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Abstract

Computational approaches have promised to organize collections of functional genomics data into testable predictions of
gene and protein involvement in biological processes and pathways. However, few such predictions have been
experimentally validated on a large scale, leaving many bioinformatic methods unproven and underutilized in the biology
community. Further, it remains unclear what biological concerns should be taken into account when using computational
methods to drive real-world experimental efforts. To investigate these concerns and to establish the utility of computational
predictions of gene function, we experimentally tested hundreds of predictions generated from an ensemble of three
complementary methods for the process of mitochondrial organization and biogenesis in Saccharomyces cerevisiae. The
biological data with respect to the mitochondria are presented in a companion manuscript published in PLoS Genetics
(doi:10.1371/journal.pgen.1000407). Here we analyze and explore the results of this study that are broadly applicable for
computationalists applying gene function prediction techniques, including a new experimental comparison with 48 genes
representing the genomic background. Our study leads to several conclusions that are important to consider when driving
laboratory investigations using computational prediction approaches. While most genes in yeast are already known to
participate in at least one biological process, we confirm that genes with known functions can still be strong candidates for
annotation of additional gene functions. We find that different analysis techniques and different underlying data can both
greatly affect the types of functional predictions produced by computational methods. This diversity allows an ensemble of
techniques to substantially broaden the biological scope and breadth of predictions. We also find that performing
prediction and validation steps iteratively allows us to more completely characterize a biological area of interest. While this
study focused on a specific functional area in yeast, many of these observations may be useful in the contexts of other
processes and organisms.
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Introduction

Machine learning and data mining techniques have been

applied to a wealth of genome-scale data to produce meaningful

predictions of gene/protein involvement in biological processes

and pathways [1–9]. As biologists have pursued novel findings in a

wide range of organisms with finite experimental resources, these

approaches have promised to direct experimental efforts toward

the most likely targets, with the hope of greatly accelerating the

discovery process [10,11]. However, surprisingly few large-scale

experimental studies of gene function have been performed on the

basis of computational predictions, despite their great potential to

inform and guide such investigations. Perhaps as a result, data

continue to be generated at a rate that outpaces the character-

ization of gene functions [12].

This disparity between the computational and experimental

aspects of gene function discovery may be due to a lack of clear

demonstrations of the effectiveness of computation in directing

laboratory efforts. The few experiments that have been directed by

computational systems have generally been limited to confirming

individual predictions of the functions of single proteins ([3,7] and

work from our laboratory [13–15]). No large-scale studies have been

performed to fully explore the ability of computational methods to

accurately assign functions to sizeable sets of uncharacterized

proteins. Without such comprehensive evaluations, it remains

unclear how computational methods can best be employed to

guide experimental efforts in discovering novel biology.

To explore the biological considerations important for compu-

tational function prediction and to demonstrate the general power

of computationally driving experimentation, we have performed a

large, systematic study of computational predictions for proteins

involved in mitochondrial organization and biogenesis in S.

cerevisiae [16]. Mitochondrial defects are implicated in a variety

of human diseases [17,18], including neurodegenerative disorders

[19,20] and muscular diseases [21], making them an interesting
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and relevant target for such a study. The biological mechanisms of

mitochondrial biogenesis are largely conserved from yeast through

humans (60% of mitochondrial yeast genes have a human

ortholog), and as many as one in five mitochondrial proteins are

known to be involved in human disease [21,22]. Mitochondrial

biology is understood well enough to provide a sufficient number

of training examples for computational prediction methods, but it

is also thought that at least a quarter of the proteins involved have

not yet been identified [23,24]. Mitochondrial organization and

biogenesis is thus an important and tractable area where

computational methods can demonstrate their utility.

In this study, we have examined the biological nature of the

predictions made by an ensemble of three computational methods,

including supervised and unsupervised techniques that analyze a

variety of underlying data. In the companion manuscript [16], we

show and describe our biological results using these predictions to

direct a suite of experimental tests, including our discovery of 100

additional proteins involved in mitochondrial inheritance. Here,

we present detailed analysis of the computational methods and

their predictions in order to explore the utility and effectiveness of

computational function prediction methods. In particular, we

demonstrate several novel observations and conclusions that can

greatly impact the use of computational approaches for targeting

laboratory experimentation.

First, our results demonstrate that while ,75% of yeast genes

are already known to participate in at least one biological process

or pathway, many of these genes may have multiple functions that

have not yet been characterized. This refutes the notion of ‘‘one

gene, one function,’’ and demonstrates that both characterized

and uncharacterized genes are fruitful targets for experimental

investigation. Second, by comparison to a new experimental

screen of 48 randomly selected genes, we show that using

computational predictions to guide laboratory experiments can

greatly increase discovery rates. Third, we demonstrate that the

specific predictions made by computational approaches are highly

dependent on both the algorithmic foundation and underlying

biological data employed by those methods. As such, we show that

using an ensemble of diverse computational approaches can

increase the biological breadth and scope of predictions. Lastly, we

demonstrate that by iterating phases of computational prediction

and laboratory experimentation, we can greatly expand our

knowledge of gene functions.

Results/Discussion

Our study employed an ensemble of three diverse computa-

tional methods (bioPIXIE [15,25], MEFIT [14], and SPELL [13])

to predict novel genes/proteins involved in the process of

mitochondrial organization and biogenesis. Each of these methods

integrated high-throughput data sources and utilized existing

biological knowledge from the Gene Ontology (GO) [26] and

Saccharomyces Genome Database (SGD) [27] to identify candidates

for involvement. Briefly, bioPIXIE performs context-specific

Bayesian integration of a diverse set of genomic data to predict

pair-wise functional relationships between genes. MEFIT also

performs Bayesian integration, but is targeted to utilize just gene

expression microarray data. SPELL uses the same compendium of

microarray data, but uses a similarity search algorithm to identify

groups of related genes. The results of all three approaches were

combined based on the estimated precision of each method to

produce our ensemble predictions of gene function (further details

are in the Methods section). Predictions for genes involved in

mitochondrial organization and biogenesis were validated using a

quantitative laboratory assay indicative of involvement in

mitochondrial biogenesis and inheritance. The first round of

prediction and evaluation used only existing GO annotations as a

training set. We then performed a second iteration of this process

after updating our training set to include gene predictions

confirmed in the first iteration. A schematic view of our system

for prediction, verification, and iteration is shown in Figure 1A.

