, Seed Input 1

result :Tests 77

T : setOf ({(input,output))

T =@

toExplore = getConfigs(Zy);

while toExplore # 0 && timeExpired() do
input = selectionMethodology.nextInput(toExplore);
output := executeConcrete(P, input);
T =97 U {{input,output)};
toExplore = toExplore U getConfigs(input);

return 8;

e NN R W N -

9 Subroutine gerConfigs(input):

10 configs = @;

11 ¢; A ... A ¢, = executeSymbolic(Sy, P, input);
12 foreachi=1,...,ndo

13 newPC :=c; A ... Aci_1 N\ ¢

14 input = solve(newPC);
15 if input # L then
16 enqueue(configs, (newPC, input));

17 return configs;

Figure 2: A Simplified Test-generation Algorithm

if test will fail, causing the code that creates and initializes
$scale not to execute. In this case, the script will try to
scale $x by the undefined $scale, resulting in an error when
it tries to access a field of the undefined value.

3. APPROACH

This section describes in detail our approach to directed test gen-
eration for fault localization.

3.1 Concolic Testing

We begin by briefly reviewing the combined concrete and sym-
bolic execution algorithm as embodied in Apollo [4]. The idea of
this algorithm is to execute an application on some initial input
(e.g., an arbitrarily or randomly chosen input), and then on addi-
tional inputs obtained by solving constraints derived from exercised
control-flow paths that capture the execution’s dependency on pro-
gram input.

Figure 2 shows the simplified pseudocode of our test-generation
algorithm.! The inputs to the algorithm are a program P, and an
initial seed input (for simplicity the seed input parameter is singu-
lar, but in practice it is possible to supply a set of seed inputs). The
output of the algorithm is a set of tests. Each test is a pair in which
the first element is an input to the program, and the second element
is the corresponding output.

The algorithm uses a set of configurations. Each configuration is
a pair of a path constraint and an input. A path constraint is a con-
junction of conditions on the program’s input parameters. The in-
put is simply the input parameters provided for this execution. The
configuration set is initialized with the configurations derived from
the seed input (which can be the empty input) (line 2). The program
is executed concretely on the input (line 5). Next, the algorithm
uses a subroutine, getConfigs, to find new configurations. First, the
program is executed symbolically on the same input (line 11). The
result of symbolic execution is a path constraint, A, ¢;, which is
satisfied by the path that was just executed from entry to exit of the
whole program. The subroutine then creates new inputs by solving

The full algorithm can be found in [6], Figure 6.

modified versions of the path constraint (lines 12-16), as follows:
For each prefix of the path constraint, the algorithm negates the last
conjunct (line 13). A solution to such an alternative path constraint,
if it exists, corresponds to an input that will execute the program
along a prefix of the original execution path, and then take the op-
posite branch, presumably covering new code. In other words, in
this basic approach test generation is directed towards maximizing
branch coverage. The algorithm uses a constraint solver (the solve
auxiliary function) to find an input satisfying the given path con-
straint, or returns L if no satisfying input exists (line 14).

As can be seen at line 4, the test-generation algorithm is param-
eterized by a selection methodology, which selects the next config-
uration to explore during the test generation. We use the selection
methodology to direct the test generation for our needs. For in-
stance, if the selection methodology is based on a similarity crite-
rion, the test generation will be directed towards generating similar
tests.

For the program in Figure 1, we illustrate test generation starting
from an input that exhibits the the first bug, x=0, y=0, scale_x=1,
scale_y=3. This will execute all statements, and reveal the path
constraint isset(scale_x) A isset(scale_y). One possible
next step is to negate the second path constraint, resulting in a new
path constraint isset(scale_x) A - isset(scale_y). An in-
put that would satisfy these constraints is x=4, y=0, scale_x=3,
since this leaves scale_y undefined as required. There are other
possible choices, clearly, but this is one way to generate a new dif-
ferent input. These inputs will appear later as F and B3 in the fault-
localization example in Figure 3.

This mechanism is essentially a search over different inputs that
result in different executions embodied in different tests. Thus, each
step involves a choice of what execution to try next. Based on
these choices, the set of generated tests will be different, and these
differences may affect the results of fault localization.

3.2 Fault Localization

We focus on fault-localization techniques that compare the state-
ments executed by passing and failing tests to estimate what state-
ments are likely responsible for faults. A wide range of techniques
has been proposed [18, 19, 20, 2, 26], but we focus on the Ochiai
metric, which defines the suspiciousness of a statement j, s;, as
follows:

an

V(ay +ag) X (ar; + ay)

using the terminology of [2]. Here a,, is the number of failing tests
that executed statement j, ag; is the number of failing tests that
did not execute statement j, aq is the number of passing tests that
executed statement j. The idea is that statements are to be inspected
in order of decreasing suspiciousness.

