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Abstract—We propose a direction-adaptive DWT (DA-DWT)
that locally adapts the filtering directions to image content based
on directional lifting. With the adaptive transform, energy com-
paction is improved for sharp image features. A mathematical
analysis based on an anisotropic statistical image model is pre-
sented to quantify the theoretical gain achieved by adapting
the filtering directions. The analysis indicates that the proposed
DA-DWT is more effective than other lifting-based approaches.
Experimental results report a gain of up to 2.5 dB in PSNR over
the conventional DWT for typical test images. Subjectively, the
reconstruction from the DA-DWT better represents the structure
in the image and is visually more pleasing.

Index Terms—Adaptive filters, anisotropic image model, direc-
tional lifting, image coding, wavelet transforms.

I. INTRODUCTION

T
HE 2-D discrete wavelet transform (DWT) is the most

important new image compression technique of the last

decade [1]–[3]. Conventionally, the 2-D DWT is carried out as a

separable transform by cascading two 1-D transforms in the ver-

tical and horizontal direction. Therefore, vanishing moments of

the high-pass wavelet filters exist only in these two directions.

The separable transform fails to provide an efficient representa-

tion for directional image features, such as edges and lines, not

aligned vertically or horizontally since it spreads the energy of

these features across subbands.

An early work of an adaptive wavelet transform that adapts

the transform directions to image content is presented in [4].

The image is partitioned into blocks. Each image block is then

sheared through a reversible resampling filter such that the edges

in the sheared block are oriented either vertically or horizon-

tally. The conventional 2-D DWT is applied to the sheared block

and, thus, provides vanishing moments along the edges. The

more recent work of the directionlets achieves this ability by

adapting both the wavelet filtering direction and the subsam-

pling grid to the image feature orientation without resampling

[5]. The two approaches share the same limitations. First, inde-

pendent processing of image blocks fails to exploit the correla-

tion across block boundaries and can produce blocking artifacts

in the reconstruction. Second, support for spatial scalability is
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limited since the subsampled low-pass image no longer resides

on a regular orthogonal grid.

The bandelets approach described in [6], [7] does not have

these limitations. The conventional 2-D DWT is first applied to

the image, followed by the bandeletization procedure that fur-

ther removes the directional correlation in the high-pass wavelet

coefficients. The low-pass image remains the same as in the

conventional 2-D DWT, and blocking artifacts are not observed

since the block-wise operations are performed in the wavelet

domain. However, because the procedure is essentially post-

processing of the wavelet coefficients, the inefficiency of the

wavelet transform itself remains unresolved.

An important technique that enables a locally adaptive

wavelet transform while allowing filtering across block bound-

aries as well as a regular subsampling grid is lifting, a procedure

to design DWTs that are ensured to achieve perfect reconstruc-

tion [8], [9]. Using lifting, several approaches have been

developed to locally adapt the filter coefficients [10]–[12], or

the filtering directions [11], [13], [14], such that filtering is not

performed across edges in the image. These approaches elimi-

nate the need for signaling the filter selections to the decoder by

assuming lossless compression [11] or knowledge of the quan-

tization noise at the encoder [10], [12], [14], or constraining

the selection process such that it can be reliably repeated at the

decoder [13]. The gain of adaptation is limited due to these

assumptions and constraints. No significant improvement on

objective quality measurements over the conventional 2-D

DWT has been reported, although subjective improvement has

been observed.

Other approaches that also adaptively select the filtering di-

rections via lifting choose to explicitly signal the selections to

the decoder [15], [16]. In this category, we have independently

developed an approach that combines directional lifting with

quincunx subsampling [17]. It is then extended to accommodate

the case of conventional orthogonal subsampling, and to incor-

porate directional lifting and the bandeletization procedure into

a unified framework [18]. Thanks to the efficient representation

of the filter selections, these approaches adapt to the image fea-

tures more effectively and have demonstrated significant objec-

tive and subjective quality improvement for texture-rich images.

In this paper, we propose to use a direction-adaptive

DWT (DA-DWT) based on directional lifting. The proposed

DA-DWT differs from other lifting-based approaches in that

the directional filters in the DA-DWT provide a more efficient

representation for sharp features in the image. In addition, it

requires less computation and the compression performance

is less sensitive to image transposition (swapping the and

direction of the image). Mathematical analysis of the DA-DWT
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is also presented in the paper, together with an anisotropic

statistical model of images, to quantify the theoretical gain

achieved by adapting the filtering directions. The analysis is

also applicable to the lifting-based approaches in [13], [15], and

[16]; hence, it provides a direct comparison with our DA-DWT.

In the remainder of this paper, we describe various compo-

nents of the proposed DA-DWT in Section II. Mathematical

analysis of the DA-DWT is presented in Section III. Finally, ex-

perimental results are reported in Section IV, demonstrating the

objective and subjective improvements over the conventional

transform.

II. DIRECTION-ADAPTIVE DISCRETE WAVELET

TRANSFORM (DA-DWT)

In this section, we first present a general formulation of the

2-D DWT implemented with lifting. The proposed DA-DWT

using directional lifting is then described with this formulation.

Finally, coding methods of the overhead for signaling the direc-

tion selection are described, followed by discussions about the

computational complexity of the DA-DWT.