The full biological results of this study are presented in a

companion manuscript [16]. The next two paragraphs contain a

brief summary of the results important to the additional analyses

and conclusions presented here. When the study was undertaken,

106 genes were annotated by SGD to the ‘‘mitochondrion

organization and biogenesis’’ GO term (GO:0007005 as of 4/

15/2007). These genes were used as input to the computational

methods during the first iteration of testing. We initially evaluated

our 183 most confident computational predictions, and 123 (67%)

were validated as exhibiting a significant phenotype indicative of

involvement in mitochondrial biogenesis. Upon further inspection

of these confirmed predictions, we found existing literature

evidence for 40 of these genes. By following this literature, we

found evidence for 2 more of our tested genes and identified an

additional 93 genes with strong evidence for mitochondrial

function that had not yet been annotated as such by SGD. Many

of these genes were annotated to specific categories related to

mitochondrial organization (e.g. ‘‘integral to mitochondrial

membrane’’), but were not yet cross-annotated to the ‘‘mitochon-

drion organization and biogenesis’’ process. In all, we identified a

total of 135 genes with existing literature evidence that were

‘‘under-annotated.’’ We have presented this list to SGD and they

are evaluating these observations using their established curatorial

procedures; as of now, nearly half of these genes have been added

to the annotations.

Our second iteration of prediction and validation used a set of

324 genes as input to the computational methods (106 original

annotations, 83 newly confirmed genes with no prior literature

evidence, and 135 ‘‘under-annotated’’ genes). We evaluated the 52

most confident predictions that were not previously tested, and 17

Author Summary

Genome sequencing has provided us with ‘‘parts lists’’ of
genes for many organisms, but many of the biological
roles these genes are still unknown. While a great deal of
functional genomic data exists, providing information
about these genes and their roles, the rate at which these
data are leveraged into concrete biological knowledge lags
far behind the rate of data generation. Many computa-
tional approaches have been developed to generate
accurate predictions of gene functions, with the goal of
bridging this divide. However, as no large-scale experi-
mental efforts have been based on such approaches, their
validity and utility remains unproven. We have performed
a study that experimentally evaluates predictions from a
combination of three computational function prediction
approaches, focusing on mitochondrion-related processes
in brewer’s yeast as a model system. By using computa-
tional predictions to guide our laboratory investigation, we
have greatly accelerated the rate at which proteins can be
assigned to biological processes. Further, our results
demonstrate that in order to achieve the best results, it
is important for computational biologists to consider both
the underlying data and the algorithmic foundations of the
methods used to predict function. Lastly, we demonstrate
that iterating through phases of prediction and validation
has quickly and extensively expanded our knowledge of
mitochondrial biology.

Analysis of Approaches for Directing Biology
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Figure 1. An overview of our iterative approach integrating computational and experimental methodologies. Our study uses an
ensemble of computational gene function prediction methods (bioPIXIE, MEFIT, and SPELL) trained and evaluated on known biology to predict novel
annotations to the GO term ‘mitochondrial organization and biogenesis.’ (A) The schematic overview of our approach combining computational
predictions and laboratory experiments. We selected test candidates based on these computational predictions and validated these novel predictions
experimentally using a quantitative, statistically verifiable biological assay. Upon obtaining the results of these tests, the set of known examples was

Analysis of Approaches for Directing Biology
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(33%) were validated. While this confirmation rate is still high, the

reduction suggests that we may be nearing the edge of genes that

can be confidently identified using our assays (details below).

Altogether, our study identified 235 new annotations to the

process of mitochondrial organization and biogenesis, which more

than triples the number of genes previously annotated to this area

(Figure 2A). A summary of these results is shown in Figure 1B, and

a full catalog of predictions and experimental results is available in

Table S1. While these biological results are striking and important,

they also have significant ramifications in the application of

computational techniques as a whole and in their integration with

experimental biology, which we discuss in detail below.

Many genes with known functions also play additional
cellular roles

A common metric for the level of characterization of an

organism is the percentage of genes with at least one experimen-

tally confirmed function [10,12]. By this metric, one might be led

to believe that our functional characterization of some model

organisms is nearing completion. For instance, in S. cerevisiae, we

now have established functions for approximately three-fourths of

the genome. However, we find evidence that suggests our current

understanding is much more limited than these numbers suggest.

Among our 193 tested predictions without existing literature

evidence for involvement in mitochondrial biogenesis, 75 (39%)

are known to be involved in at least one other process, while the

remaining 118 (61%) have no previously known function. The

verification rate for each of these classes was the same, as 40 of 75

(53%) genes with other known functions and 60 of 118 (51%)

genes with no known function were confirmed to be involved in

mitochondrial biogenesis. The notion of ‘‘one gene, one function’’

is clearly not consistent with these findings, and we suspect that

both uncharacterized genes and genes with previously known

functions are fruitful areas for exploration. This issue is even more

important when considering higher eukaryotes, where protein

variants encoded by the same gene may participate in multiple,

diverse functions [28,29].