Based on our experience in prior work [4], we have augmented
the notion of statement used in much prior fault-localization work.
Previous work has focused on some representation of source loca-
tion (e.g., line number); we generalize this to a tuple consisting of
a line number and possibly one of two other components:

Sj

e An abstraction of the return value of the statement, if it is a
function call

e The conditional value for if and switch statements

We use these tuples in exactly the same way as statements are used
in prior work; we apply the Ochiai formula to the set of tuples from
each execution, rather than to the set of statements.



3.3 Localization Example

To illustrate the impact of the test suite on fault localization, con-
sider the two test suites in Figure 3, each with four tests. These two
test suites were generated by starting from a failing test F:

x=0,y=0,scale_x=1,scale_y=3

which exposes the first bug. Since the executions are determined
by the inputs, we start by showing the sets of inputs for each test
suite.

test | args
test suite 1
F | x=0,y=0,scale_x=1,scale_y=3
Al | x=0,y=0,scale_x=3,scale_y=2
A2 | x=5,y=0,scale_x=1,scale_y=0
A3 | x=3,y=2,scale_x=2,scale_y=4
test suite 2
F | x=0,y=0,scale_x=1,scale_y=3
Bl | x=3
B2 | x=5,y=4
B3 | x=4,y=0,scale_x=3

Figure 3: Example test suites

Because the first test suite defines the two scale parameters for all
four tests, all tests will execute all of the code; tests F and A1 will
expose the divide-by-zero failure. And because we record return
values as well, differences are detectable in the executions of the
tests. In particular, the magnitude() method returns a value, so
tests generate different tuples for that method when it is called on
points with different magnitudes. Note also that 22 is the line of the
if statement, so its statements are augmented with the conditional
outcome. This is illustrated in Figure 4.

test Statements executed
F 18, 19, 20, <22, true>, 23, 24, 25, 26, 29,
12, <8,3.1>, <8, 0>, 13, 14, 31, <8, 0>
Al 18, 19, 20, <22, true>, 23, 24, 25, 26, 29,
12, <8,3.6>, <8, 0>, 13, 14, 31, <8, 0>
A2 18, 19, 20, <22, true>, 23, 24, 25, 26, 29,
12, <8,1>, <8, 8.6>, 13, 14, 31, <8, 1>
A3 18, 19, 20, <22, true>, 23, 24, 25, 26, 29,
12, <8,3.6>, <8, 3.6>, 13, 14, 31, <8, 3.6>

Figure 4: Example test suite 1 executions

Consider the calls to p.magnitude () in Figure 4; recall that we
are recording both the statement itself and its return value. There
are two of the four tests that execute this statement and get a result
of 0. Looking at the Ochiai formula, we see that it is of suspicious-
ness 1, since a;; = 1 and a9 = ap; = 0. Indeed, one way to fix
this issue is to handle the case when this call returns 0. This result
and the lower suspiciousness for all other statements is shown in
Figure 5.

On the other hand, for the second test suite, only the given test F
exhibits the bug. And also only F executes the call to scale(), so
we see many more statements that are correlated with the bug. This
is shown in Figure 6 and Figure 7, where statements 23, 24, 25, 26,
12, 13, 14 and 31 all correspond exactly to the failing test.

Thus, we observe that, especially for small test suites, the choice
of tests can make a big difference. Our work focuses on selection
strategies that allow us to focus fault localization quickly.

statement | executions suspiciousness
12 | F AL, A2, A3 | .71
13 | E A1, A2, A3 | .71
14 | F Al, A2, A3 | .71
18 | E Al, A2, A3 | .71
19 | F Al, A2, A3 | .71
20 | F, A1, A2, A3 | .71
23 | F A1, A2, A3 | .71
24 | F, Al,A2,A3 | .71
25 | F A1, A2,A3 | .71
26 | F, A1, A2, A3 | .71
29 | F, A1, A2, A3 | .71
31 | EAlLLA2, A3 | .71

<22.true> | F, Al, A2, A3 | .71
<8,0> | F Al 1
<8,1> | A3 0

<8,3.1> | F 71
<8,3.6> | F, A2 5
<8,8.6> | A2 0

Figure 5: Example test suite 1 suspiciousness

test | statements executed
F 18, 19, 20, <22, true>, 23, 24, 25, 26, 29,
12, <8,3.1>, <8, 0>, 13, 14, 31, <8, 0>
B1 | 18, 19, 20, <22, false>, 29, 12
B2 | 18, 19, 20, <22, false>, 29, 12
B3 | 18, 19, 20, <22, false>, 29, 12

Figure 6: Example test suite 2 executions

4. SIMILARITY METRICS

This paper evaluates various strategies for automatic test genera-
tion for the purpose of fault localization. Given a failing execution,
the general intuition behind our techniques is that localizing the
corresponding fault is more effective if a passing test is generated
whose characteristics are “similar” to those of the failing execution,
because that maximizes the chances that the fault is correlated with
the difference between the path constraints of the generated passing
test and those of the faulty execution; the smaller the difference, the
higher the precision with which the fault can be localized.