A. Two-Dimensional Discrete Wavelet Transform With Lifting

The 2-D DWT in general consists of two stages. In the first

stage, a 1-D DWT is applied to the image followed by ver-

tical subsampling to obtain the low-pass subband, , and the

high-pass subband, . In the second stage, another 1-D DWT

is applied to and , followed by horizontal subsampling to

obtain the and , and the and subband, respec-

tively.

It is shown in [8] that any two-band biorthogonal DWT can be

factored into pairs of lifting steps. In this paper, we only consider

the wavelet transforms that can be realized with one pair of the

lifting steps, i.e., one prediction step followed by one update

step. For instance, the Haar wavelet, the 5/3 wavelet, and the

family of interpolating wavelets all belong to this category [9],

[19].

Let , where and ,

denote a set of image samples on a 2-D orthogonal sampling

grid . The grid is composed of four

subgrids .

To apply the 2-D DWT with lifting, we first apply a transform

between the even and the odd rows of the image, i.e., between

and

. Denote the resulting low-pass subband by

and the high-pass subband by

, the transform on can generally be expressed

as

(1a)

(1b)

where the prediction function, , and the update function,

, are functions of the sample values in the input with a

scalar output, and and are scaling factors.

Similarly, the transform between the even and the odd

columns of the samples further decomposes into

defined on and defined on , into defined

on and defined on , where , , , and

correspond to the , , , and subband of the

image, respectively. We refer to this process of decomposing

the image samples into the four subbands as one level of the

2-D DWT. Multiple levels of the transform may be performed

by iteratively applying this process to the resulting subband.

B. Directional Lifting

In the conventional 2-D DWT, the prediction and the update

function in (1) can be expressed as

(2a)

(2b)

where , , , and are determined by the wavelet

kernel adopted. Note that only samples in the same column are

involved in the transform.

For image compression, for each sample in the high-pass sub-

band, , it is generally desirable to select a prediction func-

tion in (1a) that predicts from the samples in

such that the magnitude of the residual is minimized. In

the proposed DA-DWT, we define directional prediction filters

with direction from which can be adap-

tively selected by

(3)

where is defined such that

(4)

The directional prediction filter corresponds to performing the

prediction step along direction . From (4), and is

always odd. We further constrain such that the line segment

from to does not intersect with any other point

in , i.e., and are coprime integers. Typically, we use

nine directions: , ,

, , , ,

, , and , as illustrated in Fig. 1.

Denote the direction selected at location for as .

Upon completion of the prediction step of all samples, the cor-

responding update function in (1b) is defined as

(5)

In other words, wherever an image sample is predicted by

, is updated by . Note that if is

always selected, i.e., , (3) and (5) are equivalent

to the functions in (2) and directional lifting is identical to the

conventional DWT.

For the second stage of the DWT further applied to and

, the transform can be applied along directions derived from

the set of s, defined by , i.e.,

, , ,
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Fig. 1. Proposed set of directions for directional lifting in DA-DWT. The solid
arrows denote d and�d, and the dashed arrows denote �d and��d. White-solid
dots denote ��� , white-dashed dots denote ��� , gray-solid dots denote ��� ,
and gray-dashed dots denote ��� .

, , , ,

, and , as illustrated in Fig. 1. Consequently,

is even and is odd, and

(6)

The direction selected for the transform on and that for

may be different. The candidates for the prediction function and

the corresponding update function are defined similarly as in (3)

and (5). Note that since , directional lifting on

and on along share the same implementation with

directional lifting on along , if and are first vertically

subsampled by a factor of 2 and transposed.

We propose with ,

and , and

with ,

and , i.e., the (6,6) interpolating wavelet

[19], as they result in the best compression performance in our

experiments. Correspondingly, we choose and

, computed from the synthesis wavelet filters such

that for one level of the transform, if the quantization noise of

the wavelet coefficients are uncorrelated, the noise energy is pre-

served in the reconstructed image.

Several other approaches in the literature that also achieve

directional adaptation through lifting essentially adopt a

set of sub-pel directions, described by ,

, where is typically 2 or 4, and the sub-pel

directions are achieved by spatial interpolation [13], [15],

[16]. These approaches assume whereas the proposed

DA-DWT framework only requires is odd. For instance,

for an image feature oriented along 22.5 , our approach would

select (18.4 ) whereas the others would select

(26.6 ). Despite that with in our approach the reference

samples are further away from the samples being predicted,

experiments indicate that using these samples for prediction

is typically more efficient than the interpolated ones in the

presence of sharp image features, especially when simple

interpolating filters are used. The mathematical analysis that

will be presented later in Section III also indicates that the

set of directions proposed in this section is preferable to the

sub-pel directions, even when an ideal interpolating filter is

adopted. Additionally, since our approach does not involve

sub-pel interpolation, it also requires less computation.

