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Abstract: Set-point attitude control of a rigid body explicitly preventing actuator saturation is considered. The attitude

control approach developed does not employ any sort of direction-cosine-matrix (DCM) parameterisation, such as Euler

angles or quaternions. Rather, the DCM is used directly within the feedback control algorithm. Together a proportional

control term and an angular velocity control term make up the attitude controller. The angular velocity control is composed

of a strictly positive real system subject to a special input non-linearity. The specific form of the proportional control and

angular velocity control ensure control torques are below the saturation level of the on-board actuators. Two controller

synthesis methods are considered. The first uses the linearised system, the solution to the linear quadratic regulator

problem, and the Kalman–Yakubovich–Popov lemma to design the controller. The second employs a simple low-pass filter

that is guaranteed to stabilise the closed-loop system; tuning the low-pass filter is also considered. Numerical simulation

results demonstrate effective closed-loop control in the presence of plant disturbances and sensor noise.

1 Introduction

Robotic systems that are free to rotate in space require a robust atti-
tude control system to realise their mission objectives. For instance,
spacecraft must slew and point in order to observe celestial objects,
and for inspection purposes underwater vehicles must manoeuvre
safely around newly constructed or ageing dams, bridge abutments
and other marine structures.

The set of attitudes a rigid body may take is the set of 3 × 3
orthonormal matrices with determinant equal to plus one. The
direction-cosine-matrix (DCM) or the rotation matrix describes the
attitude of a rigid body globally and uniquely, unlike parameteri-
sations of the DCM, such as Euler angles, Rodrigues parameters,
modified Rodrigues parameters (MRPs) or unit-length quaternions
(referred to as quaternions for simplicity). Many research articles
have considered the use of DCM parameterisations for control
of rigid bodies [1–6]. Unfortunately, all DCM parameterisations
are deficient in some way. For instance, Euler angles, Rodrigues
parameters and MRPs suffer from singularities, while the same
physical attitude is represented by two (antipodal) quaternions [7].
In fact, the use of quaternions for attitude control can lead to unde-
sirable rotations known as unwinding [7, 8]. As such, researchers
and practitioners alike are presently focusing on attitude control
methods that use the DCM directly [7, 9–14]. Given the modern
advances in on-board computing, DCM-based estimators and con-
trollers can be implemented on-board flight vehicles without much
difficulty [15, 14–18].

From an applications point of view it is ideal when practi-
cal limitations, such as actuator saturation and noise rejection
are accounted for directly in the control formulation, rather than
patched with ad-hoc fixes during implementation. The articles
[19–22] consider attitude control in the presence of actuator sat-
uration, however, attitude is parameterised using quaternions. In
[19, 20] hyperbolic tangent functions are employed to prevent actu-
ator saturation, whereas saturation functions are used in [21, 22].
Attitude control in the presence of saturation is also considered
in [10, 11] where the DCM is used directly for control. To the
knowledge of the author, the existing literature, including [10, 11,
19, 19, 21, 22], has yet to consider closed-loop attitude control
using the DCM directly while simultaneously employing dynamic

angular velocity control and disallowing actuator saturation. Doing
so is the motivation and focus of this paper.

This paper considers the design of an attitude control law that
does not use a DCM parameterisation, but rather uses the DCM
directly for attitude control. Specifically, set-point attitude con-
trol is considered where the attitude controller is composed of
a proportional control component and an angular velocity control
component. The proportional control component is borrowed from
[13], and is a function of the DCM describing the attitude error.
The angular velocity control component is inspired from [23, 24],
and is composed of a strictly positive real (SPR) system with a spe-
cific input non-linearity. It is shown that together the control torque
produced by the proportional and angular velocity controls can be
limited, thereby avoiding actuator (magnitude) saturation. More-
over, the control architecture guarantees a desired equilibrium point
of the closed-loop system is asymptotically stable. The novelty of
this work lies in the ability to prevent actuator saturation while
guaranteeing robust closed-loop asymptotic stability of a desired
equilibrium point using the attitude error DCM and an SPR sys-
tem directly within the control law. The introduction of the SPR
system enables the rejection of noise in the angular velocity mea-
surement. Two straightforward SPR design methods are considered.
The first uses the linearised system along with [25] to synthesise
an SPR controller. The second method considers the design of a
filtered proportional derivative (PD) control law, a control scheme
often used in practice over a standard PD control law in order to
filter noise corrupting the angular velocity measurement. Tuning
of the filtered PD controller using a steady-state error analysis of
the closed-loop system is considered representing another modest
contribution.