For this to be more precise, we need to formalize the concept of
“similarity”” between two executions. This leads us to introducing
a similarity criterion, which is a function that takes as an input two
executions, and produces as output a percentage index that indi-
cates how similar the two executions are. More formally, if E is
the set of all the executions of a program, a similarity criterion is
a function o, : E X E — [0, 100], where « is itself a function that
abstracts executions. Specifically, @ maps each execution e € E
to a set of characteristics of e that depend on the particular simi-
larity metric under consideration. There can be multiple similarity
criteria, each based on what characteristics are considered when
measuring similarity and, consequently, what abstraction function
« is being considered.

A similarity criterion o, can be extended to a function o, : E X
2E — [0, 100], defined as follows:

o (e, S) = ma;&{a",e’},\v’e €eENFCE
e

which can be used to compare a passing execution with a set of
failing executions.



statement | executions suspiciousness
12 | EBI,B2,B3 | .5
13 | F 1
14 | F 1
18 | EBI,B2,B3 | .5
19 | EB1,B2,B3 | .5
20 | FEB1,B2,B3 | .5
23 | F 1
24 | F 1
25 | F 1
26 | F 1
29 | FEBL,B2,B3 | .5
31| F 1
<22,true> | F 1
<22 false> | B1,B2,B3 0
<8,0> | F 1
<8,3.1> | F 1

Figure 7: Example test suite 2 suspiciousness

In order to guide our test generation technique (Section 3.1 ) to-
wards generating similar executions, a similarity function is used as
the selection methodology (Figure 2, line 4). The selection method-
ology is responsible for selecting the next input to explore, thus
directing the generation to explore similar executions.

In this paper, we consider two different similarity metrics: path
constraints and inputs. These two approaches and the relevant sim-
ilarity criteria are described in the next subsections.

4.1 Path-Constraint Similarity

In general, any execution is generated by a set of inputs to the
program. This defines a function f : 2/ — E, where I is the set
of inputs to the program. Function f maps any set of program in-
puts to one program execution. Furthermore, given a particular set
of program inputs ¢ € I, a heuristic function can compute an input
from a given path constraint. This defines a function g : 27 — 27,
where P is the set of path constraints that can arise during the exe-
cution of the program. The composition function f o g : 2 — E
can be used to base a similarity criterion on path constraints in-
stead of actual executions, which is a very useful property in test
generation. Specifically, given a set & of path constraints and the
corresponding execution e = f(g(m)), we define a(e) = m, and we
use the resulting function @ : E — 2 to parameterize the similarity
criterion 0.

We have implemented two techniques for path-constraint simi-
larity: subset comparison and subsequence comparison. With sub-
set comparison, execution similarity is computed based on the car-
dinality of the largest subset of identically evaluating conditional
statements that are traversed in the two executions; with subse-
quence comparison, execution similarity is computed based on the
cardinality of the largest contiguous subsequence of conditions that
evaluate to the same value in both executions.

To better understand the difference between these two metrics,
consider for example two program executions e;, e, € E that eval-
uate conditions {C;, C,, C3, C4, Cs, C¢), and assume that condition
C; evaluates to true in ¢; and false in e;, but C, C;,Cy4,Cs, Cg
evaluate to the same boolean value in both executions. In this case,
oq(e1,e2) = 83.3% if the similarity criterion is based on subset
comparison, and o,(ej,e;) = 50% if the similarity criterion is
based on subsequence comparison. In practice, we observed that
these two similarity metrics lead to very similar results. There-

fore, in the remainder of this paper, we concentrate only on path-
constraint similarity based on subset comparison.

4.2 Input Similarity

With this approach, we compare the inputs to different execu-
tions. Each execution e € E is reduced to only its inputs, as follows.
Given a set 7 of path constraints, we consider the corresponding set
of execution inputs g(r), and we define a(e) = g(r). We then use
the resulting function @ : E — 2! to parameterize the similarity
criterion 0.