Furthermore, in the proposed sub-pel approaches only the di-

rections between are considered for . For horizontal-ish

image features, i.e., features oriented beyond 45 from the ver-

tical axis, there is no filtering direction closely aligned with the

image feature, and, thus, the energy is spread into the high-pass

subband rather than contained in . As a result, for image

compression they favor vertical-ish image features and, there-

fore, are sensitive to image transposition [17]. In our previous

work [17], quincunx subsampling was proposed to provide di-

rections covering the 2-D space more evenly and has shown re-

duced sensitivity to image transposition. However, to compress

typical images captured by image sensors with a rectangular

aperture function, DWT using quincunx subsampling is less ef-

ficient [20]. In this work, we adopt the conventional orthogonal

subsampling as described in Section II-A but allow directions

beyond , e.g., and , to provide a larger span of

directions. Similar to the case with quincunx subsampling, re-

duced sensitivity to transposition is observed. The mathematical

analysis in Section III also agrees with this observation.

C. Adaptive Selection of Direction and Block-Partition

For image compression, the filtering directions in the

DA-DWT should be selected to minimize the distortion of the

reconstructed image for a given rate budget. The rate budget

is spent on the overhead required to signal the selection and

the rate for coding the wavelet coefficients. Finding the best

direction is, therefore, analogous to rate-constrained motion

estimation in video coding [21], [22].

To reduce the amount of overhead, we perform the selection

in a block-wise fashion. For the transform applied to , the orig-

inal grid is evenly partitioned into nonoverlapping blocks,

each denoted by , . For each block , e.g.,

a block of 64 64 pixels in our experiments, direction is se-

lected by minimizing a Lagrangian cost function

(7)

where is a distortion measurement, is a Lagrangian

multiplier, and denotes the number of bits spent on signaling

the selection . Note that should reflect the distortion

in the reconstructed image. However, to obtain an embedded

image representation, perhaps the most important motivation to

use wavelet image coding, the decoding rate—hence, the dis-

tortion—is not known a priori at the encoder [3]. As an approx-

imation, may be used as the distortion measure-

ment, assuming most of the high-pass coefficients are quantized

to zero and the distortion in the wavelet domain is the same as

the distortion in the image domain (with proper normalization).

Additionally, it has been shown that and

result in similar performance for video coding [22]. For the pro-

posed DA-DWT, the former is adopted in the current implemen-

tation.
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Fig. 2. Selected directions and block-partition for the first level of the transform
applied to the 512 � 512 image Monarch. The directions shown on the left
correspond to d, and those on the right correspond to �d.

Given the for all blocks, it follows that

, and, thus, the prediction and the update function for every

sample can be defined according to (3) and (5). The cost func-

tions for the transform on and are similarly defined.

Note that although the direction is selected block-wise, filtering

in the prediction and update step extends across block bound-

aries. Therefore, blocking artifacts are not observed in the re-

constructed images.

To further increase the efficiency of the prediction step, each

block may be further partitioned into 2 1, 1 2, 2

2, 4 1, 1 4, 4 2, 2 4, or 4 4 subblocks. The cost

function in (7) is modified to incorporate the overhead to signal

the block-partition. The best block-partition for each block and

the best direction for each subblock are then selected using the

modified cost function, similar to the variable block-size motion

compensation in video coding [23]. An example of the selected

directions and block partition are shown in Fig. 2.

At block (subblock) boundaries, an even sample at may be

used to predict the odd samples in more than one directions. This

happens when, for example, , where

denotes the cardinality of set . This is analogous to the

situation of multiply-connected pixels in video coding with mo-

tion-compensated temporal filtering [24]. Meticulous rules have

been developed to cope with this situation in order to make the

adaptive transform reversible, both for video coding [24] and

image coding [25], [26]. Owing to the lifting structure, the pro-

posed approach does not require these rules and reversibility of

the transform is always ensured. The situation of multiply-con-

nected pixels also incurs ambiguity in the direction of the update

step. The update functions we propose in (5), analogous to the

barbell lifting scheme for video coding [27], has been shown to

achieve better compression performance than the update func-

tions in [15] and [17], analogous to using the reversed motion

vectors in the update step [27].

D. Coding of Direction and Block-Partition Selection

The direction selection is predicted from the selections of the

blocks (subblocks) in the causal neighborhood, and the residual

is coded with variable-length coding, again, similar to motion-

compensated video coding [28]. The residual is computed with

modular arithmetic, where denotes the number of direc-

tion candidates, in accordance with the cyclic property of the

proposed directions. Each block-partition selection is indepen-

dently encoded with variable-length coding.

Note that in the scope of this paper, we only consider lossless

coding of the direction and block-partition selection. In [29],

we have also developed an approach to allow lossy coding of the

selections in order to provide a scalable direction representation,

analogous to the scalable representation of motion vectors in

video coding [30], [31].

E. Computational Complexity of DA-DWT

From the above discussion, the DA-DWT consists of a 1-D

DWT along a certain direction, followed by additional 1-D

DWTs on the resulting low-pass and high-pass coefficients,

possibly along different directions. The 1-D DWT is realized

with directional lifting, which requires the same amount of

computation regardless of the selected direction.

At the encoder, to obtain a high-pass coefficient with a partic-

ular direction, the prediction step, as expressed in (1a) and (3),

requires multiplications and additions. This is also

the computation required in the conventional DWT. Note that

scaling by is neglected since it can be equivalently achieved

by adjusting the quantization level when encoding the coef-

ficients. For the DA-DWT with direction candidates, the

prediction step, together with the computation for the sum of

absolute values, needs to be performed times. Therefore,

the required computation includes multiplications and

additions. Note that the Lagrangian cost function

is minimized at the block level; hence, the computation required

can be neglected. To obtain a low-pass coefficient, the direction

in the update step is the same as in the prediction step. As a re-

sult, the computation required, for both the conventional DWT

and the DA-DWT, includes multiplications and addi-

tions.