Interestingly, there is a strong enrichment for components of the

actin cortical patch among the 40 genes newly characterized in

mitochondrial biogenesis that also have previously known

Figure 2. Annotations and phenotypic results for mitochondrion organization and biogenesis. (A) The number of genes involved in
‘mitochondrial organization and biogenesis’ after each stage of this study. Our study began with the 106 genes annotated to the GO term
‘mitochondrion organization and biogenesis.’ In the first round of our iterative computational prediction and laboratory experimentation, we
confirmed 123 additional genes. 40 of these confirmations had previously existing literature evidence for involvement in mitochondrial biogenesis,
leaving 83 entirely novel discoveries from the first iteration. Based on further literature searches, we found an additional 95 genes with literature
evidence for inclusion in this term (including 2 tested genes that did not exhibit a significant phenotype). During our second iteration of testing, we
confirmed an additional 17 predictions. (B) The results of our petite frequency assay for genes with previous literature evidence (positive controls),
our novel first iteration predictions, novel second iteration predictions, and a random selection of genes. Note that the majority of novel
confirmations exhibited the more modest phenotype of ‘‘altered mitochondrial inheritance,’’ whereas the majority of previously known genes are
‘‘respiratory deficient,’’ a more extreme phenotype more easily discovered by high-throughput screens.
doi:10.1371/journal.pcbi.1000322.g002

augmented with the validated predictions, and the process was repeated to further explore this biological process. (B) Breakdown of the genes
examined at each stage of our study, with the numbers in parenthesis showing the number of verified genes over the number of tested genes.
Initially, 183 first iteration prediction genes were selected from our computational ensemble for testing. We found existing literature evidence for
involvement in mitochondrial biogenesis for 42 of these genes, and thus included these in the positive control set along with 6 genes that were
originally annotated to the ‘mitochondrion organization and biogenesis’ GO term. In our second iteration, we selected an additional 52 candidate
genes, none of which had prior literature evidence for involvement. We also selected 48 genes at random from the genome for testing to establish
the background genomic rate for our assay.
doi:10.1371/journal.pcbi.1000322.g001

Analysis of Approaches for Directing Biology
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functions (9 of 40 genes, hypergeometric p,10210). Most genes

with known functions specifically related to mitochondrial

biogenesis are not included in this number, since they were

explicitly reported as ‘‘under-annotations’’ and treated as positive

controls for our study. Though the actin cytoskeleton is known to

be involved in mitochondrial motility in S. cerevisiae, the precise

mechanism of attachment and movement has remained elusive

[30]. The enrichment of actin cortical patch components is

particularly notable since the actin cortical patch has no explicit

role in mitochondrial inheritance, but these nine genes are

associated with cellular machinery known to move other

membrane-bound organelles to daughter cells [31]. Our predic-

tions thus provide evidence that the same machinery may be

employed during mitochondrial inheritance in a context similar to,

but independent from, their cortical patch roles. By elucidating

additional novel functions for previously characterized genes, we

not only gain a greater understanding of each protein’s individual

responsibilities within the cell, we also form a more complete

picture of higher-level interactions between cooperating pathways

and processes.

These results are particularly striking within the historical

context of the rates at which gene functions have been

characterized. Since the full sequence of S. cerevisiae was published

in 1996 [32], nearly 3,000 genes have had their first known

function characterized, while only ,1,700 genes have had a

second function characterized (Figure 3). It remains unknown how

many genes are truly involved in multiple processes, but it is clear

that even if single functions were known for all yeast genes, we

would still be far from a complete understanding of the complex

network that supports most cellular processes. This further

underscores the importance of developing approaches for fast

and accurate discovery of protein function.

Guiding laboratory experiments with computation
greatly increases discovery rates

Among our 235 experimentally evaluated computational

predictions, 140 were verified, resulting in an overall true positive

rate of 60%. This result is a striking confirmation that

computational predictions can successfully direct laboratory

experiments; nearly two out of three predictions were successfully

confirmed, which would make even low-throughput follow-up

experiments worth pursuing. To quantify our improvement in rate

of discovery over the background rate of observing the same

phenotypic classes, we chose 48 genes at random to establish

baseline rates of phenotypes. Of these 48 genes, only 12 (25%)

exhibited a phenotype consistent with involvement in mitochon-

drial inheritance (data available in Table S1). Based on these

results, the use of computational methods to guide our

investigation increased our discovery rate by 238%.

In addition to a greatly increased discovery rate, we have

evidence that our confirmed computational predictions are more

integral to mitochondrial biogenesis than the rare positives

resulting from our random screen. As mitochondria are vital for

cellular respiration, our assays focused on discovering respiratory

defects in single gene knockouts, which is a strong indicator that

the tested gene plays a role in mitochondrial processes [33,34].

However, it is possible for secondary effects of non-mitochondrial

Figure 3. Historical progression of gene function discovery. We examined the historical context of SGD annotations to GO based on the dates
of publications used to assign genes to biological processes. Here we define a ‘‘known function’’ as an annotation to a GO term within the GO
functional slim mapping [37] for S. cerevisiae. Function annotation accelerated after the publication of the yeast genome in 1996, but annotation of
multiple functions did not accelerate accordingly.
doi:10.1371/journal.pcbi.1000322.g003

Analysis of Approaches for Directing Biology
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mutations to result in similar phenotypes. For example, one of the

randomly selected genes tested, HTA1, is a histone whose deletion

is known to cause pleiotropic effects on transcriptional regulation

of carbon metabolism [35]. Consequently, our testing of an hta1D
knockout strain resulted in a phenotype indicating involvement in

mitochondrial organization and biogenesis, even though the true

cause of this phenotype is likely a secondary effect due to a gross

perturbation of carbon metabolism.

Given the possibility that secondary effects could occasionally

manifest as positive phenotypes, we cross-referenced our results

with known localization information from SGD. We would expect

many of the genes involved in mitochondrial organization to

localize either to the mitochondrion itself or to the actin

cytoskeleton, as mitochondria associate with actin cables for

proper inheritance of the organelle during cell division [36].

Among phenotypically positive genes where localization data is

available, 72% of our computational predictions are localized

either to the mitochondrion or to actin, while only 36% of the 12

phenotypically positive genes from the random screen are similarly

localized. The large discrepancy in localization among phenotypic

positives from predictions and from the random screen indicates

that positive mitochondrial phenotypes in some of the genes in the

random screen may be due to secondary effects.