Input similarity is based on subset comparison: the similarity
between two executions is computed based on the number of in-
puts that are identical for both executions. For example, consider
two executions e; and e, with inputs (S,S2,53,54,55,56) and
(T, T,,T5,T4,Ts, Tg), respectively, such that S5 # T3, but §; =
T;, Vi # 3. In this case, o,(e1, e>) = 83.3%.

Example.

The example in Figure 1 motivates the use of different similar-
ity criteria for fault-localization-oriented test generation. Since the
sample program only exhibits three different paths, a test-generation
technique based on input similarity is more effective for fault local-
ization.

Let us assume that the program in Figure 1 fails with inputs given
in F, where F is defined as in Figure 3. By looking at test suites 1
and 2 in Figure 3, we observe that test suite 1, generated with the
input-similarity technique, allows for quick fault localization. This
is due to the fact that the faulty statement in the program is executed
by multiple failing tests in suite 1, namely F and Al. Even more
important, suite 1 has the advantage of presenting a passing test,
A2, that is similar to the failing execution F.

If all the tests in suites 1 and 2 are available, Al will be the
first test to be selected with the input-similarity strategy since it
is the most similar to the faulty execution F that is given as input
to the algorithm. That will be followed by test A2, which is the
second test to be the most similar to the faulty execution. A2 will be
followed by A3. Notice that both A2 and A3 are passing tests. This
makes it possible to localize and isolate the faulty statement with
a test-suite size of only 4. In contrast, the coverage strategy would
get full coverage with F, and then would select random tests, with
a potential test-suite size of 7, before making the fault localizable.

S. IMPLEMENTATION AND EVALUATION

We implemented several test-generation strategies in Apollo [5,
4], a tool for automatically finding and localizing faults in PHP
web applications. This section reports on the implementation, and
on experiments that measure the effectiveness of the different test-
generation strategies.

5.1 Implementation

For the purpose of test generation, we use Apollo [5, 6], which
employs a shadow interpreter based on the Zend PHP Interpreter
V5.2.2%. Apollo simultaneously performs concrete program exe-
cution using concrete values, and a symbolic execution that uses
symbolic values that are associated with variables. Furthermore,
Apollo uses the choco® constraint solver to solve path constraints
during the concolic generation. The process of concolic execution
is orchestrated by a standard Apache* Web server that uses the in-
strumented PHP interpreter.

’http://www.php.net/
Shttp://choco-solver.net
“http://www.apache.org/



program || version | #files | PHPLOC | #downloads
faqgforge 1.3.2 19 734 14,164
webchess 0.9.0 24 2,226 32,352
schoolmate 1.54 63 4,263 4,466
phpsysinfo 253 73 7,745 492,217

Table 1: Characteristics of subject programs. The #files col-
umn lists the number of .php and .inc files in the program.
The PHP LOC column lists the number of lines that contain
executable PHP code. The #downloads column lists the num-
ber of downloads from http://sourceforge.net.

Our fault-localization technique uses conditional [4] and return-
value modeling. These two enhancements were implemented on
top of Apollo’s shadow interpreter. For the conditional modeling,
Apollo records all comparisons in the executed PHP script. For
each comparison, the shadow interpreter stores the statement’s line
number and the relevant boolean result. For a switch statement,
the shadow interpreter stores the line number of the switch and the
set of results for all executed case blocks. For return-value mod-
eling, the shadow interpreter stores the line number of the call, and
an abstract model of the value. The model allows the fault local-
ization technique to distinguish between null and non-null val-
ues, zero and non-zero int and double values, true and false
boolean values, constant and non-constant values, as well as empty
and non-empty arrays, strings, and resources.

5.2 Research Questions

For each of the test-generation strategies under consideration, we
are interested in determining the maximal fault-localization effec-
tiveness that can be achieved using test suites generated according
to that strategy. As in previous work on fault localization, we will
concentrate on the percentage of well-localized faults for which
less than 1% of all executed statements need to be examined until
the fault is found, assuming that statements are examined in or-
der of decreasing suspiciousness. It is reasonable to expect that a
limited amount of time will be available for test generation. There-
fore, we are also interested in determining how quickly each of the
test-generation strategies under consideration converges towards its
maximal effectiveness. This leads us to formulate the following re-
search questions:

RQ1. What is the maximal fault-localization effectiveness of test
suites, measured as the percentage of well-localized faults,
generated by each of the test-generation strategies?

RQ2. How many tests need to be generated by each test-generation
strategy in order to reach its maximal fault-localization effec-
tiveness?