Using the (6,6) interpolating wavelet and the set of directions

described in Section II-B, and . Hence,

at the encoder the conventional DWT requires 6 multiplications

and 12 additions for every pair of the lifting steps, whereas the

DA-DWT requires 30 multiplications and 69 additions. There-

fore, at the encoder the DA-DWT requires about 5 to 6 times

more computation than the conventional 2-D DWT. At the de-

coder, both require six multiplications and 12 additions since

the direction is signaled from the encoder.

III. MATHEMATICAL ANALYSIS OF DA-DWT

In this section, we provide mathematical analysis of the per-

formance gain resulting from adapting the wavelet filtering di-

rections. We first derive the power spectral density (PSD) of the

high-pass and the low-pass wavelet coefficients as a function of

the PSD of the image samples and the filtering direction. The

direction-adaptation gain is then introduced to quantify the per-

formance gain. The analysis is performed for the DWT with ver-

tical subsampling. It is straightforward to extend the analysis to

the DWT with horizontal subsampling as well as multiple levels

of the DWT. In addition, we propose an anisotropic statistical

model of images. Numerical evaluation using the image model

is provided to demonstrate the advantages of the direction-adap-

tive transform over the conventional DWT.
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A. Directional Filtering in Lifting Steps

As described in Section II, to apply the 2-D DWT to image

samples , , using lifting, is first verti-

cally subsampled into the even rows, , and the

odd rows, . Similar to (1), the prediction

and the update step in lifting can be expressed as

(8a)

(8b)

where and denote the high-pass and the low-pass

wavelet coefficients, respectively, and denote the

2-D impulse response of the directional filter in the lifting steps

along direction , the symbol denotes the 2-D

convolution operation, and and are scaling factors. In

the following discussion, functions denoted by an upper-case

letter in the form of represent the 2-D

discrete-space Fourier transform of the corresponding discrete-

space signal .

To facilitate the analysis, we define as the upsampled

, i.e.,

is even

is odd.
(9)

Following the discussion in Section II-B, we further define the

2-D directional prediction filters applied to by the impulse

response

,

otherwise
(10)

where and are determined by the wavelet kernel

adopted as discussed in Section II-B. In the conventional DWT,

, , is always used, corresponding to vertical

filtering with the prototype 1-D prediction filter, , defined

as

(11)

Denote the 1-D discrete-space Fourier transform of by

. We continue the analysis by relating with

. For the directions defined in Section II, observe that

the line segment from to does not inter-

sect with any other point in the grid, and are coprime,

i.e., their greatest common divisor is 1. From the Bézout’s Iden-

tity [32], there is at least one direction, ,

such that

(12)

From basic lattice theory, a generating matrix defined as

(13)

is a one-to-one mapping from to , i.e.,

(14)

With , can be related to by

(15)

From (12) and (13), and the fact that and are coprime, one

can verify that (15) is consistent with the definition in (10).

From (10) and (11), , and it is straight-

forward that

(16)

Moreover, from (14)–(16) 16tip05-chang

(17)

In the Appendix, we relate the transfer function of the filter

in (8a), , with the equivalent filter in the upsampled

domain in (10), , by

(18)

Finally, combining (17) and (18), we obtain

(19)

With a similar derivation, the transfer function of the filter in

(8b), , can be obtained as

(20)

where is the transfer function of the prototype 1-D

update filter.

B. Extension to Sub-Pel Directions

The above analysis is applicable to the case that and are

coprime integers and is odd, as proposed in Section II-B. In

this subsection, we generalize the analysis to the case that

and are coprime integers, where , and is odd. The

approaches that incorporate sub-pel directions, e.g., ,

, belongs to this latter case.

To apply filtering along such directions, the image is

first horizontally upsampled by a factor of and interpo-

lated horizontally with a 1-D interpolating filter .

Denote the equivalent direction in the upsampled image by

. The upsampled and interpo-

lated image is then filtered with and finally downsampled

horizontally by . Since and are coprime integers,
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(19) can be applied to derive the overall transfer function

(21)

where is expressed as in (19) with being a rational

number rather than limited to integers.

Note that if the interpolating filter is an ideal rectangular filter,

i.e., where

otherwise
(22)

the following equality holds:

(23)

C. Power Spectral Density of Wavelet Coefficients

Assume is a stationary 2-D discrete-space random field.

Denote the 2-D discrete-space autocorrelation function of

by . The 2-D discrete-space

PSD of , i.e., the 2-D discrete-space Fourier transform of

, is denoted by (with the shorthand notation

). Since and are vertical subsamples of with

different phases

(24)

(25)

Therefore

(26)

(27)

From (8), (19), and (20), and the property that is

real, the PSD of the high-pass and the low-pass wavelet coef-

ficients when wavelet filtering is applied along direction , de-

noted by and , respectively, can be expressed as

(28)

(29)

where denotes the complex conjugate of .