The remainder of this paper is as follows. In Section 2, pre-
liminaries are reviewed, such as the kinematics and dynamics of
a rigid body. In Section 3, attitude error and various functions
related to attitude error used to prove stability will be discussed.
The control structure is presented in Section 4, and the means by
which actuator saturation is prevented is demonstrated. Closed-loop
asymptotic stability of a desired equilibrium is proven in Section 5.
Controller synthesis is considered in Section 6. Numerical simu-
lation results are presented in Section 7. The paper is drawn to a
close in Section 8.

IET Control Theory Appl., 2015, Vol. 9, Iss. 11, pp. 1653–1661

© The Institution of Engineering and Technology 2015 1653



2 Preliminaries

Consider a rigid body, such as a spacecraft or underwater vehi-
cle. Let Fa and Fb denote the inertial and body frames, where
the origin of the body frame is located at the mass centre of
the rigid body. The attitude of Fb relative Fa is globally and
uniquely described by the DCM Cba ∈ SO(3), where SO(3) ={

C ∈ R
3×3|CTC = 1, detC = +1

}

is the special orthogonal group

of rigid-body rotations [26, 27]. Some authors prefer to work with
the rotation matrix which is the transpose of Cba. The control
method presented herein can be adopted to work with the rotation
matrix. The kinematics and dynamics governing the motion of the
rigid body are given by the Poisson and Euler equations [26, 28]

Ċba + ω×Cba = 0 (1)

Iω̇ + ω×Iω = τc (2)

where ω is the angular velocity of Fb with respect to Fa, I = IT >

0 is the moment of inertia of the rigid body and τc is the control
torque. All quantities in (2) are expressed in Fb.

The ‘cross’ map (·)× : R
3 → so(3) transforms a 3 × 1 column

matrix to a 3 × 3 skewsymmetric matrix

v× =

⎡

⎣

0 −v3 v2
v3 0 −v1

−v2 v1 0

⎤

⎦ , ∀ v =

⎡

⎣

v1
v2
v3

⎤

⎦ ∈ R
3

where the vector space of all 3 × 3 skewsymmetric matrices is

so(3) =
{

S ∈ R
3×3|ST = −S

}

[26, 27]. The ‘uncross’ map (·)v :

so(3) → R
3 does just the opposite, transforming a 3 × 3 skewsym-

metric matrix into 3 × 1 column matrix so that v×v = v, ∀ v ∈ R
3.

A useful identity that employs both (·)× and (·)v is

1
2
tr
(

v×U
)

= −vT
Pa(U)v, ∀ v ∈ R

3, ∀U ∈ R
3×3 (3)

where Pa(U) = 1
2
(U − UT) is the skewsymmetric projection oper-

ator.
DCM parameterisations, such as Euler axis/angle parameters

and quaternions, are often used to describe attitude. In this paper,
DCM parameterisations will not be used within the control scheme
developed, however, axis/angle parameters and quaternions will be
referred to from time-to-time. Let (a,φ) be the Euler axis and Euler
angle, respectively, where a ∈ S

2, φ ∈ R and S
2 is the two-sphere.

Let q =
[

ǫT η
]T ∈ S

3 denote the (unit-length) quaternion, where

ǫ ∈ R
3 is the vector part of the quaternion, η ∈ R is the scalar

part of the quaternion and S
3 is the three-sphere. The vector and

scalar parts of the quaternion can be written in terms of a and φ

in the following ways: ǫ = sin(φ/2)a and η = cos(φ/2). An arbi-
trary DCM, C ∈ SO(3), can be written in terms of either of these
parameterisations [28]

C(a,φ) = cosφ1 + (1 − cosφ) aaT − sin φa× = e−φa×
(4)

C(ǫ, η) = (η2 − ǫTǫ)1 + 2ǫǫT − 2ηǫ×

In the upcoming proof of closed-loop asymptotic stability, the
following lemma will be employed.