5.3 Subject Programs

For the evaluation, we selected the following four open-source
PHP programs from http://sourceforge.net. In this research,
we need to understand the programs deeply so that we can localize
bugs manually for verification and verify that our fixes to the bugs
make sense and solve each problem in a reasonable way. Thus, we
chose a fairly small number of programs with which we are very
familiar from prior work on Apollo.

o faqforge is a tool for creating and managing documents
e webchess is an online chess game

o schoolmate is a PHP/MySQL solution for administering el-
ementary, middle, and high schools

subject | # faults
webchess 10
faqgforge 7
schoolmate 16
phpsysinfo 2
total 35

Table 2: Number of faults used in the localization experiments.
Each fault manifested itself as an execution failure.

o phpsysinfo is a utility for displaying system information,
such as uptime, CPU, memory, etc.

Table 1 presents some characteristics of these programs.

5.4 Methodology

In order to answer our research questions, we needed localized
faults. We used actual faults that were discovered by Apollo [5,
6]. In our previous work, Apollo was used to discover two types
of failures: HTML failures that occur when malformed HTML is
generated, and execution failures when an input causes a crash or
obtrusive error message. In this paper, we restrict our attention to
execution failures for which the location of the fault is not immedi-
ately obvious from an error message.

We restrict our attention to these cases because if the bug is im-
mediately evident from the error message, then the bug has been
found already and there is no point in trying to further localize it.
The HTML validator did a good job localizing the HTML errors,
and hence those errors did not need further localization as a rule.
On the other hand, many execution errors do not indicate an obvi-
ous bug, and hence there was a need to further localize the bug that
give rise to the error.

We manually localized all faults. For each fault, we devised a
patch and ensured that applying this patch fixed the problem, by
running the tests again, and making sure that the associated failures
had been corrected. Table 2 summarizes the number of faults for
each subject program.

We used the following four test-generation strategies to generate
test suites used for fault localization:

Base Test generation using the concolic execution algorithm of
[6], which starts from an empty input, and aims to maxi-
mize branch coverage. We call this algorithm Base because
we will use it as the baseline for comparison with the new
similarity-based directed generation algorithms.

Coverage Test generation using the concolic execution algorithm
of [6], but starting test generation from the failing test.

PCS (Path Constraint Similarity) Test generation using the subset-
based path-constraint similarity metric that was described in
Section 4.1

IS (Input Similarity) Test generation using the input similarity that
was described in Section 4.2.

For each strategy and for each fault we used Apollo to generate test
suites. Then, for each test suite and each localized fault, we com-
puted suspiciousness ratings for all executed statements according
to the Ochiai technique [2] with the improvements described in
Section 3.2. Similar to previous fault-localization studies [18, 11,
17, 26], we measured the effectiveness of a fault localization algo-
rithm as the minimal number of statements that need to be inspected
until the first faulty line is detected, assuming that statements are
examined in order of decreasing suspiciousness. We then computed



the number of statements to be inspected as a percentage of the
number of executed statements. Finally, we computed the percent-
age of faults that are “well-localized”, meaning that they require
the inspection of less than 1% of all executed statements.

5.5 RQ1

We first discuss the “maximal” fault-localization effectiveness
of the test suites generated by the four test-generation techniques
above, as measured by the percentage of well-localized faults, as-
suming each technique is given a infinite amount of time to con-
struct a test suite. In practice, we found that it sufficed to have each
technique generate 100 tests for each fault, with the exception of
schoolmate, which required 252 tests to reach a plateau. Generat-
ing more tests beyond this point resulted in larger test suites, but
not in an increased number of well-localized faults®. Table 3 shows
three columns for each subject program and each technique. These
columns show, from left to right: (i) on average, for each subject
program, the percentage of faults that is well-localized, (ii) on aver-
age, the absolute number of statements that needs to be inspected to
localize each fault, and (iii) on average, the percentage of executed
statements that needs to be inspected to localize each fault. For ex-
ample, for faqforge, both the Base and PCS techniques eventually
localize 100% of the faults to within 1% of all executed statements.
Furthermore, on average, each of these faults is localized by these
techniques to 4.6 statements, which corresponds to 0.6% of all exe-
cuted statements. The Coverage and IS generation techniques also
reach 100% well-localized faults on faqforge eventually, albeit a
slightly higher plateau of 5 and 5.1 statements, respectively, that
need to be inspected, which corresponds to 0.7% of all executed
statements.

In summary, the test-generation strategies are capable of gen-
erating test suites with nearly identical maximal fault-localization
effectiveness when given an infinite amount of time. In particu-
lar, for faqforge, schoolmate and phpsysinfo, 100% of all faults
was eventually well-localized by each technique. However, for we-
bchess, only 77% of all faults was eventually well-localized by
each technique.