While enrichment for localization to the mitochondria is a

strong indicator that our computational predictions are directly

involved in mitochondrial maintenance, it is important to note that

such localization is not a precondition for involvement. Among all

of our novel tested computational predictions, 45% are known to

localize to the mitochondrion or actin cytoskeleton, and of these,

59% were confirmed. However, our confirmation accuracy is also

high (45%) among the predictions not known to localize to these

areas. Thus, if our study examined only genes known to localize to

the mitochondrion, it would fail to discover nearly half of the

verified genes that resulted from our use of computational

predictions. Since computational data integration can leverage a

variety of heterogeneous data sources in an unbiased manner, it

can successfully direct experimental efforts to targets that might

otherwise remain undiscovered.

Diverse, accurate predictions are made by different
computational approaches

In addition to demonstrating the accuracy of computational

function prediction approaches, our results also emphasize the

importance of considering the specific biological nature of

predictions. Specifically, our results show that different computa-

tional approaches can produce equally accurate - but distinct -

predictions depending on the algorithmic foundation and

underlying data of each method. Although we did not attempt a

comprehensive study of all types of computational function

prediction methods, the three methods used in this study included

both supervised and unsupervised approaches utilizing different

data sources, and our observations are likely to be generally

applicable. To demonstrate this generality, we have also analyzed

additional canonical computational function prediction approach-

es (a Support Vector Machine (SVM) trained using only

microarray data, an SVM trained using diverse data, and

unsupervised correlation across microarray data). This additional

analysis supports the results and conclusions presented below and

is fully discussed in Text S1. Each of the three function prediction

methods employed in this study achieved similarly high rates of

phenotypic positives (Figure 4A). However, there was a relatively

small overlap between the 40 most confident predictions of each

method, as only 8% of the 88 total candidates selected from an

individual method were common to all three (Figure 4B). True

positive rates were similar among genes predicted confidently by

only one method or by multiple methods, indicating that each

computational approach was accurately predicting disparate

aspects of mitochondrial organization and biogenesis. This

variation can be accounted for both by differences in the

underlying data and by algorithmic diversity among the

computational approaches. As discussed below, such differences

among methods should be carefully considered when developing

new prediction techniques or applying them in a biological setting.

Underlying data affects the specific biological nature of

predictions. Of the three function prediction methods, two are

based on detailed analyses of microarray data (MEFIT [14] and

SPELL [13]), while the third (bioPIXIE [15,25]) focuses on

Figure 4. Individual method accuracy and overlap. Three computational methods and an ensemble of those methods were used to select
candidates for experimental evaluation. Of the 183 predictions evaluated in our first iteration, 88 were chosen from the top 40 results of at least one
individual method, while the remaining 95 were selected from the ensemble of all three. (A) The accuracy of the predictions chosen from each
method, from genes selected by the ensemble, and the overall accuracy for all candidates tested in our first iteration. (B) Overlap between candidates
selected from the individual methods. Each individual method performs with similar accuracy but predicts unique genes.
doi:10.1371/journal.pcbi.1000322.g004

Analysis of Approaches for Directing Biology
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integration of heterogeneous data sources such as affinity

precipitation results, two-hybrid screens, sequence information,

synthetic genetic interactions, etc. As stated, there was relatively

little overlap between the three methods’ predictions, although all

three achieved similar true positive rates during laboratory

validation. However, the microarray-based predictions from

SPELL and MEFIT did show slightly more correlation with

each other than with predictions from bioPIXIE (Figure 4B).

We characterized the importance of underlying data by

examining the cross-validated results for the predictions of each

method on more specific sub-processes of mitochondrial organi-

zation (Figure 5, see Methods for details). The microarray-based

approaches (MEFIT and SPELL) clearly best capture information

regarding ‘‘mitochondrial ribosome and translation,’’ which is

consistent with other studies that have observed a strong ribosomal

bias among microarray data [37]. The method based on diverse

data (bioPIXIE) best captured information about ‘‘mitochondrial

distribution’’ and ‘‘mitochondrial fission and fusion.’’ This is likely

due to the use of physical interaction data, which enables this

method to more easily discover proteins involved in mitochondrial

structure and motility.

Another significant difference occurs in the area of ‘‘mitochon-

drial respiratory complex assembly,’’ where the microarray-based

methods are more successful than the method based on diverse

data. Many of the proteins involved in this process are integral

membrane proteins, making them technologically difficult to assay

by common sources of physical interaction data (e.g. yeast two-

hybrid, affinity precipitation). However, because the number of

mitochondria in a cell (and thus the amount of membrane and

membrane-bound complexes) depends on environmental condi-

tions, these proteins can be strongly transcriptionally regulated

when conditions change. This co-expression is captured by

microarray data, providing evidence for our microarray-based

predictors of functional relationships.

We have also examined the cellular localization of the

predictions made by each of the computational methods and

those made by the ensemble of all three (Figure 6A). While the

majority of the predictions made by the microarray-based methods

are known to localize to the mitochondrion, predictions from the

method based on diverse data also contained a significant number

of proteins known to localize to the actin cytoskeleton. This is

consistent with the functional enrichments of the prediction

methods, as mitochondria interact with actin for distribution,

fission, and fusion. Interestingly, the verification rate was 60%

among genes localized to the mitochondrion and 48% for genes

localized to actin, but precision was even higher (nearly 70%)

among predicted genes with no known localization (Figure 6B).

Additional analysis demonstrating the impact of underlying data,

including training SVMs with different underlying data is

presented in Text S1.

Algorithmic differences affect specific computational

predictions. Even among methods based on the same

underlying data, analyses by different computational approaches

can produce very different function predictions. Only 20 of the top

40 predictions made by each of this study’s two microarray-based

methods (MEFIT and SPELL) overlapped (Figure 4B). However,

each method achieved similarly high levels of biological accuracy

(Figure 4A), and the functional and localization enrichments of the

predictions made by these methods are similar (Figures 5 and 6).