Lemma 1 Kalman–Yakubovich–Popov (KYP) lemma [29]: Con-
sider the LTI system

ẋc = Acxc + Bcuc, yc = Ccxc

where xc ∈ R
nc , uc and yc ∈ R

m are the matrices Ac, Bc and Cc are
appropriately dimensioned real matrices that form a minimal state-
space realisation, and Ac is Hurwitz. The system is SPR if and only
if there exists Pc ∈ R

nc×nc and Qc ∈ R
nc×nc where Pc = PT

c > 0

and Qc = QT
c > 0 such that

PcAc + AT
c Pc = −Qc (5a)

PcBc = CT
c (5b)

3 Attitude error

This paper will focus on regulation of a rigid body’s attitude to
a constant desired attitude. Let Cda be the DCM describing the
desired attitude. The attitude error described by the attitude error

DCM is E = Cbd = CbaC
T
da
. The attitude error kinematics are

Ė + ω×E = 0 (6)

Equation (6) comes from differentiating E with respect to time and
using (1).

Consider the following attitude error function [13]

ψ(E) = 2 −
√

1 + tr(E) (7)

This attitude error function will be used for stability analysis via
Lyapunov’s direct method in Section 5. Let (ae,φe) be the Euler
axis/angle associated with E. Recall that −1 ≤ tr(E) ≤ 3, where
tr(E) = 3 only when E = 1 (i.e. when φe = 0), and tr(E) = −1
only when E = e±πae , ∀ ae ∈ S

2 [28]. Thus, ψ(E) = 0 if and
only if E = 1, and ψ(E) = 2 if and only if E = e±πae , ∀ ae ∈ S

2.
Define the sublevel set L2 = {E ∈ SO(3)|ψ(E) < 2}. Notice that
attitudes corresponding to E = e±πae , ∀ ae ∈ S

2 are disallowed in
the sublevel set L2.

Consider the following attitude error column matrix [13, 30]

e = 1√
1 + tr(E)

Pa(E)v (8)

where e is well defined in the sublevel set L2. In terms of Euler
axis/angle parameters (ae,φe) the attitude error column matrix e
is

e = 1√
1 + tr(E)

Pa(E)v

= 1
√

1 +
(

3 cosφe + (1 − cosφe)aT
e ae

)
(− sin φea

×
e )v

= − 1√
2(1 + cosφe)

sin φeae

= − 1
√

cos2
φe

2

sin
φe

2
cos

φe

2
ae

= − sin
φe

2
ae sign

(

cos
φe

2

)

where aT
e ae = 1, x

/√
x2 = sign(x) ∀ x �= 0 where sign(x) = +1

if x > 0 and sign(x) = −1 if x < 0, and the identities cos2(φe/2) =
(1 + cosφe)/2 and sin φe = 2 sin(φe/2) cos(φe/2) have been used
to simplify. As such, in the sublevel set L2, e = 0 if and
only if φe = 0, and hence E = 1. Also, let (ǫe, ηe) where ǫe =
[ǫe,1 ǫe,2 ǫe,3]T be the error quaternion associated with E. Given
the relationship between ae, φe and ǫe [i.e. ǫe = sin(φe/2)ae and
ηe = cos(φe/2)], it follows that e = −ǫesign(ηe). Thus, in the sub-
level set L2, |ei| ≤ 1, i = 1, 2, 3, where e = [e1 e2 e3]T, which
follows from |ǫe,i| ≤ 1, i = 1, 2, 3. The fact that the absolute value
of each element of e is bounded by one will be exploited when
designing a controller that does not saturate on-board actuators.

The attitude error function in (7) and associated attitude error
column matrix in (8) have several advantages over others found in
the literature. As discussed in [13], the primary advantage is that
the Euclidean norm of e, ‖e‖, approaches one as φe approaches
180◦. The norm of other attitude error column matrices found in the
literature approach zero as φe approaches 180◦, which is undesir-
able because it degrades closed-loop performance when used within
a feedback control strategy. See [13] for details.
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4 Control formulation

Owing to hardware limitations the control torque that can be
applied is limited. To avoid actuator saturation the control torque,
τc = [τc,1 τc,2 τc,3]T, will be designed so that the magnitude
of the total torque in each axis, |τc,i|, i = 1, 2, 3, is less than the
maximum torque the on-board actuators can apply, 0 < τ̄c,i < ∞,
i = 1, 2, 3.