56 RQ2

As we have seen, the different test generation techniques even-
tually achieve very similar effectiveness. However, the question
remains to what extent the test generation techniques require a dif-
ferent number of tests to reach this plateau. Table 4 shows two
columns for each subject program and each test generation tech-
nique. These columns show, from left to right: (i) the number
of tests that is needed to reach the maximal percentage of well-
localized faults as reported in Table 3, and (ii) the time required to
generate these tests. Here, it should be noted that the time reported
in (ii) is an average over all faults for the Coverage, PCS, and IS
techniques. For the Base technique, there is just one test suite that
is used for all faults, and the time reported is the time needed to
generate that test suite.

As can be seen in Table 4, there are significant difference in how
quickly the different test generation techniques converge on the op-
timal result. For faqforge, the Base test generation technique that
we used in [4] requires 60 tests to reach the maximal percentage
of well-localized faults, whereas the PCS technique requires only
5 tests. The amount of time required to generate a test suite dif-
fers similarly, with 63.6 seconds for the Base technique and only
7.3 seconds for the PCS technique. The graphs in Figure 8 pro-

31t is theoretically possible that some minor further gains could be
achieved by generating many additional tests, but we consider this
to be very unlikely.

vide some more detail on how quickly the test generation strategies
converge towards their maximal effectiveness. Each graph shows
the percentage of well-localized faults plotted against the number
of generated tests, for each of the generation techniques. By ex-
amining the graphs, we can observe that the directed strategies (IS
and PCS) converge much faster than the undirected strategies (Cov-
erage and Base). In three of the four subject programs (webchess,
faqforge, and phpsysinfo), the PCS strategy is superior. In the case
of schoolmate, however, the IS strategy (7 tests) is slightly better
than PCS (11 tests).

On the whole, we conclude that the PCS strategy is the preferred
technique. On average, PCS requires only 6.5 tests to achieve the
optimal number of well-localized faults, versus 46.8 tests for the
Base strategy that we used in our previous work [4]. This can be
viewed an an improvement of ((46.8 — 6.5) = 100)/46.8 = 86.1%.
Similarly, we notice that, on average, the Base strategy takes 131.2
seconds for test generation, compared to only 14.9 seconds required
by PCS, for an improvement of 88.6%.

5.7 Threats to Validity

There are several objections a critical reviewer might raise to
the evaluation presented in this section. First, one might argue that
the benchmarks are not representative of real-world PHP programs.
To minimize this issue, we selected open-source PHP applications
that are widely used, as is evidenced by the significant number of
downloads reported in Table 1. Second, it could be the case that
the faults we exposed and localized are not representative. How-
ever, these bugs represent a range of execution errors, and all of
them were exposed by automatic and systematic means. A poten-
tially more serious issue is that any given fault may be fixed in
multiple different ways. The fixes we devised were mostly simple
one-line code changes, for which we attempted to come up with
the simplest possible solution. And we verified that our fixes in-
deed resolved the issues, so to that extent our fixes are correct. The
most serious criticism to our evaluation, in our own opinion, is the
assumption that programmers would inspect the statements strictly
in decreasing order of suspiciousness. In practice, it is very likely
that programmers who try to follow this discipline would automati-
cally look at adjacent statements, so the assumption is probably not
completely realistic. However, we ourselves made use of the fault
localization results while debugging. Also, this approach to mea-
suring the effectiveness of fault localization methods has been used
in previous research in the area (e.g., [18, 17, 26]), which makes
our results more comparable with related work

6. RELATED WORK

Fault localization algorithms have been studied extensively in
recent years. In this section, we concentrate on fault localization
techniques that predict the location of faults based on the analysis
of data from multiple tests or executions. A discussion of other
fault localization techniques can be found in [4].

Early work. Early work on fault localization relied on the use
of program slicing [29]. Lyle and Weiser [22] introduce program
dicing, a method for combining the information of different pro-
gram slices. The basic idea is that, when a program computes a
correct value for variable x and an incorrect value for variable y,
the fault is likely to be found in statements that are in the slice w.r.t.
v, but not in the slice w.r.t. x. Variations on this idea technique
were later explored by Pan and Spafford [23], and by Agrawal, et
al. [3]. In the spirit of this early work, Renieris and Reiss [25] use
set-union and set-intersection methods for fault localization. The
set-union technique computes the union of all statements executed
by passing test cases and subtracts these from the set of statements
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program Base Coverage PCS 1S
% wl | #stmts | % stmts | % wl | #stmts | % stmts | % wl | #stmts | % stmts | % wl | #stmts | % stmts
webchess 77 11.3 1.3 77 16.4 1.9 77 16.9 1.9 77 16.8 1.9
faqforge 100 4.6 0.6 100 5 0.7 100 4.6 0.6 100 5.1 0.7
schoolmate | 100 114 04 100 6.8 0.2 100 4.6 0.2 100 4.6 0.2
phpsysinfo 100 17 0.7 100 17 0.7 100 14 0.6 100 14 0.6
Average 100 11.1 0.75 100 11.3 0.9 100 10 0.83 100 10.1 0.85