Fig. 3. Ĥ (e ) in (31) for: (a) the proposed directions; (b) the sub-pel di-
rections. Each square corresponds to �� � 
 � � from left to right, and
�� � 
 � � from bottom to top. Light gray and dark gray represent magni-
tude 1 and �1, respectively.

As an example, assume that the prototype 1-D prediction filter

has impulse response

is even

is odd
(30)

and, hence, . In addition, assume that

the prototype 1-D update filter has impulse response

. From (17)

is even

is odd
(31)

(32)

where

(33)

and denotes the floor function. Plots of for the di-

rections described in Section II-B, as well as the sub-pel direc-

tions,are shown in Fig. 3.

Finally, combining (19), (20), (26)–(29), (31), and (32), the

PSD of the wavelet coefficients in this example is

(34)

(35)

Note that, for this example, to achieve an

orthonormal transform.

D. Direction-Adaptation Gain

To reduce the energy in the high-pass coefficients, the

prototype prediction filter is typically designed such that

. In consequence, from (8) and assuming is

zero-mean, . Given and

, the variance of the high-pass and the low-pass

wavelet coefficients, denoted by and respectively,

can be calculated simply by averaging the corresponding PSD

over and .
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Following the discussion in Section II-C, for the direction-

adaptive transform the best filtering direction, denoted by ,

is selected by minimizing the Lagrangian cost function in (7).

For high-rate applications, the corresponding is small and (7)

can be approximated by selecting the direction that results in the

minimum .

Assuming high-rate scalar quantization, memoryless coding

of the wavelet coefficients and orthonormality of the transform,

the MSE distortion is proportional to the geometric mean of

the subband variances, i.e., [3]. To quantify the

performance gain of adapting the wavelet filtering directions, we

define the direction-adaptation gain, denoted by , as the ratio

between the distortion obtained with the nonadaptive transform

and the adaptive transform at the same rate, i.e.,

(36)

Although (36) is expressed for two-band orthonormal trans-

forms, similar to the transform coding gain expression, it is

straightforward to extend the direction-adaptation gain to multi-

band transforms as well as biorthogonal transforms in general

[3].

E. Statistical Model of Images

Assume are 2-D samples of an image source. The image

source may be modeled as a stationary, zero-mean 2-D contin-

uous-space random field ,

, with autocorrelation function , where and

. Typically, autocorrelation func-

tions, averaged over many images, resemble an isotropic func-

tion

(37)

where variance and parameter can be measured for

a set of images [33].

Locally, individual image blocks may be far from isotropic.

For instance, if an image block contains edges with a certain ori-

entation, the autocorrelation orthogonal to the edge orientation

typically decays faster while, along the edge orientation, it de-

cays slower. To accommodate these cases, we extend (37) and

propose an anisotropic model

(38)

where

(39)

and . In (38), contours of equal autocorrelation

form ellipses where the angle represents the orientation of

the minor axis. The length of the minor axis and that of the

major axis are proportional to and , respectively, and

the autocorrelation with a one-unit shift along the minor axis is

whereas that along the major axis is .

Using this model to represent the source of an image block, the

minor axis is aligned to the direction with the dominant intensity

transition. For instance, if edges appear in an image block, the

minor axis is aligned orthogonal to the edge orientation, and

increases with the sharpness of the edges as well as the density

of edges in the block.

The PSD of the proposed anisotropic model, i.e., the 2-D con-

tinuous-space Fourier transform of , is

(40)

where and

(41)

The contours of equal PSD also form ellipses with the major

axis aligned to the direction with the dominant intensity transi-

tion. The length of the major axis and that of the minor axis are

proportional to and , respectively. Note that, as a special

case of (40), the PSD of the isotropic model is

(42)

To derive the 2-D discrete-space anisotropic PSD model,

let and denote the sampling frequency along the

axis and the axis, respectively; thus,

. We further assume that is band limited

with modified to

otherwise.
(43)

As a result, the discrete-space anisotropic PSD model is

(44)

Examples of with are shown in Fig. 5 ,

, and . In Fig. 5, and , for instance, spatial

aliasing due to undersampling of sharp image features can be

clearly observed.

We have used the anisotropic model to analyze images and as-

sess the potential coding gain by exploiting directionality on a

block-by-block basis. Towards this end, we first divide the im-

ages into 32 32 blocks and then remove the mean in each

block. Assuming that the source is stationary and

, we measure the autocorrelation function with discrete shifts

up to two sampling periods both horizontally and vertically, i.e.,

, . Additionally, we normalize

and by a reference , where the number

0.85 is obtained by averaging the measured autocorrelation co-

efficients (autocorrelation divided by variance) with a horizontal

or vertical shift of one sampling period over all mean-removed

blocks in the test set. Variance in the model is obtained di-

rectly from . The three parameters, , ,

and are fit to the other 12 measured unique autocorrelation
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Fig. 4. Parameters of the anisotropic statistical model fit to image blocks in the
test set. The solid line corresponds to ! = ! .

TABLE I
MODELING IMAGES WITH THE ANISOTROPIC STATISTICAL MODEL

values by solving nonlinear least squares. Fig. 4 plots the distri-

bution of and for the test images shown in Fig. 9.

Parameter in the model for the test set is approximately uni-

formly distributed.

