Directing projective modules

By
Dieter Happel and Claus Michael Ringel

Let A be an Artin algebra. The A-modules which we consider are always left modules of finite length. If X, Y, Z are A-modules, the composition of maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is denoted by $f g: X \rightarrow Z$. The category of (finite length) A-modules is denoted by A-mod. If X, Y are indecomposable A-modules, we denote by $\operatorname{rad}(X, Y)$ the set of non-invertible maps from X to Y. A path in A-mod is a sequence (X_{0}, \ldots, X_{s}) of (isomorphism classes of) indecomposable A-modules $X_{i}, 0 \leqq i \leqq s$ such that $\operatorname{rad}\left(X_{i-1}, X_{i}\right) \neq 0$ for all $1 \leqq i \leqq s$. We will say that $\left(X_{0}, \ldots, X_{s}\right)$ is a path from X_{0} to X_{s} of length s, and we write $X \leqq X^{\prime}$, or $X \leqq{ }_{A} X^{\prime}$ to indicate that a path from X to X^{\prime} exists. If $s \geqq 1$, and $X_{0}=X_{s}$, then the path $\left(X_{0}, \ldots, X_{s}\right)$ is called a cycle. A indecomposable A-module is called directing if X does not occur in a cycle.

Our first aim will be to extend the definition of a directing module to decomposable modules. We show that an indecomposable projective A-module P is directing if and only if the radical of P is directing. In case the top of P is injective it follows that P is directing if and only if the radical of P is directing as a module over the factor algebra of A by the trace ideal of P.

The authors are grateful to the referee for helpful comments.

1. Directing modules. Let $\tau=\tau_{A}$ be the Auslander-Reiten translation on A-mod. The kernel of a map f will be denoted by $\operatorname{Ker} f$, its image by $\operatorname{Im} f$.

Lemma. Let $f: X \rightarrow Y$, and $g: Y \rightarrow Z$ be maps with $f g=0$, and assume that there is no direct summand Y^{\prime} of Y with $\operatorname{Im} f \subseteq Y^{\prime} \subseteq \operatorname{Ker} g$. Then there exists an indecomposable non-projective module W such that $\operatorname{Hom}(X, \tau W) \neq 0$, and $\operatorname{Hom}(W, Z) \neq 0$.

Proof. Recall that a map $g: Y \rightarrow Z$ is called right minimal provided $\operatorname{Ker} g$ does not contain a non-zero direct summand of Y.

First, let us show that we may assume that both f, g are non-zero and that g is right minimal. For, let Y_{1} be a maximal direct summand of Y contained in the kernel of g, and let $X_{1}=f^{-1}\left(Y_{1}\right)$. In case $X_{1}=X$, we have $\operatorname{Im} f \subseteq Y_{1} \subseteq \operatorname{Ker} g$, with Y_{1} a direct summand of Y, contrary to our assumption. Thus X_{1} is a proper submodule of X. Let $Y=Y_{1} \oplus Y_{2}$, let $f=\left[f_{1}, f_{2}\right]$, and $g=\left[\begin{array}{l}g_{1} \\ g_{2}\end{array}\right]$, where $f_{i}: X \rightarrow Y_{i}, g_{i}: Y_{i} \rightarrow Z$. By definition, both f_{2} and g_{2} are non-zero, g_{2} is right minimal, and $f_{2} g_{2}=0$. Thus, we replace f, g, Y by f_{2}, g_{2}, Y_{2}.

Let $K=\operatorname{Ker} g$, with inclusion map $u: K \rightarrow Y$. Since $\operatorname{Im} f$ is contained in K, and $f \neq 0$, there is an indecomposable direct summand K_{1} of K with $\operatorname{Hom}\left(X, K_{1}\right) \neq 0$. Let $m_{1}: K_{1} \rightarrow K$ be the inclusion map. Since g is right minimal, K_{1} is not a direct summand of Y, in particular we see that K_{1} cannot be injective. Let $0 \rightarrow K_{1} \rightarrow E \rightarrow W \rightarrow 0$ be an almost split sequence, and denote the map $K_{1} \rightarrow E$ by h, the map $E \rightarrow W$ by e. Since $m_{1} u$ is not a split monomorphism, there exists $v: E \rightarrow Y$ with $h v=m_{1} u$, and therefore also $v^{\prime}: W \rightarrow Z$ with $e v^{\prime}=v g$. We claim that $v^{\prime} \neq 0$. Otherwise, $v g=0$, thus there is $v^{\prime \prime}: E \rightarrow K$ such that $v^{\prime \prime} u=v$. But $h v^{\prime \prime} u=h v=m_{1} u$ yields that $h v^{\prime \prime}=m_{1}$, since u is a monomorphism. But with $h v^{\prime \prime}=m_{1}$ also h is split mono, impossible. This contradiction shows that $\operatorname{Hom}(W, Z) \neq 0$. Thus, we have found an indecomposable non-projective module W with $\operatorname{Hom}(W, Z) \neq 0$, and $\operatorname{Hom}(X, \tau W)=\operatorname{Hom}\left(X, K_{1}\right) \neq 0$.