Table 3: Summary, for each test generation technique and subject program, of the percentage of faults that is well-localized, and the
absolute number (# stmts) and percentage (% stmts) of executed statements that need to be inspected on average until the fault is

localized.
program Base Coverage PCS IS
#tests | time(s) | #tests | avgtime(s) | #tests | avg time(s) | #tests | avg time(s)
webchess 69 78.9 20 22.7 7 12.3 11 15.3
faqforge 60 63.6 37 47.5 5 7.3 22 28.9
schoolmate 18 20.1 253 386.2 11 14.9 7 9.4
phpsysinfo 40 362.3 87 818 3 25.2 8 68.4
Average 46.8 131.2 99.2 318.6 6.5 14.9 12 30.7

Table 4: Summary, for each test generation technique and subject program, of the time (time(s) for Base and avg time(s) for Coverage,
PCS and IS) and number of tests (# tests) required to achieve the maximal percentage of well-localized faults, as reported in Table 3.

executed by a failing test case. The resulting set contains the sus-
picious statements that the programmer should explore first. The
set-intersection technique identifies statements that are executed by
all passing test cases, but not by the failing test case, and attempts
to address errors of omission, where the failing test case neglects to
execute a statement.

Nearest Neighbors. The nearest neighbors fault localization
technique by Renieris and Reiss [25] assumes the existence of a
failing test case and many passing test cases. The technique se-
lects the passing test case whose execution spectrum most closely
resembles that of the failing test case according to one of two dis-
tance criteria, and reports the set of statements that are executed by
the failing test case but not by the selected passing test case. In the
event that the report does not contain the faulty statement, Renieris
and Reiss use a ranking technique in which additional statements
are considered based on their distance to previously reported state-
ments along edges in the System Dependence Graph (SDG) [14].
Nearest Neighbor was evaluated on the Siemens suite [15], and
was found to be superior to the set-union and set-intersection tech-
niques.

Tarantula and Ochiai. Tarantula [18] is a fault-localization
technique that associates with each statement a suspiciousness rat-
ing that indicates the likelihood for that statement to contribute
to a failure. Jones and Harrold [17] conducted a detailed empir-
ical evaluation in which they apply Tarantula to faulty versions
of the Siemens suite [15], and compare its effectiveness to that of
several other fault-localization techniques. In the fault localiza-
tion literature, the effectiveness of a fault-localization technique is
customarily measured by reporting the percentage of the program
that needs to be examined by the programmer, assuming that state-
ments are inspected in decreasing order of suspiciousness [11, 2,
25, 17]. Santelices, et al. [26] investigate the tradeofts of applying
the Tarantula algorithm to different types of program entities: state-
ments, branches, and def-use pairs. The outcome of this study is
that the branch-based algorithm is more precise than the statement-
based one, and that the def-use-based variant is more precise still.

Recent papers by Jones and Harrold [17] and by Abreu, ef al. [2]
present empirical evaluations of several fault localization tech-
niques, including several of the techniques discussed above, using
the Siemens suite. The emerging consensus appears to be that the

Ochiai similarity metric advocated by Abreu et al. [2] is more ef-
fective than Tarantula [26, 1]. Our own experiments with Apollo
confirm this, which is why the work presented in this paper uses
the Ochiai technique.

Other Statistical Techniques. Other fault localization techniques
analyze statistical correlations between control flow predicates [20,
21] or path profiles [10] and failures, time spectra [32], and correla-
tions between changes made by programmers and test failures [28,
24].

Fault Localization using Generated Test Suites Our work dif-
fers from the previous approaches for fault localization described
above in that we rely on dynamic test generation techniques to cre-
ate test suites. In a previous paper [4], we relied on concolic ex-
ecution [12, 27, 9, 13, 31] to generate test suites. In that work,
the generation of tests was guided by the objective of maximizing
code coverage, by directing the solver to solutions that cover ad-
ditional branches of condition statements. We found that, given a
time budget of 20 minutes, 87.7% of the faults under consideration
are localized to within 1% of all executed statements. The present
paper uses the same technique for test generation, but the genera-
tion of tests is now guided by various similarity metrics in order
to produce tests that are similar to a given failing execution. This
is the same spirit as the Nearest Neighbors algorithm [25], but in-
stead of selecting tests that are similar to a given failing test, we are
attempting to generate such tests.