These findings can be explained by the fact that these two methods

Figure 5. Biological differences between the three computational prediction methods. We evaluated which aspects of mitochondrial
biology were targeted by each computational function prediction method. Even though all three methods learned and were evaluated using the
same set of training genes, the methods differ in the sub-groups of mitochondrial biology on which they focused. SPELL and MEFIT are both based
solely on gene expression microarray data, which explains their strong coverage of the mitochondrial ribosome and translation sub-group. bioPIXIE is
based on diverse data, including physical binding data, which explains its strong coverage of sub-groups involving mitochondrial motility and
physical interactions.
doi:10.1371/journal.pcbi.1000322.g005

Analysis of Approaches for Directing Biology
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employ very different analytical approaches when generating gene

function predictions from microarray data.

One important difference is that MEFIT employs a supervised

learning process, while SPELL is unsupervised. MEFIT relies on

supervised Bayesian learning to up- or down-weight datasets, using

prior knowledge of functional relationships. SPELL performs a

query-driven similarity search to identify significant patterns of

expression within datasets that are determined to be informative

for each query. When performing function prediction, MEFIT

infers a complete functional interaction network, which is mined

using ‘‘guilt by association’’ for genes predicted to be involved in

mitochondrial organization. Conversely, SPELL averages a

collection of searches, each querying an individual subset of

known mitochondrial genes. (See Text S2 for further discussion of

the differences between SPELL and MEFIT. Additional examples

of the importance of algorithmic foundations are presented in Text

S1.) As the underlying data collection and normalization

procedures were the same for both methods, these algorithmic

differences account for the diversity of specific predicted genes.

This highlights the potential impact of specific algorithms, as well

as underlying data, when predicting gene functions.

An ensemble of diverse prediction methods increases

breadth of results. By employing multiple, complementary

functional prediction techniques, we substantially expanded the

breadth of our experimentally assayed genes. As described above,

the three methods used in this study produced diverse, yet

uniformly accurate, predictions spanning many biological aspects

of mitochondrial organization and biogenesis. In addition to

testing the top 40 predictions of each method individually, we also

produced an ensemble prediction set by combining the results of

each method based on estimated precision (see Methods for

details). From this list, we selected 95 additional candidates for

experimental validation.

Thus, approximately half of the novel predictions tested in this

study did not occur among the top 40 predictions of any individual

method, but were selected based on the ensemble of all three

methods. The accuracy of these ensemble predictions is roughly

the same (64%) as the predictions made by any of the individual

methods (Figure 4). Similarly, the localization and functional

enrichments of the ensemble predictions were distinct from those

of any one prediction set (Figure 6). By harnessing the diversity

and complementarities of our computational prediction methods,

we were able to expand the biological scope of our investigation.

Iterative approaches converge on comprehensive
prediction sets

To identify further promising mitochondria-related proteins, we

performed a second prediction and validation iteration where

confirmed predictions were fed back into the gold standard used in

the computational prediction process. Initially, we selected 183 gene

candidates to test, 123 of which were verified as likely involved in

mitochondrial organization and biogenesis. In addition, we found

that 40 of our verified candidates had strong existing support in the

literature, which led us to identify 95 further genes with previously

published literature evidence for inclusion in this process. After this

first round of testing, we created a new training standard of 324

genes including the original annotated genes, the genes with strong

literature support, and the experimentally verified genes. Using this

updated training set with our ensemble classifier, we selected an

additional 52 novel testing candidates, 17 (33%) of which

demonstrated a significant phenotype in the lab, resulting in our

total of 140 gene function associations (100 entirely novel, 40 with

previous literature support). Beyond simply providing additional

genes verified to function in mitochondrial biogenesis, this iteration

process led us to several important observations.

Figure 6. Localization of predictions from computational methods. The known localization of genes predicted by our computational
methods differed greatly between the microarray based predictions (SPELL and MEFIT) and the predictions based on diverse data (bioPIXIE). (A)
Localization breakdown of the predictions made by each method, by the ensemble, and for all of our novel predictions. (B) Accuracy of our novel
predictions by localization. (C) Breakdown of localization for those predictions in areas other than the mitochondrion or actin cytoskeleton. Accurate
predictions are not confined to mitochondrion-localized genes, suggesting that computation can discover more diverse gene functions than a screen
based only on localization data.
doi:10.1371/journal.pcbi.1000322.g006
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While the predictions from our second iteration were verified at

a rate higher than that of the random set, the discovery rate

decreased relative to our first iteration. This suggests that we may

be nearing the limit of predictions that can be verified using the

single gene knockout assay employed in this study. Among our

predictions that remain unconfirmed, some may still be involved in

mitochondrial inheritance without exhibiting a significant pheno-

type using these assays. In our companion manuscript[16], we

used our second round predictions to selectively target double-

knockouts for many of these remaining predictions with great

success.

Additionally, while the prediction methods differ with regard to

which aspects of mitochondrial biology they best capture (Figures 5

and 6), the methods begin to converge on similar predictions after

just one round of re-training. Upon iteration, the correlation

between the predictions of each method increased greatly (Figure 7

and Text S1). This convergence indicates that we have expanded

our knowledge of this area to a level of biologically reasonable

generality, since very different computational approaches can now

arrive at similar conclusions. It also suggests that we have

successfully avoided bias toward any one functional aspect of the

mitochondria caused by over-reliance on individual methods.

These aspects of iterative learning - breadth and convergence -

are especially important as the field moves to less well-studied

areas of biology and to less well-understood organisms. Iterative

applications of computational analysis and directed experimenta-

tion provide a means to refine the set of novel predictions and to

increase the amount of information used for training. Even when

beginning with relatively little information, this process can enable

the accurate annotation of a significant number of novel

participants in a biological process of interest.

Conclusion
In order to fulfill the broad promise of computational functional

genomics, we must undertake large-scale, iterative efforts to

predict, evaluate, and experimentally verify novel gene functions.