Corollary. An indecomposable module X is directing if and only if there does not exist an indecomposable non-projective module W such that $X \leqq \tau W$ and $W \leqq X$.

Proof. If there exists an indecomposable non-projective module W such that $X \leqq \tau W$ and $W \leqq X$, then we have a cycle containing X. Conversely, assume there exists a cycle $\left(X_{0}, \ldots, X_{s}\right)$ with $X=X_{0}=X_{s}$, say with non-zero maps $f_{i}: X_{i-1} \rightarrow X_{i}$, and write $f_{j}=f_{i}$ in case $j \equiv i(\bmod s)$. There is some $t \geqq 1$ with $f_{1} \cdots f_{t} \neq 0$, but $f_{1} \cdots f_{t+1}=0$. We apply the Lemma to $f=f_{1} \cdots f_{t}$, and $g=f_{t+1}$, and conclude that there exists an indecomposable non-projective module W such that $X=X_{0} \leqq \tau W$ and $W \leqq X_{t+1}$, and, of course, $X_{t+1} \leqq X$.

We use this characterization of indecomposable directing modules in order to extend the definition as follows: an arbitrary (not necessarily indecomposable) module M will be called directing provided there do not exist indecomposable direct summands M_{1}, M_{2} of M, and an indecomposable non-projective module W such that $M_{1} \leqq \tau W$ and $W \leqq M_{2}$. (General directing modules have been considered already by Bakke in [1]; directing modules which are in addition sincere have been called partial slice modules in [3]).

Remark. We may define the notion of a directing object in any abelian category $\mathscr{A l}$ which has almost split sequences: we say that the object M of \mathscr{A} is directing if and only if there do not exist indecomposable direct summands M_{1}, M_{2} of M, and an almost split sequence $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ such that $M_{1} \leqq U$ and $W \leqq M_{2}$. If we want to emphasize that we consider paths in \mathscr{A}, we may write $\leqq{ }_{\mathscr{A}}$ instead of \leqq. Assume that \mathscr{A} is an exact abelian subcategory of A-mod which also has almost split sequences. If M is a directing A-module which belongs to \mathscr{A}, then M is directing when considered as an object of \mathscr{A}. For let M_{1}, M_{2} be indecomposable direct summands of M, and let $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ be an almost split sequence in \mathscr{A} such that $M_{1} \leqq U$ and $W \leqq M_{2}$. Since we assume that \mathscr{A} is an exact subcategory, the given almost split sequence shows that $\operatorname{Ext}_{A}^{1}(W, U) \neq 0$, thus $\operatorname{Hom}\left(U, \tau_{A} W\right) \neq 0$. Altogether we see that $M_{1} \leqq U \leqq \tau_{A} W$ and $W \leqq M_{2}$ in A-mod, thus M cannot be directing as an A-module.

Directing modules are very special. The main properties can be found in the following three Propositions. Given any module M, its support algebra is the factor algebra of A modulo the ideal generated by all idempotents which annihilate M.

Proposition 1. Let M be directing, and let B be the support algebra of M. Then End (M) is hereditary, $\operatorname{Ext}^{1}(M, M)=0$, and M, as a B-module, is a partial tilting module.

Proof. Given indecomposable direct summands M_{i}, M_{j} of M, then $\operatorname{Ext}^{1}\left(M_{i}, M_{j}\right)$ $=0$, since otherwise $\operatorname{Hom}\left(M_{j}, \tau M_{i}\right) \neq 0$, contrary to the assumption that M is directing. Thus we have $\operatorname{Ext}^{1}(M, M)=0$.

Since B-mod is an exact abelian subcategory having almost split sequences, we see that M is also directing as a B-module.

We claim that the projective dimension of any indecomposable summand M_{i} of M as a B-module is at most 1 . Otherwise, there is an indecomposable injective B-module I with $\operatorname{Hom}\left(I, \tau_{B} M_{i}\right) \neq 0$. Since B is the support algebra of M, there exists some direct summand M_{j} of M with $\operatorname{Hom}\left(M_{j}, I\right) \neq 0$, thus we obtain $M_{j} \leqq I \leqq \tau_{B} M_{i}$, impossible. This shows that M as a B-module is a partial tilting module. In the terminology of [3], the B-module M is a partial slice module, thus End M is hereditary.

The next proposition collects the information on paths (X_{1}, \ldots, X_{s}), where the X_{i} are direct summands of a directing module.

If $\left(X_{0}, \ldots, X_{s}\right)$ is a path, we say that a path $\left(Y_{0}, \ldots, Y_{t}\right)$ is a refinement of $\left(X_{0}, \ldots, X_{s}\right)$ if there is an order-preserving function $\pi:\{0, \ldots, s\} \rightarrow\{0, \ldots, t\}$ such that $X_{i}=Y_{\pi(i)}$ and $\pi(0)=0, \pi(s)=t$.