To this end, consider the following control structure

τc = τp + τd

= ke − σ(u) (9)

The proportional control is τp = ke where 0 < k < ∞ is the pro-
portional control gain. The angular velocity control is τd = −σ(u)

where σ : R
3 → R

3 is the plant input non-linearity, u = yc is the
output of the system

ẋc = Acxc + Bcuc = Acxc + Bcŷ (10a)

u = yc = Ccxc (10b)

where the transfer matrix Gc(s) = Cc(s1 − Ac)
−1Bc is SPR. The

input to Gc(s) is uc = ŷ = β(u)ω where β : R
3 → R

3×3 is the
controller input non-linearity. A block diagram of the closed-loop
system is shown in Fig. 1. The proportional control, the non-
linearities σ(·) and β(·), and the SPR system are all specifically
chosen in order to guarantee that actuator saturation is prevented
and asymptotic stability of a desired equilibrium point of the
closed-loop system is achieved.

Before considering the specifics of the non-linearities σ(·) and
β(·), and the SPR system that generates u = [u1 u2 u3]T, the
means by which actuator saturation is prevented will be discussed.
First, let τp = [τp,1 τp,2 τp,3]T and τd = [τd,1 τd,2 τd,3]T.
Recall from Section 3 that |ei| ≤ 1, i = 1, 2, 3. Therefore each ele-
ment of the proportional control is bounded by k , that is |τp,i| =
k|ei| ≤ k , i = 1, 2, 3. It follows that provided k + ūi < τ̄c,i where
|τd,i| ≤ ūi and 0 < ūi < ∞ is the maximum allowable angular
velocity control in the ith axis (where i = 1, 2, 3), then the control
torque in each axis will be less than the maximum allowable torque
in each axis, τ̄c,i, thereby preventing actuator saturation. Note that
k and ūi can be chosen so that their sum is arbitrary close to τ̄c,i.

The details of σ(·) and β(·) will now be discussed. The non-
linearity σ(·) has the following specific form [23, 24]

σ(u) = [σ1(u1) σ2(u2) σ3(u3)]T

σi(ui) =

⎧

⎪
⎨

⎪
⎩

ūi ūi < ui

ui −ūi ≤ ui ≤ ūi

−ūi ui < −ūi

, i = 1, 2, 3

where as previously mentioned, 0 < ūi < ∞ is the maximum
allowable angular velocity control in the ith axis. Notice that each

Fig. 1 Block diagram of closed-loop system

ūi can be different, thus realising different saturation levels in each
axis. Following [23, 24], the function β(·) is defined as

β(u)u = σ(u) (11)

where β(u) = diag {β1(u1),β2(u2),β3(u3)} = βT(u) and

βi(ui) =
{

σi(ui)/ui ui �= 0

1 ui = 0
, i = 1, 2, 3

As the ūi are user-defined parameters and each ui is known at
all times during operation, both σ(·) and β(·) can be computed
online and in real time. Observe that when −ūi ≤ ui ≤ ūi that
βi(ui) = 1, and when ūi < ui or ui < −ūi that βi(ui) < 1. As such,
βi(·) strictly less than one indicates the angular velocity control is
being limited, thereby preventing saturation. Using (11) notice that

ωTσ(u) = ωTβ(u)u = (β(u)ω)Tu = ŷ
T
u, ∀ ω, u ∈ R

3

where ω could be replaced with an arbitrary column matrix. This
inner product relationship is deliberate, and will be exploited when
assessing closed-loop asymptotic stability of a descried equilibrium
point.

Prior to showing that a desired equilibrium point of the closed-
loop system is in fact asymptotically stable, a conservative aspect
of the control scheme will be discussed. Consider the case where,
at an instant, ei < 1 in the ith axis, and thus τp,i < k . At the same
instant, consider when the angular velocity control in the same ith
axis is such that τd,i = ūi. In this case, for saturation to be avoided
in the ith axis, the angular velocity control does not have to be
restricted by an amount ūi, and could in fact take on a larger value.
The proposed control architecture is conservative in that the angular
velocity control is restricted without knowledge or consideration of
the concurrent proportional control component. Doing so ensures
that actuator saturation is avoided, but may also degrade closed-
loop performance. However, although conservative, robust closed-
loop stability can be guaranteed, as shown in Section 5. Therefore,
as with many control engineering challenges, there is a the tradeoff
between performance and a closed-loop stability guarantee.

5 Closed-loop stability analysis

Consider the closed-loop system collectively described by (2), (6)
and (9)–(11). It can be shown that (E,ω, xc) = (1, 0, 0) is an equi-
librium point of the closed-loop system. Asymptotic stability of
this equilibrium point will now be considered.