Our study demonstrates the utility of these types of approaches,

and we have made several observations potentially relevant to any

computationally directed experimental setting. We find that both

characterized and uncharacterized proteins can be fruitful

candidates for laboratory investigation. Our results demonstrate

that different computational methods can generate accurate but

unique predictions, with characteristics dependent on both their

underlying data and algorithmic basis. As such, utilizing an

ensemble of diverse methods increased the biological breadth of

our newly characterized genes. Further, the iterative use of an

ensemble with rigorous laboratory experiments allowed us to

confirm roles for additional genes and to converge on a refined

prediction set.

An important aspect of this study discussed more thoroughly in

our companion manuscript [16] is the enrichment of our novel

discoveries for subtle phenotypes. Among the novel predictions

examined in this study, subtly (but significantly) altered mitochon-

drial inheritance rates comprised 80% of the confirmed pheno-

types; the remainder exhibited the more extreme respiratory

deficient phenotype. Of the genes with prior literature evidence,

only 36% exhibited altered inheritance rates, while the majority

were respiratory deficient. Biologically, this is relevant in the study

of the molecular mechanisms of human disease, since genetic

disorders are often caused by mutations that only partially impair

protein function [38]. From a computational perspective, it

represents an opportunity to explore an untapped reservoir of

novel biology. Many extreme phenotypes have already been

discovered by high-throughput screens. Conversely, experimental

assays sensitive and quantitative enough to detect these more

subtle phenotypes can be more difficult and time-consuming, and

they can thus benefit greatly from computational direction.

Computational methods are critical in a field where the

collection of functional genomics data is outpacing the character-

ization of novel biological knowledge from these experiments.

While we used three specific computational approaches to study a

particular biological process in yeast, our results demonstrate the

broader applicability of combining functional prediction methods

with experimental efforts. By directing laboratory investigations to

more promising candidates, we can reduce the amount of time and

effort required to discover new biology. This includes the

characterization of multiple functions for individual proteins, an

area still largely unexplored. Through the careful combination and

Figure 7. Convergence of computational predictions during iteration. We examined the agreement among our computational methods by
calculating the Pearson correlation between the estimated precisions for all predicted genes. After one iteration through our framework, almost all
correlations between methods increased; bioPIXIE’s correlation with the ensemble decreased slightly due to the ensemble’s increased reliance on the
other two methods. While the microarray-based methods (SPELL and MEFIT) are most correlated, all methods show significant agreement while
providing unique predictions and biological characteristics.
doi:10.1371/journal.pcbi.1000322.g007
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iteration of computational and experimental biology, the rate and

breadth of discovery can be enhanced in a variety of conditions,

processes, and organisms.

Methods

A high level overview of our iterative prediction/experimenta-

tion/validation approach is shown in Figure 1A. This section

briefly details each of the steps involved in this process.

Computational prediction methodologies
We utilized three complementary computational gene function

prediction methods in this study (bioPIXIE [15,25], MEFIT [14],

and SPELL [13]). Each of the methods generated predictions of

genes involved in the GO biological process ‘‘mitochondrial

organization and biogenesis’’ (GO:0007005). All methods were

initially trained and/or evaluated through cross-validation using

the 106 annotations to this process as of April 15th, 2007. Full

details of these methods can be found in their respective

publications. Here we present a brief summary of each approach

and a description of how each method was used to produce

computational function predictions.

bioPIXIE utilizes a suite of context-specific Bayesian networks

to predict pair-wise functional relationships between genes, which

are then used to create fully-connected graphs weighted by

confidence of functional interaction, w(i, j):

w i,jð Þ~P FRij

��D1
ij , D2

ij , . . . , Dk
ij , Bij

� �
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��Bij
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� �
where FRij refers to the presence or absence of a functional

relationship between proteins i and j, Dij
n refers to the observed

association in dataset n between the proteins i and j, Bij is the

biological context of the pair, and a is a normalization constant.

This method integrates a wide variety of data sources, including

physical interaction data (e.g. yeast two-hybrid, affinity precipita-

tion, etc.), genetic interaction data (e.g. synthetic lethality, SLAM,

etc.), gene expression data, and sequence data (e.g. coding and

regulatory sequence similarity). The Bayesian classifier was trained

within the biological process of interest, in this case using the genes

annotated to ‘‘mitochondrial organization and biogenesis.’’

Predicted annotations to this term were derived from the resulting

weighted interaction network by finding the significance of each

gene’s connectivity to known mitochondrial genes:
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where ci is gene i’s confidence of mitochondrial function, M is the

set of genes known to be involved in mitochondrial organization, G

is the set of all genes in the genome, w(i, j) is the predicted

probability of functional relationship between genes i and j, HG(w,

x, y, z) denotes the hypergeometric cumulative distribution

function (CDF), and [x] indicates that x is rounded to the nearest

integer.

MEFIT also predicts pair-wise functional relationships using a

GO-trained naı̈ve Bayesian classifier; however, it is based entirely

on gene expression data. Both MEFIT and SPELL (below)

integrate roughly 2400 microarray conditions which are grouped

into ,120 datasets by publication and further sub-divided by

biological process examined. A ranked list of predictions was

derived from the mitochondrial organization and biogenesis-

specific network by calculating each gene’s ratio of connectivity to

known mitochondrial genes:

ci~

Gj j
P
j[M

w i,jð Þ

Mj j
P

j[ Gj j
w i,jð Þ

where ci, M, G, and w(i, j) are as above.

SPELL utilizes the same gene expression microarray data as

MEFIT, but uses a query-driven search algorithm to identify novel

players. While SPELL is not trained in a supervised fashion, it

assigns a reliability weight to each dataset based on the co-

regulation of a specified set of query genes and then orders the rest

of the genome based on their weighted co-expression with the

query set. SPELL generated predictions by using all possible subset

pairs of known mitochondrial organization and biogenesis genes as

queries (‘‘leave two in’’ cross-validation), and then averaged these

rank orders together to produce a final prediction list.