We recall that for indecomposable A-modules X, Y, the set $\operatorname{rad}^{2}(X, Y)$ consists of all finite sums of maps of the form $f g$, where $f \in \operatorname{rad}(X, C), g \in \operatorname{rad}(C, Y)$, with C indecomposable.

Proposition 2. Let $\left(X_{0}, \ldots, X_{s}\right)$ be a path, and assume that there does not exist an indecomposable non-projective module W with $X_{0} \leqq \tau W$ and $W \leqq X_{s}$. Let $X=\underset{i=0}{\oplus} X_{i}$. Then the following assertions hold:
(a) The module X is directing.
(b) If $f_{i}: X_{i-1} \rightarrow X_{i}$ are non-zero maps, for $1 \leqq i \leqq s$, then $f_{1} \cdots f_{s} \neq 0$.
(c) $\operatorname{Hom}\left(X_{i}, \tau X_{j}\right)=0$, for all i, j.
(d) The numbers is bounded by the number of isomorphism classes of simple A-modules.
(e) The path can be refined to a path $\left(Y_{0}, \ldots, Y_{t}\right)$ such that $\operatorname{rad}^{2}\left(Y_{i-1}, Y_{i}\right)=0$ for $1 \leqq i \leqq t$.
(f) Assume we have $\operatorname{rad}^{2}\left(X_{i-1}, X_{i}\right)=0$, for $1 \leqq i \leqq s$, and let $0 \neq f_{i} \in \operatorname{rad}\left(X_{i-1}, X_{i}\right)$. If $f_{1} \cdots f_{s}=g h$ for some maps $g: X_{0} \rightarrow Z, h: Z \rightarrow X_{s}$ with Z indecomposable, then there exists some i with $0 \leqq i \leqq s$ and an isomorphism $\eta: Z \rightarrow X_{i}$ such that $g \eta=f_{1} \cdots f_{i}$.
Proof. (a) Assume there exists an indecomposable non-projective module W such that $X_{i} \leqq \tau W$ and $W \leqq X_{j}$, for some i, j. Then $X_{0} \leqq X_{i} \leqq \tau W$ and $W \leqq X_{j} \leqq X_{s}$, contrary to the assumption.
(b) This is a direct consequence of Lemma 1.
(c) If $\operatorname{Hom}\left(X_{i}, \tau X_{j}\right) \neq 0$, then $X_{0} \leqq X_{i} \leqq \tau W$, and $W \leqq X_{s}$, with $W=X_{j}$, contrary to our assumption.
(d) This follows from Proposition 1.
(e) According to (d) there exists a refinement which cannot be further refined. But if $\left(Y_{0}, \ldots, Y_{t}\right)$ is a path which cannot be refined, then necessarily $\operatorname{rad}^{2}\left(Y_{i-1}, Y_{i}\right)=0$.
(f) Let us assume that $\operatorname{rad}^{2}\left(X_{i-1}, X_{i}\right)=0$, and let $0 \neq f_{i} \in \operatorname{rad}\left(X_{i-1}, X_{i}\right)$ for $1 \leqq i \leqq s$. Let us assume that $f_{1} \cdots f_{s}=g h$ for some maps $g: X_{0} \rightarrow Z, h: Z \rightarrow X_{s}$, where Z is indecomposable. If h is an isomorphism, let $i=s$, and $\eta=h$. Thus let us assume that h is not an isomorphism. We use induction on s. For $s=1$ the map g has to be an isomorphism, thus let $\eta=g^{-1}$. Consider the case $s \geqq 2$. Let $\left[\begin{array}{c}f_{s} \\ f_{s}^{\prime}\end{array}\right]$ be a sink map for X_{s}, thus $h=u f_{s}+v f_{s}^{\prime}$, for some maps u, v. Then $f_{1} \cdots f_{s}=g h=g u f_{s}+g v f_{s}^{\prime}$ shows that the $\operatorname{map}\left[f_{1} \cdots f_{s-1}-g u, g v\right]$ factors through the kernel K of $\left[\begin{array}{c}f_{s} \\ f_{s}^{\prime}\end{array}\right]$. However, either X_{s} is projective, and $K=0$, or else X_{s} is non-projective, and $K=\tau X_{s}$. In the latter case, the basic assumption gives $\operatorname{Hom}\left(X_{0}, \tau X_{s}\right)=0$, thus always $\left[f_{1} \cdots f_{s-1}-g u, g v\right]=0$, and therefore $f_{1} \cdots f_{s-1}=g u$. The assertion now follows by induction.

Proposition 3. Let M be a directing A-module. Let $M_{i}(i \in I)$ be a complete set tone from each isomorphism class) of indecomposable A-modules M_{i} such that there are indecomposable direct summands $M_{i}^{\prime}, M_{i}^{\prime \prime}$ of M with $M_{i}^{\prime} \leqq M_{i} \leqq M_{i}^{\prime \prime}$. Then I is finite and $\bar{M}=\bigoplus_{i \in I} M_{i}$ is directing.