Theorem 1: Consider a rigid body described by the dynamics of
(2). The attitude error kinematics are given by (6) where E =
Cbd = CbaC

T
da

and Cda is the DCM associated with the desired and
constant attitude. The control law is given by (9) where u = yc,
yc(s) = Gc(s)uc(s), uc = ŷ = β(u)ω, Gc(s) = Cc(s1 − Ac)

−1Bc,
where (Ac,Bc,Cc) is a minimal state-space realisation satisfying
the KYP lemma, Ac is Hurwitz, and Bc has full column rank. If
the initial conditions are such that

1
2
ωT(0)Iω(0) + k

(

2 −
√

1 + tr(E(0))
)

+ 1
2
xT
c (0)Pcxc(0) < 2k

(12)

then (E,ω, xc) → (1, 0, 0) as t → ∞ and the equilibrium point
(E,ω, xc) = (1, 0, 0) is asymptotically stable.

Proof: Consider the following positive definite Lyapunov function
candidate

V = 1
2
ωTIω + k

(

2 −
√

1 + tr(E)

)

+ 1
2
xT
c Pcxc (13)
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Taking the derivative and simplifying using (2), (3), (6), (9)–(11)
and the KYP lemma gives

V̇ = ωT
(

−ω×Iω + τc
)

− ktr(Ė)

2
√
1 + tr(E)

+ 1
2
xT
c

(

PcAc + AT
c Pc

)

xc + xT
c PcBcŷ

= ωT

(
kPa(E)v

√
1 + tr(E)

− σ(u)

)

+ ktr(ω×E)

2
√
1 + tr(E)

− 1
2
xT
cQcxc + xT

cC
T
c ŷ

= −ωTσ(u) + kωTPa(E)v

√
1 + tr(E)

− kωTPa(E)v

√
1 + tr(E)

− 1
2
xT
cQcxc + uTŷ

= −ωTβ(u)u − 1
2
xT
cQcxc + uTβ(u)ω

= − 1
2
xT
cQcxc (14)

which implies V (t) ≤ V (0) for all t ≥ 0. Combining this result
with (12) it can be seen that kψ(E(t)) ≤ V (t) ≤ V (0) < 2k . There-
fore, the sublevel set L2 is a positively invariant set, and as
such the attitude error column matrix e is well defined. ‘En
route’ to showing asymptotic stability consider the following.
First, let 
 = {(E,ω, x) ∈ SO(3) × R

3 × R
nc | V (t) ≤ V (0)} and

E =
{

(E,ω, x) ∈ 
|V̇ = 0
}

. Owing to the fact that Qc = QT
c > 0,

V̇ = 0 only if xc = 0, which in turn implies ẋc = 0 and u = 0 (=
yc). With xc = ẋc = 0, it follows that Bcŷ = 0, and because Bc has
full column rank this implies ŷ = 0. This in turn implies ω = 0 via
ŷ = β(u)ω where βi(ui) �= 0, ∀ui ∈ R, i = 1, 2, 3. From ω = 0, we
have ω̇ = 0. In addition, from (2), (9) and the positive invariance
of the sublevel set L2 we have that e = 0. Following the discussion
in Section 3, e = 0 means E = 1. Therefore the largest invari-
ant set in E is the set M = {(E,ω, xc) ∈ E|E = 1,ω = 0, xc = 0)}.
From LaSalle’s invariance principle it follows that trajectories
of the closed-loop system asymptotically approach M, that is,
(E,ω, xc) → (1, 0, 0) as t → ∞. �

Of note is the fact that the proof of stability does not depend
on precise knowledge of the inertia matrix. As such, our control
scheme is robust to such modelling errors.

The constraint on the initial conditions given in (12) is needed
to ensure that the sublevel set L2 is a positively invariant set, and
hence e is well defined. Similar initial condition constraints can be
found in [9, 12, 13]. For an initial attitude error, angular velocity,
controller states, k , and Pc, if (12) is not satisfied then one may
pick a k that is larger (as well as a different Pc, if so desired) in
order to satisfy (12). If k changes a different set of ūi, i = 1, 2, 3,
parameters will most likely have to be used as well in order to
ensure actuator saturation is prevented. These changes will also
change the closed-loop system response.