Each of these methods generated a ranked list of all genes in

order of confidence of involvement in mitochondrial organization

and biogenesis. We assigned an estimated precision level (EP) to

each gene, g, in each list by calculating the fraction of genes with a

higher confidence level that were already annotated to this GO

term (disregarding genes with no biological process annotation or

with annotations to the mitochondrial ribosome due to unusually

strong expression co-regulation):

EP gð Þ~ # of annotated proteins with rankƒrankg

rankg

We created an ensemble of the three methods by averaging

these estimated precision levels for each gene. In this way each

prediction method contributed to the ensemble based on its

reliability to recapitulate known biology. Further, this ensemble

allows a gene with moderate confidence from multiple methods to

rise in the overall rankings.

Identification of ‘‘under-annotated’’ genes
Our initial evaluation of the computational predictions led us to

discover that 40 of our experimentally confirmed predictions were

‘‘under-annotated’’ – meaning that they already had strong

literature evidence for their involvement in mitochondrial

organization and biogenesis, but were not yet annotated to the

corresponding GO term. In most of these cases the information

was already curated by SGD in the form of annotations to other

GO terms, such as ‘integral to the mitochondrial membrane’ or

‘mitochondrial protein import.’ However, due to the structure of

the GO hierarchy, these terms are not directly linked to our

process of interest, ‘mitochondrial organization and biogenesis.’

Beginning with these 40 genes, we identified an additional 95

genes that we believe have enough literature evidence to warrant

their inclusion in this process without further laboratory testing

(including 2 genes tested that did not exhibit a significant

phenotype). We have notified SGD of all 135 of these genes,

and they are in the process of restructuring the GO hierarchy and

making additional annotations. As of submission of this manu-
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script, SGD has already updated the annotations for more than

half of these genes.

Selection of candidates for experimental testing
Novel candidates for laboratory evaluation were systematically

chosen on the basis of both the three individual computational

approaches as well as the ensemble of their predictions. As our

experimental methodology (described below) is based on assessing

phenotypes exhibited by single gene knockout mutants, we limited

ourselves to consider only those genes with viable knockouts

available in the heterozygous deletion collection. Additionally, we

aimed to evaluate both genes with no previously known association

to a biological process as well as genes known to be involved in an

area other than mitochondrial organization and biogenesis. Thus,

we divided the predictions into genes of entirely unknown function

and genes with existing biological process annotations.

We selected the 20 most confident genes of unknown function

and the 20 most confident genes with existing annotations from

each of the three individual methods for testing. Due to overlaps

between the methods, this resulted in the selection of 88 genes as

novel candidates (the overlap between methods is shown in

Figure 4B). We then chose an additional 95 genes from the

ensemble list of predictions (38 from genes of unknown function

and 57 from genes with known non-mitochondrial function) to

arrive at our total of 183 test candidates in our first round of

laboratory evaluation. In this way we could evaluate the

performance of each individual method as well as the ensemble

as a whole.

Of these predictions chosen for testing, we identified 42 as

‘‘under-annotated,’’ whereas the remaining 141 predictions have

no previous literature evidence for involvement in mitochondrial

maintenance. We selected 6 additional test candidates from the

existing annotations to mitochondrial organization and biogenesis,

resulting in a total of 48 genes with prior literature evidence for

involvement in this process. We also chose 48 genes at random

from the set of all viable single gene knockouts in order to establish

baseline rates of phenotypic positives. It should also be noted that

by chance we would expect some overlap between our random

selection of genes and our novel candidates; in our case, 3 genes

are in common between these two groups.

Experimental methodologies and evaluation of results
We utilized a highly quantitative experimental approach to

assess a gene’s involvement in mitochondrial organization and

biogenesis. This method measures a single gene knockout

phenotype in comparison to the same phenotype for matched

wild type strains. Experiments were performed in replicate for

each candidate examined such that robust statistical analysis could

be performed on the results.

Strain preparation. For all of the genes examined, six

independent isolates of complete ORF deletions were obtained

from freshly sporulated strains from the yeast heterozygous

deletion collection [39,40].

Petite frequency assay. Yeast is able to grow and proliferate

even without functional mitochondria on fermentable carbon

sources. As such, yeast cells occasionally fail to pass aerobic

respiration competent mitochondria on to daughter cells, but these

cells can continue to proliferate when a fermentable carbon source

is available. Cells lacking functional mitochondria are called petite

cells. In this assay we assessed the rate at which single gene

knockout strains produced petite offspring. A significantly altered

petite formation frequency is indicative of a defect in

mitochondrial biogenesis and inheritance [33,34].

For each mutant strain tested, we grew several replicates of the

strain for 48 hours using glycerol as a carbon source. Strains

severely deficient in their ability to maintain functional mitochon-

drial cannot grow on glycerol and were classified as respiration

deficient in this first stage. Strains able to grow on glycerol were

diluted and plated for single colonies on rich media [41], which

releases the requirement for functional mitochondria. Thus, as

colonies formed, cells without functional mitochondria were

generated. When the colony is fully formed, it is a mixture of

cells with functional mitochondria and cells without functional

mitochondria. We measured this ratio by re-suspending a colony

and plating a dilution of this re-suspension such that 100–300

colonies are formed on a plate. By overlaying with soft agar

containing tetrazolium, cells with functional mitochondria were

stained red, while cells without functional mitochondria remained

white. The ratio of white colonies to total colonies gives the petite

frequency. Eight independent petite frequencies were measured

for each strain tested. The distribution of these frequencies was

compared to the frequency of petite generation in wild-type yeast.

Strains identified as having the altered mitochondrial inheritance

phenotype in this assay exhibit at least a 20% change in petite

frequency from wild type, and have a p-value of less than 0.05

when comparing the petite frequency distributions of that strain to

the wild-type petite frequency distribution, using a Mann-Whitney

U test.