To further characterize the entire image, in addition to

modeling individual image blocks, we average the model

autocorrelation with a shift of one sampling period along ,

i.e., , over all blocks in the image, and

denote the average by . Similarly, denote such an av-

erage orthogonal to by , and the average variance by

. Let and ,

the image-wise parameters, expressed in the form of

and , and the corresponding autocorrelation coefficients

and , for the test set are listed

in Table I. The local directionality of the images is well captured

by and . For instance, in Spoke the intensity changes

rapidly across the lines in each 32 32 block but remains

almost constant along the lines and in the flat area; therefore,

a large and a small are observed. The image Highway

represents a complex scene and each block typically contains

sharp transitions in various directions; therefore, both and

are large.

F. Numerical Evaluation

We consider the case that one level of the direction-adaptive

transform is applied to the image samples . is first filtered

along direction and subsampled vertically to obtain

and . The direction is selected from ,

such that the variance of is minimized, as discussed in

Section III-D. Furthermore, and are filtered along

and , respectively. Similarly, and are both selected

from . As discussed in

Section II-B, the equivalent direction of in the original grid

that resides in is denoted by .

Two sets of directions are considered in the numerical

evaluation. The first set contains the nine directions de-

scribed in Section II-B, denoted by in this subsec-

tion. The other contains the sub-pel directions, denoted by

, assuming the

required sub-pel interpolating filter is the ideal rectangular

filter with transfer function . We further assume that

the ideal rectangular filter is adopted for the 1-D prototype pre-

diction and update filter, as described in (30)–(33). Therefore,

the four subbands partition the 2-D discrete-space frequency

and .

The direction-adaptation gain using for image sources

with and different and is plotted in

Fig. 6(a). is chosen as a representative value of

the model parameter since it approximately corresponds to the

overall autocorrelation with a shift of one sampling period or-

thogonal to , averaged over all blocks in the test set, as shown in

Table I. Each curve, from light to dark, corresponds to

1, 2, 4, 8, and 16. For , only the values from 0 to 90 are

shown since the direction-adaptation gain is symmetric among

the four quadrants. Additionally, the five dashed vertical lines

(from left to right) depict , ,

corresponding to the directions orthogonal to . The

five dashed-dotted vertical lines (from right to left) depict

, , corresponding to the di-

rections orthogonal to . It can be observed that the

direction-adaptation gain reaches local maxima at these direc-

tions since filtering is applied along the orientation of the image

sources. For comparison, the direction-adaptation gain using

is plotted in Fig. 6(b). Note that the five dashed lines range from

0 to around 71.6 in Fig. 6(a), whereas those in Fig. 6(b) range

from 0 to around 45 , indicating a more evenly-distributed cov-

erage of the directions in . Similarly, the five dashed-dotted

lines in Fig. 6(a) range from around 9.5 to 90 , whereas those

in Fig. 6(b) range from around 26.6 to 90 . Moreover, the di-

rection-adaptation gain in Fig. 6(a) is more symmetric about

than that in Fig. 6(b) in general, indicating that the

coding performance of the proposed DA-DWT using is less

sensitive to image transposition (swapping the and direc-

tion) than using .

From Fig. 6, the direction-adaptation gain provided by

is in general larger than that by , except for image sources

with a small and . To further interpret the

difference between Fig. 6(a) and (b), we shall examine the sub-

band-partitioning resulting from the direction-adaptive trans-

form. Fig. 5 and Fig. 5 illustrate the subband-parti-

tioning for the image model shown in Fig. 5 using and

, respectively. For and ,

(26.6 ) with , whereas with

since there is no candidate for close to 30 in . As a

result, the direction-adaptation gain using is 0.43 dB, higher

than using where there is nearly no gain.
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Fig. 5. (a ), (b ), and (c ) show log � (e ) from the anisotropic image
model in (44) with B = 3, ! =! = 0:4, and ! =! = 1 and � = 30 in
(a );! =! = 16 and � = 60 in (b ); and! =! = 8 and � = 15 in (c ).
In each plot, log � (e ) is shifted and scaled to fit within the gray-scale
range from 0 (black) to 1 (white). (a ) and (a ) illustrate the subband-parti-
tioning for the image model shown in (a ) using directions in D and D ,
respectively. The colors from light to dark represent the subbands in the order
of LL, LH , HL, and HH . Similarly, (b ) and (b ), and (c ) and (c ) il-
lustrate the subband-partitioning for the image model shown in (b ) and (c ),
respectively.

For the image source in Fig. 5 , and

. With , since the passband of the

resulting prediction filter , shown in Fig. 3(a), is

closely aligned with the image PSD (63.4 ). In addition, as illus-

trated in Fig. 5 , even the energy from the aliasing compo-

nents is contained in and . With ,

(45 ) since there is no direction closer to 60 . In Fig. 3(b) and

Fig. 5 , the passband cannot account for the aliasing com-

ponents and the aliasing energy is spread into and .

As expected, the direction-adaptation gain with is 2.84 dB,

higher than the 0.83 dB with .

In Fig. 5, , and . Although the direc-

tion in is closely aligned with (14 ), direc-

tion is selected as instead. This is because the

prediction filter , shown in Fig. 3(b), although

aligned with the image feature, fails to include in the pass-

band the strong aliasing energy, for instance, near

. On the contrary, the direction in ,

although less aligned with the image feature (18.4 ), results in

a passband that contains major parts of the aliasing energy as

shown in Fig. 3(a) and Fig. 5 . Furthermore,

is selected from , whereas

the closest direction in is (26.6 ). Due to better

energy concentration, the direction-adaptation gain with is

1.94 dB, higher than the 0.75 dB with .