6 Strictly positive real controller synthesis

6.1 Six-state controller

The state-space matrices of the SPR system given in (10) will first
be designed using the linear quadratic regulator (LQR) formulation
and the KYP lemma, as in [25]. To begin, the plant including the
proportional control is linearised

[

θ̇

θ̈

]

=
[

0 1

−I−1K 0

]

︸ ︷︷ ︸

A

[

θ

θ̇

]

︸︷︷︸

x

+
[

0

I−1

]

︸ ︷︷ ︸

B

σ(u) (15a)

y =
[

0 1
]

︸ ︷︷ ︸

C

[

θ

θ̇

]

(15b)

where e
.= −(1/2)θ, ω

.= θ̇ and ω̇
.= θ̈, which follows from E

.=
1 − θ× where θ are small angles involving three principal axes,

and hence K = (k/2)1. Next, using A and B from (15a), along
with the user-defined weights QLQR and RLQR , the state-feedback

gain Cc = RLQR
−1BT� is found by solving the algebraic Ric-

cati equation, �A + AT� − �BR−1
LQRB

T� + QLQR = 0, for �.

Setting Ac = A − BCc and using (5b) of the KYP lemma, Bc =
P−1
c CT

c is found where Pc is the solution to (5a) given the weight
Qc. The resultant system is SPR. This SPR controller has six states,
which is why it is called the six-state controller. Note that the lin-
earisation procedure employed above is done strictly to design the
six-state controller. The six-state controller, which is SPR, is used
within (9) to control the non-linear system described by (2) and
(6), not a linearised version of (2) and (6).

6.2 Filtered PD controller

Next, a very simple SPR controller will be considered. To motivate
the form of the controller, consider a PD controller of the form

τc = ke − σ(kdω) (16)

where 0 < k < ∞ is the proportional control gain and 0 < kd < ∞
is the derivative control gain. Using a similar Lyapunov function to
the one shown in (13) (just with the (1/2)xT

c Pcxc term removed), it
can be shown that this control law renders the desired equilibrium
point of the closed-loop system asymptotically stable. In addition,
provided that k + ūi < τ̄c,i, i = 1, 2, 3, saturation is avoided. Unfor-
tunately, high-frequency noise in the angular velocity measurement
can be amplified. Consider the case where the state-space matrices
of (10) are

Ac = diag{−1/T ,−1/T ,−1/T }, Bc = 1/T1,

Cc = kd1 (17)

where 0 < T < ∞. The angular velocity control in each axis
is effectively τd,i = −σi(ui), ui(s) = gc(s)ŷi(s) where gc(s) =
kd/(Ts + 1). It is straightforward to verify that gc(s) is SPR. Using
the Ac, Bc and Cc given in (17) within (9) and (10) effectively
realises a filtered PD controller where the angular velocity measure-
ment is passed through a low-pass filter and actuator saturation is
guaranteed to be prevented.

How to pick T given the presence of noise in both the atti-
tude and angular velocity measurements will now be discussed.
For comparison purposes, the closed-loop performance at steady
state when using the PD controller in (16) will be compared to the
closed-loop performance at steady state when using (9) and (10)
where Ac, Bc and Cc are given in (17). Consider the case where
the closed-loop system has almost reached the desired equilibrium
point of E = 1 and ω = 0 so that both e and ω are small and there
is no actuator saturation. For small angles and rates e

.= −(1/2)θ,
ω

.= θ̇, ω̇
.= θ̈ and the ith component of the PD controller in (16)

is

τc,i = − k

2
(θi + ve,i) − kd(θ̇i + vω,i) = KPDxPD,i + KPDvi (18)

where

xPD,i = [θi θ̇i]T, vi = [ve,i vω,i]T, KPD =
[

− k

2
− kd

]

and vi is zero mean Gaussian noise with E[vivT
i ] = R =

diag{re, rω} > 0 and E[vixT
PD,i] = 0. Assuming I = diag{I1, I2, I3}

the closed-loop dynamics in the ith axis of the linearised system
controlled using (16) are

[

θ̇i
θ̈i

]

=

⎡

⎣

0 1

− k

2Ii
− kd

Ii

⎤

⎦

︸ ︷︷ ︸

APD,i

[

θi
θ̇i

]

+

⎡

⎣

0 0

− k

2Ii
− kd

Ii

⎤

⎦

︸ ︷︷ ︸

ŴPD,i

[

ve,i
vω,i

]

Let PPD,i = E[xPD,ixT
PD,i] be the state covariance. Denoting the

steady-state covariance as PssPD,i = limt→∞ PPD,i, the steady-state
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covariance satisfies