Proof. Let M_{i}, M_{j} belong to the set. Assume there is some indecomposable nonprojective module W with $M_{i} \leqq \tau W$, and $W \leqq M_{j}$. Then we obtain a path $M_{i}^{\prime} \leqq M_{i} \leqq \tau W \leqq W \leqq M_{j} \leqq M_{j}^{\prime \prime}$, where $M_{i}^{\prime}, M_{j}^{\prime \prime}$ are direct summands of M, impossible. It follows by Parts (e) and (d) of Proposition 2 that I is finite, since the Auslander-Reiten quiver of any Artin algebra is locally finite. Also we see that \bar{M} is directing.

2. Indecomposable projective modules and their radicals.

Theorem 1. Let P be an indecomposable projective module. Then the following are equivalent:
(a) P is directing.
(b) $\operatorname{rad} P$ is directing.
(c) Each indecomposable direct summand of $\operatorname{rad} P$ is directing.

Proof. Clearly, if (X_{0}, \ldots, X_{s}) is a cycle with $P=X_{0}=X_{s}$, then we can factor any non-invertible map $X_{s-1} \rightarrow X_{s}=P$ through rad P, thus we can refine the path in order to contain some indecomposable summand M_{1} of $\operatorname{rad} P$, thus M_{1} is not directing. This shows that (c) implies (a). Trivially we have (b) implies (c).

In order to consider the missing implication, we will use the following Lemma.
Lemma. Let $f: \operatorname{rad} P \rightarrow Y, g: Y \rightarrow Z$ be non-zero maps with $f g=0$, and assume that Z is indecomposable, and g is right minimal. Then $P \leqq Z$.

Proof. Since we assume that g is right minimal, the restriction of g to any non-zero direct summand of Y is non-zero.

If $\operatorname{Hom}(P, Y) \neq 0$, then any indecomposable direct summand Y_{1} of Y with $\operatorname{Hom}\left(P, Y_{1}\right)$ $\neq 0$ yields $P \leqq Y_{1} \leqq Z$.

Thus we can assume that $\operatorname{Hom}(P, Y)=0$. Let $S=P / \operatorname{rad} P$. The map $f: \operatorname{rad} P \rightarrow Y$ induces from the canonical exact sequence $0 \rightarrow \operatorname{rad} P \rightarrow P \rightarrow S \rightarrow 0$ an exact sequence $0 \rightarrow Y \rightarrow E \rightarrow S \rightarrow 0$, and we denote the map $Y \rightarrow E$ by m, the map $E \rightarrow S$ by p. Since $\operatorname{Hom}(P, Y)=0$, the induced exact sequence cannot split, and also $\operatorname{Hom}(Y, S)=0$.

Take an indecomposable direct summand E^{\prime} of E with $\operatorname{Hom}\left(P, E^{\prime}\right) \neq 0$, say $E=E^{\prime} \oplus C$, with inclusion map $u: E^{\prime} \rightarrow E$. The restriction $u p$ of p to E^{\prime} is non-zero, whereas the restriction of p to C is zero. Let $m^{\prime}: Y^{\prime} \rightarrow E^{\prime}$ be the kernel of $u p: E^{\prime} \rightarrow S$, thus Y is isomorphic to $Y^{\prime} \oplus C$, and there is an inclusion map $v: Y^{\prime} \rightarrow Y$ with $v m=m^{\prime} u$. Note that $Y^{\prime} \neq 0$, since otherwise the sequence $0 \rightarrow Y \rightarrow E \rightarrow S \rightarrow 0$ would split. Since Y^{\prime} is a non-zero direct summand of Y, we see that $v g \neq 0$.

Now we consider the exact sequence $0 \rightarrow Z \rightarrow F \rightarrow S \rightarrow 0$, induced from $0 \rightarrow Y \rightarrow E \rightarrow S \rightarrow 0$ by the map $g: Y \rightarrow Z$, and we denote the map $Z \rightarrow F$ by m^{\prime}. Since our sequence is in fact induced via the zero map $f g$, it follows that m^{\prime} is a split monomorphism. Thus, there exists a map $g^{\prime}: E \rightarrow Z$ with $m g^{\prime}=g$. Note that the restriction $u g^{\prime}$ of g^{\prime} to E^{\prime} is a non-zero map, since $m^{\prime} u g^{\prime}=v m g^{\prime}=v g \neq 0$.

Altogether, we see that $\operatorname{Hom}\left(E^{\prime}, Z\right) \neq 0$, thus $P \leqq E^{\prime} \leqq Z$. This completes the proof of the Lemma.