The direction-adaptation gain from one level of the adaptive

transform for each of the test images is also computed, using

Fig. 6. Direction-adaptation gain of the anisotropic image model with the set
of directions: (a) proposed D , (b) sub-pel D . ! =! = 0:4 and a darker
line corresponds to a larger ! =! = 1, 2, 4, 8, 16. The five dashed vertical
lines from left to right correspond to the directions orthogonal to d � d . The
five dashed-dotted vertical lines from right to left correspond to the directions
orthogonal to �d �

�d .

the model parameters fit to the image blocks. Since the distor-

tion of each reconstructed image block is proportional to the

geometric mean of the subband variances in the block (Sec-

tion III-D), the distortion of the entire image is proportional to

the sum of the block-wise geometric mean. Therefore, we de-

fine the model direction-adaptation gain of the entire image as

the ratio (in decibels) between the sum of geometric mean from

the conventional 2-D DWT and that from the direction-adaptive

transform. The image-wise direction-adaptation gain using

and , denoted by and , respectively, for each test

image are listed in Table I.

To summarize, from the mathematical analysis and the nu-

merical evaluation presented, we make the following conclu-

sions. For anisotropic image sources, the DA-DWT realizes the

direction-adaptation gain over the conventional 2-D DWT. The

set of directions described in Section II-B is preferable to the

sub-pel directions in the DA-DWT. For sharp image features,

where the DA-DWT is most advantageous, the former achieves

a higher direction-adaptation gain, while requiring less compu-

tational complexity, because it accounts for the aliasing energy

due to undersampling. In addition, compression performance of

the former is less sensitive to image transposition. Note that the

analysis in this subsection assumes only one level of the trans-

form with the ideal rectangular prediction and update filters,

among other simplifications. The analysis does not aim to pro-

vide a quantitative prediction of the performance in practical

systems, but rather a qualitative study of the improvement in
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Fig. 7. Compression performance of the proposed DA-DWT, the sub-pel approach, and the conventional DWTs. The solid and the dashed vertical lines on the left
of each plot represent the overhead spent for the DA-DWT and for the sub-pel approach, respectively. (a) Spoke; (b) Lena; (c) Barbara; (d) Monarch; (e) Highway;
(f) Pentagon.

compression efficiency through exploiting the directional cor-

relation in images. In Section IV, we shall present results from

the practical implementation of DA-DWT to further justify the

advantages of the proposed adaptive transform.

IV. EXPERIMENTAL RESULTS

In the experiments, four levels of the DA-DWT, with the di-

rectional lifting filters and block-partitioning described in Sec-

tion II, are applied to the 512 512 test images listed in Table I.

The wavelet coefficients are encoded by the TCE embedded bit-

plane coder, which has been reported to achieve performance

comparable to JPEG2000 [34]. To decompose the subband

further into and , we observe that adaptive selection

of the filtering directions can be neglected without much loss

in the compression performance. Therefore, is

always selected. Similarly, in the last level of the transform,

and are always selected to reduce

the overhead.

The wavelet transforms, together with embedded bitplane

coding, provide a scalable representation of images such that

different reconstruction qualities are obtained by truncating

a single bitstream at different rates. The compression perfor-

mance of the DA-DWT for the test images is shown in Fig. 7.

In addition, results from the conventional 9/7 wavelet adopted

in JPEG2000 [35], and the (6,6) wavelet [19], equivalent to

always selecting and for the DA-DWT, are also shown.

We also include the sub-pel approach proposed by others for

comparison [15], [16]. The sub-pel approach we implemented

differs from the DA-DWT only in the candidates for filtering

directions, as described in Section II-B and Section III-F.

They share the same prototype (6,6) wavelet, block-partition

candidates, as well as the same formulation of the Lagrangian

cost function. For spatial interpolation required in the sub-pel

approach, the six-tap upsampling filter defined in the H.264

video coding standard is adopted [28].

In the experiments reported in this section, we do not optimize

the choice of the Lagrangian multiplier for a specific recon-

struction quality or for individual images. The same Lagrangian

multiplier, 40, chosen empirically, is used for all test images. In

Fig. 7, the overhead for the side information indicating the se-

lected block-partition and filtering directions is included in the

rate calculation, and represented by the solid and the dashed ver-

tical lines, on the left of each plot, for the DA-DWT and the

sub-pel approach respectively, ranges from 0.007 to 0.017 bpp.

Note that in the experiments, the entirety of the side informa-

tion is transmitted to the decoder at all decoding rates. At lower

rates, the overhead takes a significant portion of the total rate

available, leaving limited rate for the wavelet coefficients. In

[29], we have developed a scalable direction representation such

that a coarser direction representation, obtained with a larger

Lagrangian multiplier, may be transmitted at lower rates to im-

prove the performance.