APD,iP
ss
PD,i + PssPD,iA

T
PD,i + ŴPD,iRŴT

PD,i = 0 (19)

Let Pss
PD,i be parameterised as

PssPD,i =
[

p1,i p△,i

p△,i p2,i

]

Using (19), the elements of PssPD,i, p1,i, p△,i and p2,i, can be found

p1,i = k

4kd
re + kd

k
rω (20)

p△,i = 0

p2,i = k2

8kd Ii
re + kd

2Ii
rω (21)

The steady-state control covariance about the ith axis,
pτ
PD,i = E[τ 2c,i] where τc,i is given in (18), can also be computed:

pτ
PD,i = KPD(PssPD,i + R)KT

PD

=
(

k3

16kd
+ k2kd

8Ii
+ k2

4

)

re +
(

k3
d

2Ii
+ k2d + kkd

4

)

rω (22)

Next, consider the closed-loop system controlled using the SPR
controller given by (9) and (10) where Ac, Bc and Cc are given
in (17). Again, assume that the closed-loop system is close to the
desired equilibrium point so that e

.= −(1/2)θ, ω
.= θ̇ and ω̇

.= θ̈.
The ith component of the control is

τc,i = − k

2
(θi + ve,i) − kdxc,i (23)

ẋc,i = − 1

T
xc,i +

1

T
θ̇i +

1

T
vω,i

The closed-loop dynamics in the ith axis of the linearised system
are

⎡

⎣

θ̇i
θ̈i
ẋc,i

⎤

⎦ =

⎡

⎢
⎢
⎢
⎣

0 1 0

− k

2Ii
0 − kd

Ii

0
1

T
− 1

T

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

ASPR,i

⎡

⎣

θi
θ̇i
xc,i

⎤

⎦

︸ ︷︷ ︸

xSPR,i

+

⎡

⎢
⎢
⎢
⎣

0 0

− k

2Ii
0

0
1

T

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

ŴSPR,i

vi

Letting PSPR,i = E[xSPR,ixT
SPR,i] be the state covariance, the

steady-state covariance PssSPR,i = limt→∞ PSPR,i satisfies

ASPR,iP
ss
SPR,i + PssSPR,iA

T
SPR,i + ŴSPR,iRŴT

SPR,i = 0 (24)

Let PssSPR,i be written as

PssSPR,i =

⎡

⎣

p11,i p12,i p13,i
p12,i p22,i p23,i
p13,i p23,i p33,i

⎤

⎦

From (24), the elements of PssSPR,i can be solved for

p11,i = p1,i +
T 2k2

8kd Ii
re (25)

p12,i = 0

p13,i = T 2

k2
8kd Iire

p22,i = p2,i +
(

T 2k3

16kd I
2
i

+ Tk2

8I2i

)

re (26)

p23,i = k2

8kd Ii
re

p33,i = k2

8kd Ii
re + 1

2T
rω

where p1,i and pi,2 are given in (20) and (21). The steady-state
control covariance about the ith axis is

pτ
SPR,i = E[τ 2c,i] (27)

= KSPRP
ss
SPR,iK

T
SPR + KSPR,vRKSPR,v

T

= pτ
PD,i +

Tk3

8Ii

(
Tk

4kd
+ 1

)

re +
(

k2d

(
1

2T
− 1

)

−
k3
d

2T

)

rω

(28)

where τc,i is given in (23)

KSPR =
[

− k

2
0 − kd

]

and KSPR,v =
[

− k

2
0

]

Comparing (20), (21), (25) and (26) it can be seen that p11,i > p1,i
and p22,i > p2,i for any 0 < T < ∞. However, by appropriate
choice of T (e.g. 0 < T < 1) the difference between p11,i and p1,i
along with p22,i and p2,i can be mitigated. Also, from (22) and
(28), by appropriately choosing T , pτ

PD,i > pτ
SPR,i, meaning that

the steady-state control covariance of the SPR controller will be
strictly less than that of the PD controller. This result is somewhat
expected; high-frequency noise in the angular velocity measure-
ment is filtered out thereby preventing high-frequency oscillations
in the control signal, which in turn reduces the steady-state control
covariance.