In order to complete the proof of the Theorem, let P be an indecomposable projective module, and assume there are indecomposable direct summands M_{1}, M_{2} of $\operatorname{rad} P$ and an indecomposable non-projective module W such that $M_{1} \leqq \tau W$ and $W \leqq M_{2}$. Let $\left(X_{0}, \ldots, X_{s}\right)$ be a path with $X_{0}=M_{1}$, and $X_{s}=\tau W$, and take non-zero maps $f_{i}: X_{i-1} \rightarrow X_{i}$, for $1 \leqq i \leqq s$. If $f_{1} \cdots f_{s}=0$, take t maximal with $f=f_{1} \cdots f_{t} \neq 0$, and $g=f_{t+1}$. The Lemma yields $P \leqq X_{i+1}$, thus $P \leqq X_{t+1} \leqq \tau W \leqq W$. If $f_{1} \cdots f_{s} \neq 0$, let $m: \tau W \rightarrow V$ be the source map for τW, and $g: V \rightarrow W$ its cokernel. In this case, we apply the Lemma to $f=f_{1} \cdots f_{s} m$, and g, in order to conclude that $P \leqq W$. Always, we have $P \leqq W \leqq M_{2}<P$, thus P is not directing. This completes the proof of Theorem.

Remark. Let X be an indecomposable directing module and let $E \rightarrow X$ be the sink map. Then E need not to be directing. Consider for example the simple injective module I (4) in example 1 (see Section 4).
3. An inductive criterion. Let P an indecomposable projective A-module, let $S=$ $P / \mathrm{rad} P$. There are two possible ways of replacing $A-\bmod$ by a related module category B-mod deleting P. First of all, we may factor out the trace ideal I of P, thus I is the sum of all images of maps $P \rightarrow{ }_{A} A$. Let $B=A / I$, thus we may identify B-mod with the full subcategory \mathscr{X} of A-mod given by all A-modules M with $\operatorname{Hom}(P, M)=0$. Note that we have $\operatorname{Hom}(P, M)=0$ if and only if S is not a composition factor of M. Also, we may consider some projective module P^{\prime} such that P and P^{\prime} have no indecomposable direct summand in common, but every indecomposable projective module is a direct summand of $P \oplus P^{\prime}$. Let $C=$ End P^{\prime}. Then the category C-mod is equivalent to the full subcategory \mathscr{Y} of all A-modules M such that S does not occur as a composition factor of $\operatorname{soc} M$ or top M. Note that always $\mathscr{X} \subseteq \mathscr{Y}$.

The abelian subcategory \mathscr{X} (but usually not \mathscr{Y}) is an exact subcategories and it is closed under extensions. By the remark in Section 1, we see that a directing A-module which belongs to \mathscr{X}, is directing also as an object of \mathscr{X}.

In case P is directing, $\operatorname{End}(P)$ is a division ring, thus obviously $\operatorname{rad} P$ belongs to \mathscr{X}. In addition, for P directing, rad P will be a directing object of \mathscr{X}. We are interested to know under what conditions an indecomposable projective module P with End (P) a divison ring, and such that rad P is directing as an object of X, is directing itself.

We will present a positive answer in case S is injective, so that $\mathscr{X}=\mathscr{Y}$. (In this case, the algebra A is sometimes said to be a one-point extension $A=B[N]$ of B by the B-module $N=\operatorname{rad} P$).

But first we show in an example that in general the conditions above are not sufficient to ensure that P is directing.

Example 1. For this let A be given as the path algebra over the field k of the following quiver modulo the ideal generated by all paths of length two:

We denote by $e_{1}, e_{2}, e_{3}, e_{4}$ the idempotents of A corresponding to the vertices of the quiver. We denote by $S(i)$ the simple module corresponding to the vertex i, by $P(i)$ its projective cover and by $I(i)$ its injective hull. Note that we consider left modules, thus $S(1)$ is simple projective. We consider the indecomposable projective A-module $P(3)$. Note that $\operatorname{End}(P(3)) \cong k$ and $\operatorname{rad} P(3)=S(2)$. Let $e=e_{1}+e_{2}+e_{4}$. Then $C=e A e \cong B=$ $A / A e_{3} A$ is a hereditary algebra with quiver

In particular we see that $S(2)$ is a directing B-module.
We denote the indecomposable A-modules by their dimension vectors. The AuslanderReiten quiver is given as follows, where the horizontal dotted lines indicate the Auslan-der-Reiten translation, while identification is along the vertical dashed lines.

So we see that $P(3)$ is not directing, since we have a path

$$
P(3) \rightarrow P(4) \rightarrow I(1) \rightarrow S(2) \rightarrow P(3) .
$$

Theorem 2. Let P be indecomposable projective, and assume $S=P / \operatorname{rad} P$ is injective. Let I be the trace ideal of P in A, and $B=A / I$. Then P is directing if and only if $\operatorname{rad} P$ is directing as a B-module.

Proof. If P is directing, then $\operatorname{rad} P$ is directing as an A-module, thus as a B-module.
Before we consider the converse implication, let us recall the following: Given an A-module X, we denote by ιX the maximal B-submodule of X, thus $X / I X$ is a direct sum of copies of S. Note that if X is an indecomposable A-module and $\iota X \neq X$, and Y is an indecomposable direct summand of $\imath X$, then $\operatorname{Hom}(\operatorname{rad} P, Y) \neq 0$. (For, Hom $(\operatorname{rad} P, Y)$ maps onto $\operatorname{Ext}^{1}(S, Y)$, and the latter group has to be non-zero.)