Assessing the comparative accuracy of the
computational methods

In order to compare which aspect of mitochondrial biology was

best captured by each of the computational methods, we created a

breakdown of known mitochondrial biology into several sub-

groups. Based on the 106 original annotations and the literature

evidence for the 135 ‘‘under-annotations’’ we created 7 more

specific sub-groups of mitochondrial biogenesis genes shown in

Figure 5. Given the prediction ordering of each computational

method from our first iteration (i.e. using the original 106 genes as

the training set) we calculated the average precision for each of the

7 more specific groups for each of the three computational

approaches. The average precision was calculated for each sub-

group, G, as

APG~
1

Gj j
XGj j

i~1

i

ranki

,

where ranki is the rank order of the ith gene appearing from the sub-

group in the ordered prediction list. For display in Figure 5, the

average precisions were normalized by the expected average

precision if the genome were ordered randomly, which corre-

sponds to the number of genes in each sub-group divided by the

number of genes in the genome.

Iterative re-training, prediction, and verification
After our first round of testing, 123 of the 183 predictions were

found to have a significant phenotype strongly indicating

involvement in mitochondrial organization and biogenesis.

Combined with the original 106 annotated genes and the 95

genes identified as ‘‘under-annotated,’’ this results in a total of 324

genes. Each of the three computational methods was re-applied

using this updated training set of 324 genes and the same

procedure was used to form an updated ensemble list of

predictions. We selected the 52 genes with the highest confidence

from the updated results that were not previously tested for a

second round of laboratory investigation. The same experimental

Analysis of Approaches for Directing Biology

PLoS Computational Biology | www.ploscompbiol.org 11 March 2009 | Volume 5 | Issue 3 | e1000322



assays and evaluation procedures were used, and an additional 17

genes demonstrated a significant phenotype, resulting in a total of

140 out of 235 total predictions indicating involvement.

Supporting Information

Text S1 Analysis of additional, canonical computational func-

tion prediction methods. Includes Supplemental Figures S1-S3.

Found at: doi:10.1371/journal.pcbi.1000322.s001 (0.68 MB PDF)

Text S2 Algorithmic differences between SPELL and MEFIT

affect their specific predictions. Includes Supplemental Figure S4.

Found at: doi:10.1371/journal.pcbi.1000322.s002 (0.17 MB PDF)

Table S1 Summary of computational predictions and results of

petite frequency assay.

Found at: doi:10.1371/journal.pcbi.1000322.s003 (0.12 MB XLS)

Acknowledgments

We would like to acknowledge the additional authors of the companion

manuscript of this study: Alicia Hayes, Jadine Paw, John Clore, Rosa

Mendoza, Bryan San Luis, Corey Nislow, Guri Giaever, and Michael

Costanzo. We also thank the members of the Troyanskaya, Caudy,

Botstein, Kruglyak, and Dunham laboratories for useful discussions and

advice.

Author Contributions

Conceived and designed the experiments: MAH CLM CH DCH KL AAC

OGT. Performed the experiments: DCH AAC. Analyzed the data: MAH

CLM CH DCH AAC. Wrote the paper: MAH CLM CH.

References

1. Barutcuoglu Z, Schapire RE, Troyanskaya OG (2006) Hierarchical multi-label

prediction of gene function. Bioinformatics 22: 830–836.

2. Jaimovich A, Elidan G, Margalit H, Friedman N (2006) Towards an integrated
protein-protein interaction network: a relational Markov network approach.

J Comput Biol 13: 145–164.
3. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, et al. (2003) A Bayesian

networks approach for predicting protein-protein interactions from genomic

data. Science 302: 449–453.
4. Lanckriet GR, Deng M, Cristianini N, Jordan MI, Noble WS (2004) Kernel-

based data fusion and its application to protein function prediction in yeast. Pac
Symp Biocomput. pp 300–311.

5. Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional

network of yeast genes. Science 306: 1555–1558.
6. Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome

prediction of protein function via graph-theoretic analysis of interaction maps.
Bioinformatics 21 Suppl 1: i302–i310.

7. Owen AB, Stuart J, Mach K, Villeneuve AM, Kim S (2003) A gene
recommender algorithm to identify coexpressed genes in C. elegans. Genome

Res 13: 1828–1837.

8. Pavlidis P, Weston J, Cai J, Noble WS (2002) Learning gene functional
classifications from multiple data types. J Comput Biol 9: 401–411.

9. Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D (2003) A
Bayesian framework for combining heterogeneous data sources for gene function

prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci U S A 100:

8348–8353.
10. Hughes TR, Robinson MD, Mitsakakis N, Johnston M (2004) The promise of

functional genomics: completing the encyclopedia of a cell. Curr Opin Microbiol
7: 546–554.

11. Kitano H (2002) Computational systems biology. Nature 420: 206–210.
12. Peña-Castillo L, Hughes TR (2007) Why are there still over 1000 uncharacter-

ized yeast genes? Genetics 176: 7–14.

13. Hibbs MA, Hess DC, Myers CL, Huttenhower C, Li K, Troyanskaya OG
(2007) Exploring the functional landscape of gene expression: directed search of

large microarray compendia. Bioinformatics 23: 2692–2699.
14. Huttenhower C, Hibbs M, Myers C, Troyanskaya OG (2006) A scalable method

for integration and functional analysis of multiple microarray data sets.

Bioinformatics 22: 2890–2897.
15. Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, et al. (2005) Discovery of

biological networks from diverse functional genomic data. Genome Biol 6:
R114.

16. Hess DC, Myers CL, Huttenhower C, Hibbs MA, Hayes A, et al. (2009)
Computationally driven, quantitative experiments discover genes required for

mitochondrial biogenesis. PLoS Genet; doi:10.1371/journal.pgen.1000407.

17. Foury F (1997) Human genetic diseases: a cross-talk between man and yeast.
Gene 195: 1–10.

18. Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, et al.
(2002) Systematic screen for human disease genes in yeast. Nat Genet 31:

400–404.

19. Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, et al. (1997)
Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of

frataxin. Science 276: 1709–1712.
20. Koutnikova H, Campuzano V, Foury F, Dollé P, Cazzalini O, Koenig M (1997)
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