In Fig. 7, the DA-DWT outperforms the conventional 9/7

DWT by up to 5.4 dB in PSNR for Spoke, 0.4 dB for Lena,

2.5 dB for Barbara, 0.4 dB for Monarch, and 0.5 dB for Pent-

agon. However, for Highway, the DA-DWT is inferior to the

9/7 DWT at lower rates mainly due to the cost of signaling the

overhead. In addition to the natural images in the test set, sig-

nificant gain of more than 1 dB is also observed for fingerprint

images, as well as medical images where sharp edges occur at

the boundary between the object of interest and the background.

In general, the gain is larger for images rich of features with

large intensity transition in one direction and small variation in



CHANG AND GIROD: DIRECTION-ADAPTIVE DISCRETE WAVELET TRANSFORM 1299

Fig. 8. Original and the reconstructions at 0.3 bpp of part of the test image Spoke and Barbara. For each test image, the four sub-images correspond to (top-left)
the original; (top-right) 9/7 DWT; (bottom-left) DA-DWT; (bottom-right) sub-pel approach.

the orthogonal direction, qualitatively consistent with the direc-

tion-adaptation gain analysis using the anisotropic model pre-

sented in Section III ( in Table I).

The DA-DWT also outperforms the sub-pel approach by up

to 3.6 dB for Spoke, 1.6 dB for Barbara, and 0.3 dB for Pent-

agon, and the gain is usually less than 0.1 dB for the other test

images. These results are, again, consistent with the analysis in

Section III, where in Table I also follows this order.

Part of the Spoke image is shown on the left of Fig. 8, along

with the reconstructions at 0.3 bpp. The subjective quality from

the DA-DWT is significantly better than the 9/7 DWT. Further-

more, in the reconstruction from the sub-pel approach, ringing

artifacts appear around the lines in the spoke, especially at the

horizontal-ish lines, whereas for the DA-DWT the artifacts

are mostly absent. These results show that, compared to the

sub-pel approach, the DA-DWT better handles sharp image

features and is less sensitive to the feature orientation, as also

suggested by the mathematical analysis. Similarly, on the right

of Fig. 8, DA-DWT is clearly superior to both the 9/7 DWT

and the sub-pel approach, around the arm and along the stripes

on the fabrics in Barbara.

The original and the reconstructions of the six test images,

using the 9/7 DWT and the DA-DWT, are shown in Fig. 9.

For each image, we enlarge two 125 125 regions to show

the difference in subjective quality between the 9/7 DWT and

the DA-DWT, reconstructed at 0.05, 0.1, 0.2, and 0.4 bpp. At

lower rates, the reconstruction error from the DA-DWT exhibits

brushstroke-like artifacts along image features. Different from

the ringing artifacts in the conventional transform, the brush-

stroke artifacts follow the geometric flow in the image and,

therefore, better preserve the geometric structure, as shown in

Fig. 9, for example, around the hat in Lena and the books in

Barbara. As another example, for Highway reconstructed at

0.05, 0.1, and 0.2 bpp, in terms of the PSNR measurement the

DA-DWT performs worse than the 9/7 DWT as plotted in Fig. 7.

However, we argue that the reconstruction from the DA-DWT

better represents the geometric content in the image and is vi-

sually more pleasing as shown in Fig. 9. This phenomenon is

observed in all the images in the test set as well as other images

not reported in this paper.

V. CONCLUSION

The DA-DWT provides an efficient representation for direc-

tional image features, such as edges and lines in the image, by

locally adapting the filtering directions to the image content. In

our experiments, the DA-DWT outperforms the conventional

2-D DWT by up to 2.5 dB in PSNR for typical test images,

and by up to 5.4 dB for special classes of images. In general,

the gain from exploiting directional correlation in the image is

larger for image features with large intensity transition in one

direction and small variation in the orthogonal direction, quali-

tatively consistent with the mathematical analysis using the pro-

posed anisotropic image model.

In addition, compared to other lifting-based approaches with

sub-pel directions, the DA-DWT accounts for the aliasing en-

ergy due to undersampling of sharp image features, thus pro-

vides higher compression efficiency while requiring less com-

putation. Compression performance of the DA-DWT is also less

sensitive to the orientation of image features.

Significant subjective improvement over the conventional

2-D DWT is observed. At low rates, the reconstruction error

in the DA-DWT exhibits brushstroke-like artifacts. Different

from the ringing artifacts typically observed in the conven-

tional transform, the brushstroke artifacts better preserve the

geometric structure in the image. The ability to better depict

the image content at low rates makes the DA-DWT espe-

cially suitable for progressive transmission of images, where a

low-quality preview is first reconstructed and, as more data are

received, refined to achieve higher qualities.
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Fig. 9. Images on the left are the originals of the 512� 512 test images, from top to bottom, Spoke, Lena, Barbara, Monarch, Highway, and Pentagon. For each
test image, two 125 � 125 regions of the reconstruction from the conventional 9/7 DWT and the proposed DA-DWT are shown at the top and the bottom row,
respectively, reconstructed at 0.05, 0.1, 0.2, and 0.4 bpp from left to right for each region.

APPENDIX

From (8) and (10), convolving with is equivalent

to convolving with followed by a one-pixel advance

and downsampling vertically, i.e.,

(45)
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Hence

(46)

From (9)

(47)

In addition, from the fact that is always an odd integer and

(10), if is even. Therefore

is odd (48)

Combining (46)–(48), we obtain

(49)
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