Now, let $\operatorname{rad} P$ be a directing B-module. First, we show: Let X be an indecomposable B-module, let $X^{\prime} \rightarrow X$ be its sink map in A-mod, and assume $X \leqq{ }_{B} Z$ for some indecomposable direct summand Z of $\operatorname{rad} P$. Then X^{\prime} is a B-module. For the proof, we distinguish two cases: If X is a projective B-module, then $X^{\prime}=\operatorname{rad} X$ is a submodule of X, thus also a B-module. $A s$ second case, we assume that X is non-projective as a B-module, thus also non-projective as an A-module. Then $i \tau_{A} X=\tau_{B} X$ (see [4] or [5]). We claim that $\iota \tau_{A} X=\tau_{A} X$. Otherwise Hom $\left(\operatorname{rad} P, \tau_{B} X\right) \neq 0$, by the preceeding remark. Let Z^{\prime} be an indecomposable direct summand of $\operatorname{rad} P$ with $\operatorname{Hom}\left(Z^{\prime}, \tau_{B} X\right) \neq 0$, then we obtain the path $Z^{\prime} \leqq_{B} \tau_{B} X \varliminf_{B} X \varliminf_{B} Z$, contrary to our assumption that $\operatorname{rad} P$ is directing in B mod. But $\imath \tau_{A} X=\tau_{A} X$ means that $\tau_{A} X$ is a B-module, and therefore also X^{\prime}.

Let us assume that there exists a path $\left(X_{0}, \ldots, X_{s+1}\right)$, where $X_{0}=P=X_{s+1}$. We may assume that X_{s} is a direct summand of $\operatorname{rad} P$, therefore $s \geqq 2$. Note that if $\operatorname{Hom}\left(P, X_{t}\right) \neq 0$, for some $2 \leqq t<s$, we may delete X_{1}, \ldots, X_{t-1} from the path, thus we can assume that $\operatorname{Hom}\left(P, X_{i}\right)=0$, for $2 \leqq i \leqq s$.

First of all, we show that the length $s+1$ of such paths is bounded. Let $f: X_{1} \rightarrow X_{2}$ be a non-zero map. Note that f cannot vanish on $t X_{1}$, since otherwise the image of f would be a direct sum of copies of S, but S does not occur as a composition factor of X_{2}. Let Y be an indecomposable direct summand of $l X_{1}$, say with inclusion map $u: Y \rightarrow X_{1}$ such that $u f \neq 0$. According to the remark above, there exists an indecomposable direct summand M_{1} of $\operatorname{rad} P$ such that $\operatorname{Hom}\left(M_{1}, Y\right) \neq 0$. Then we see that we obtain a path ($M_{1}, Y, X_{2}, \ldots, X_{s}$) of length s in B-mod starting and ending in a direct summand of rad P. According to Section 1, the length of such paths is bounded.

On the other hand, we claim that we may replace the path $\left(X_{0}, \ldots, X_{s}\right)$ by a similar one with s increased by 1 . Namely, let $X_{2}^{\prime} \rightarrow X_{2}$ be the sink map for X_{2}. We can factor f through X_{2}^{\prime}. In particular, there exists an indecomposable direct summand Z of X_{2}^{\prime} such that $\operatorname{Hom}\left(X_{1}, Z\right) \neq 0$. Since there exists an irreducible map $Z \rightarrow X_{2}$, we have $\operatorname{rad}\left(Z, X_{2}\right) \neq 0$. Also, since X_{2} is an indccomposable B-module and a predecessor of the direct summand X_{s} of rad P, we know that X_{2}^{\prime} is a B-module, thus X_{1} and Z cannot be isomorphic, thus $\operatorname{rad}\left(X_{1}, Z\right) \neq 0$. Altogether we obtain a path ($P, X_{1}, Z, X_{2}, \ldots, X_{s}, P$) with similar properties as the given one, and with s being increased by 1 . This contradiction completes the proof.
4. When are all indecomposable projective modules directing? Theorem 2 may be used in order to construct algebras so that all indecomposable projective modules are directing. However, we should remark that starting with an algebra B such that all indecomposable projective B-modules are directing, and a directing B-module M, some of the
indecomposable projective B-modules may cease to be directing when considered as modules over the one-point extension algebra $A=B[M]$, as the following example shows:

Example 2. Let A be given as the path algebra over the field k by:
with relation $\alpha \beta=0$.
Let B be the support algebra of $S(1), S(2)$ and $S(3)$. Then all indecomposable projective B-modules are directing. But $P(3)$ is not a directing A-module. This follows directly from Theorem 2. In fact $\operatorname{rad} P(3)=S(2)$, and $S(2)$ is a simple regular module over the tame hereditary algebra C obtained from A by factoring out the trace ideal of $P(3)$. So $S(2)$ is not a directing C-module. Note that $\operatorname{rad} P(4)$ is a directing B-module, so $P(4)$ is a directing A-module.