Other Fault Localization

Wang and Roychoudhury [30] present a fault localization tech-
nique that generates a similar successful run given a failing run
when that is possible. The basic technique is to find a program ex-
ecution by attempting to invert specific conditionals. They start at
the end of the execution to get the most similar successful execu-
tion. Their mechanism is similar to ours at the level of inverting
conditions and using a constraint solver to derive inputs that yield
that outcome. However, they focus on generating a specific suc-
cessful run similar to a specific failing run, and do not employ sta-
tistical techniques that might help generalize across multiple suc-
cesses and failures. Also, in general, their technique requires that
“checking whether [a given similar run] was successful has to be
done manually.”



Zeller introduced Delta Debugging [34] which minimizes some
aspect of a test that induces failure. For instance, given a large
source file that causes a compiler to crash, this technique may be
able to isolate the particular problematic portion of the file. This
technique works by differences between a succeeding and failing
execution to isolate the important differences. This technique is
more associated with minimizing a failing input than systematically
generating inputs to look for failures; also, as with Wang and Roy-
choudhury, this work focuses on specific tests rather than statistical
approaches on a collection of tests.

The Impact of Test Suite Composition on Fault Localization.

Several other projects have explored the relationship between the
composition of a test suite and its effectiveness for fault localiza-
tion. Baudry et al. [7] study how the fault localization effectiveness
of a test suite can be improved by adding tests. They propose the
notion of a dynamic basic block, which is a set of statements that is
covered by the same tests, and a related testing criterion that aims
to maximize the number of dynamic basic blocks. Baudry et al. use
a genetic algorithm for deriving new tests from existing ones by a
series of mutation operations. Our research also aims to improve
fault localization effectiveness by creating tests, but our starting
point is a situation where no test suite is available. In such cases,
it is not clear how mutation-based approaches, which generate new
tests from existing ones, could be applied.

Other researchers have focused on the opposite problem: deter-
mining how reducing the size of a test suite impacts fault localiza-
tion effectiveness. Yu et al. [33] study the impact of several test
suite reduction strategies on fault localization. They conclude that
statement-based reduction approaches negatively affect fault local-
ization effectiveness, but that vector-based reduction approaches,
which aim to preserve the set of statement vectors exercised by a
test suite, have negligible effects on effectiveness. Jiang et al. [16]
also study the impact of test suite reduction strategies on fault lo-
calization effectiveness. One of the strategies they consider (AS)
prefers those test cases that maximally increase the number of ad-
ditional statements covered. They report that reducing a test suite
to half its original size according to this strategy only has minimal
impact on fault localization effectiveness.

Other Directed Concolic Testing. In [8], the authors inves-
tigate 3 strategies to direct concolic testing to improve coverage.
Heuristics based on the Control Flow Graphs (CFGs) of functions
are evaluated in the context of real C programs. The most effec-
tive CFG-based heuristic is able to improve branch coverage sub-
stantially, more than a factor of 2 for their largest program. The
mechanism of using some explicit metric to direct concolic search
resembles ours, but the goal is very different, since they are trying
to increase coverage by generating new different inputs whereas we
are trying to improve localization by generating new similar inputs.

7. CONCLUSIONS

Statistical fault-localization techniques that analyze execution
data from multiple tests [18, 19, 20, 2, 26] have been shown to be
quite effective when a sufficiently large test suite is available. In this
paper, we address the scenario where such a test suite is not avail-
able, and the user relies on test-generation techniques to create one.
In particular, we consider several test-generation techniques based
on combined concrete and symbolic (concolic) execution and com-
pare the fault-localization effectiveness of the generated test suites.
The techniques under consideration include a standard, undirected
concolic execution algorithm, used in our previous work [4], which
attempts to maximize branch coverage. Furthermore, we consider
several variants of concolic execution that aim to maximize similar-
ity between the execution characteristics of the generated tests and

those of a given fault-exposing execution, according to a number of
similarity criteria.

We implemented the techniques in Apollo, an automated tool that
detects and localizes faults in PHP Web applications. We evaluated
the test generation techniques by localizing 35 faults in four PHP
applications. The results that we presented in this paper show that
a new, directed test-generation technique based on path-constraint
similarity yields the smallest test suites with the same excellent
fault-localization characteristics as test suites generated by other
techniques. In particular, when compared to test generation based
on the concolic execution algorithm of [4], which aims to maxi-
mize code coverage, our directed technique reduces test-suite size
by 86.1% and test-suite generation time by 88.6%.

As part of future work, we plan to explore additional similarity
metrics, and understand how they compare to the path-constraint
and input similarity metrics presented in this paper.
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