We point out that in the preceding example all indecomposable injective A-modules are directing.

Given an Artin algebra A, we may consider its quiver $Q(A)$. Recall that $Q(A)$ is defined as follows: the vertices of $Q(A)$ are the isomorphism classes [S] of the simple A-modules S, and there is an arrow $\left[S^{\prime}\right] \rightarrow[S]$ provided $\operatorname{Ext}^{1}\left(S, S^{\prime}\right) \neq 0$. (In this way, for a finite-dimensional basic k-algebra A over an algebraically closed field k the path algebra of $Q(A)$ will map onto A; note that some publications (for example [4]) call the opposite of $Q(A)$ the quiver of A.) We will label the vertices of $Q(A)$ by numbers or letters; given such a label a, we denote by $S(a)$ a representative of the isomorphism class a.

Note that an algebra A such that all indecomposable projective A-modules are directing, necessarily has a directed quiver $Q(A)$.

Let A be an algebra with directed quiver $Q(A)$. A labelling $\left\{a_{1}, \ldots, a_{n}\right\}$ of the vertices of $Q(A)$ will be called admissible, provided $\operatorname{Ext}^{1}\left(S\left(a_{i}\right), S\left(a_{j}\right)\right) \neq 0$ implies that $i>j$. Of course, any admissible labelling allows to reconstruct A as a succession of onepoint extensions: Let $A_{t}=A\left(a_{1}, \ldots, a_{t}\right)$ be the support algebra of $\oplus_{i=1}^{i} S\left(a_{i}\right)$. Then $N_{t}=\operatorname{rad} P\left(a_{t+1}\right)$ is an A_{t}-module, and $A_{t+1}=A_{t}\left[N_{t}\right]$.

We also consider a partial order on the vertices of $Q(A)$ by defining $a \leqq b$ if there is a path in $Q(A)$ from a to b. Let a be a vertex of $Q(A)$, then we define A^{a} as the support algebra of $\oplus S(b)$. Then rad $P(a)$ is an A^{a}-module. Note that for vertices a, b of $Q(A)$ with $a \leqq b$ we have a path from $P(a)$ to $P(b)$ in A-mod, so $P(a) \leqq{ }_{A} P(b)$.

Theorem 3. Let A be an algebra with directed quiver $Q(A)$. Then the following are equivalent:
(a) All indecomposable projective A-modules are directing.
(b) For any admissible labelling a_{1}, \ldots, a_{n} of the vertices of $Q(A)$, the radical of $P\left(a_{t+1}\right)$ is a directing $A\left(a_{1}, \ldots, a_{t}\right)$-module.
(c) For all vertices a of $Q(A)$, the A^{a}-module $\operatorname{rad} P(a)$ is directing.

Proof. To show that (a) implies (b) let $P\left(a_{t+1}\right)$ be a directing A-module, then it is also a directing $A\left(a_{1}, \ldots, a_{t+1}\right)$-module, thus $\operatorname{rad} P\left(a_{t+1}\right)$ is a directing $A\left(a_{1}, \ldots, a_{t}\right)$ module.

Let a be a vertex of $Q(A)$. Then there exists an admissible labelling a_{1}, \ldots, a_{n} of the vertices such that A^{a} is of the form A_{t} for some t and $a=a_{t+1}$. This shows that (b) implies (c).

To show the missing implication assume that there exists an indecomposable projective A-module P which is not directing. Let $S=P / \operatorname{rad} P$. Let $\left(X_{0}, \ldots, X_{s}\right)$ be a path in A-mod with $X_{0}=P=X_{s}$. We can assume that for any sink [$\left.S^{\prime}\right]$ in $Q(A)$, the simple module S^{\prime} appears as a composition factor of at least one of the X_{i}. We claim that we can assume that $[S]$ is a sink in $Q(A)$. For, if $[S]$ is not a sink, let $\left[S^{\prime}\right]$ be a sink with a path from [S] to [$\left.S^{\prime}\right]$. Let P^{\prime} be a projective cover of S^{\prime}, then $P<P^{\prime}$. By assumption, $\operatorname{Hom}\left(P^{\prime}, X_{i}\right) \neq 0$ for some i, thus we obtain a path $P^{\prime} \leqq X_{i} \leqq P<P^{\prime}$, thus we may consider P^{\prime} instead of P.

If $[S]=[S(a)]$ is a sink in $Q(A)$, then $A=A^{a}[\operatorname{rad} P(a)]$. According to Theorem 2, $\operatorname{rad} P(a)$ cannot be a directing A^{a}-module. This completes the proof.

Let us stress that Example 2 shows that it is not sufficient to know that for one admissible labelling a_{1}, \ldots, a_{n} of the vertices of $Q(A)$, the radical of $P\left(a_{t+1}\right)$ is a directing $A\left(a_{1}, \ldots, a_{t}\right)$-module in order to conclude that the indecomposable projective A-modules are directing.

Let A be an Artin algebra. Then A is called representation-finite if there are only a finite number of isomorphism classes of indecomposable A-modules. A representation-finite Artin algebra A is said to be representation-directed if all indecomposable A-modules are directing, or equivalently if the Auslander-Reiten quiver does not contain an oriented cycle. The following result is due to Bautista and Smalo [2], we are going to present an alternative proof.

Proposition 4. Let A be representation-finite. Then A is representation-directed if and only if all indecomposable projective A-modules are directing.

Proof. Suppose that all indecomposable projective A-modules are directing and assume that there is an indecomposable A-module $X=X_{0}$ which is not directing. Let $\left(X_{0}, \ldots, X_{s}\right)$ be a cycle, which we may assume to be a cycle of the Auslander-Reiten quiver. Since there is no indecomposable projective on this cycle, also ($\tau X_{0}, \ldots, \tau X_{s}$) is a cycle. Since A is representation-finite we infer that X_{0} is τ-periodic. So we may assume that the given cycle is of the form ($X, E_{1}, \tau^{-} X, E_{2}, \ldots, E_{r}, \tau^{-r} X=X$) for some $r \in \mathbb{N}$. Let P be an indecomposable projective A-module with $\operatorname{Hom}(P, X) \neq 0$, and let ($P=Y_{0}, Y_{1}, \ldots, Y_{n}=X$) be a path from P to X, which we may assume to be a path in the Auslander-Reiten quiver. We now construct inductively for all $i \geqq 0$ a path $\left(\tau^{i} X=\tau^{i} Y_{n}, \tau^{i-1} Y_{n-1}, \ldots, \tau Y_{n-i+1}, Y_{n-i}\right)$. For $i=0$ there is nothing to show. Let $\left(\tau^{i} X=\tau^{i} Y_{n}, \tau^{i-1} Y_{n-1}, \ldots, \tau Y_{n-i+1}, Y_{n-i}\right)$ be the path from $\tau^{i} X$ to Y_{n-i}. All modules on this path are not directing. Thus there is no projective module on this path. Applying τ to this path yields a path from $\tau^{i+1} X$ to τY_{n-i}. Combining this with the arrow $\tau Y_{n-i} \rightarrow Y_{n-(i+1)}$ gives now the required path from $\tau^{i+1} X$ to $Y_{n-(i+1)}$. This shows $P \leqq X \leqq \tau^{n} X \leqq P$, a contradiction.

The converse implication is clear.

The following example shows that in general the components of the Auslander-Reiten quiver containing indecomposable directing projective modules may contain indecomposable modules which are not directing.

Example 3. Let A be given as the path algebra over the field k by

with relations $\alpha \beta=\gamma \delta=0$.
Then all indecomposable projective A-modules are directing, as can be seen by using Theorem 2. However the component of the Auslander-Reiten quiver containing $\mathrm{P}(6)$ contains modules which are not directing. One may take for example S (2). Note that we have irreducible maps from $I(4)$ to $S(2)$ and to $S(5)=\operatorname{rad} P(6)$.

Finally, let us add the following remark:
Proposition 5. The A-module ${ }_{A} A$ is directing if and only if A is hereditary.
Proof. In case A is hereditary, any indecomposable module X with $X \leqq P$ for some indecomposable projective module P is projective itself, thus ${ }_{A} A$ is directing.

Conversely, assume that A is not hereditary. Then there exists an indecomposable projective A-module P with an indecomposable submodule U which is not projective. Since U is non-projective, we can form τU, and there is some indecomposable projective module P^{\prime} with Hom $\left(P^{\prime}, \tau U\right) \neq 0$. Since P, P^{\prime} are direct summands of ${ }_{A} A$, we see that ${ }_{A} A$ cannot be directing.

Added in proof.*) There is a recent preprint by A. Skowronski and M. Wenderich: Artin algebras with directing indecomposable projective modules. It contains parallel results and further interesting investigations.

References

[1] O. Bakke, Some characterizations of tilted algebras. Math. Scand. 63, 43-50 (1988).
[2] R. Bautista and S. Smalø, Nonexistent cycles. Comm. Algebra 11, 1755-1767 (1983).
[3] W. Crawley-Boevey and C. M. Ringel, Algebras whose Auslander-Reiten quivers have large regular components. To appear in J. Algebra.
[4] C. M. Ringel, Tame algebras and integral quadratic forms. LNM 1099, Berlin-Heidelberg-New York 1984.
[5] T. Schever, The canonical decomposition of the poset of a hammock. To appear.
Eingegangen am 19. 12. 1991
Anschrift der Autoren:
D. Happel, C. M. Ringel

Fakultät für Mathematik
Universität Bielefeld
Postfach 8640
DW-4800 Bielefeld 1
*) Eingegangen am 16.9.1992