7 Simulation results

Three simulations will be presented, each considering the attitude
control of a rigid-body spacecraft. The following parameters are
common to all simulations. The spacecraft is in a circular orbit
at an inclination of 60◦ and altitude of 550 (km). The angle of
the right ascension of the ascending node is set to zero. The
inertia matrix of the spacecraft is I = diag{15, 10, 17.5} (kg · m2).
The control torques are realised by a set of reaction wheels
that are limited to torques of τ̄c,i = 0.01N · m in each axis. The
desired attitude is Cda = C1(5

◦)C2(15
◦)C3(−45◦), where C1, C2

and C3 are principal DCMs about the 1, 2 and 3 axes. Specifi-
cally, C1(α) is computed by setting a = [1 0 0]T and φ = α

in (4), C2(β) is computed by setting a = [0 1 0]T and φ = β

in (4), and C3(γ ) is computed by setting a = [0 0 1]T and
φ = γ in (4) [28]. Two disturbance torques are considered. The
first is a gravity gradient disturbance torque, τgg = (3μ/r5)r×Ir,
where μ is the Earth’s gravitational constant, r is the space-
craft position (expressed in the spacecraft body frame) and r =√
rTr [28]. The second is a residual magnetic disturbance torque,

τm = m×
r b, where mr = [0.1 0.1 0.1]T (A · m2) is the residual

magnetic dipole and b ∈ R
3 is the Earth’s magnetic field vector

expressed in the spacecraft body frame [28]. The angular veloc-
ity is corrupted by noise of the form vω = (0.0005 sin(250t) +
0.0001 sin(500t + π/4))[1 1 1]T (rad/s). The attitude error
DCM is constructed (estimated) from noisy vector measure-
ments using the TRIAD algorithm [31] in the following way.
Let y1a = [1 0 0]T and y2a = [0 1 0]T be reference vec-
tors expressed in the inertial frame (frame Fa). The ref-
erence vectors expressed in the desired frame (frame Fd )
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Fig. 2 Closed-loop system response; perfect measurements and large initial attitude error

a Attitude error against orbit and norm of angular velocity against orbit

b Control torque against orbit and βi(·) against orbit

are y
j

d
= Cday

j
a, j = 1, 2. The vector measurements are gener-

ated as follows: y
j

b
= C

j

νb
Cbay

j
a, j = 1, 2, where C

j

νb
are noise

DCMs. Specifically, C1
νb

= C3(ν3,1 sin(νp,1t))C2(ν2,1 cos(νp,1t))

C1(ν1,1 sin(νp,1t)) where νp,1 = 1/2 s−1, ν1,1 = 1/4◦, ν2,1 = 1/2◦,
ν3,1 = 1◦ and C2

νb
= C3(ν3,2 cos(νp,2t))C2(ν2,2 sin(νp,2t))C1(ν1,2

cos(νp,2t)) where νp,2 = 1/10 s−1, ν1,2 = 3/10◦, ν2,2 = 1/5◦,
ν3,2 = 1/10◦. Using the TRIAD algorithm, the attitude error

DCM is E = [v1
b

v2
b

v3
b
][v1

d
v2
d

v3
d
]T where v1

b
= y1

b
, v2

b
=

y1
b

×
y2
b
/|y1

b

×
y2
b
|, v3

b
= v1

b

×
v2
b
and v1

d
= y1

d
, v2

d
= y1

d

×
y2
d
/|y1

d

×
y2
d
|

and v3
d

= v1
d

×
v2
d
. In terms of the Euler angle, φ, and Euler axis, a,

the initial spacecraft attitude is φ(0) = 45◦, a(0) = a′(0)/‖a′(0)‖
where a′(0) = [2 1 −3]T. The initial spacecraft angular veloc-

ity is ω(0) = [0.01 −0.03 0.015]T (rad/s). The initial con-
troller states are zero. The proportional control gain is set to
k = 0.0075 (N · m) and ūi = 0.0024 (N · m) which together satisfy
0.0075 + 0.0024 < 0.01.

First, a controller designed using the method presented
in Section 6.1 will be used to control the spacecraft. The
weights used to synthesise the SPR controller are QLQR =
diag{1, 1, 1, 10, 10, 10} and RLQR = diag{0.15, 0.15, 0.15}, while
Qc = diag{150, 150, 150, 150, 150, 150}. In Fig. 2a is the attitude
error in terms of the Euler angle φe, and the (Euclidian) norm of
the angular velocity, both against orbit. Clearly, the spacecraft atti-
tude error goes to zero. In Fig. 2b is the control torque in each axis,
as well as the value of βi(·), against orbit. Notice that βi(ui) �= 1
between t = 0 orbits and t = 0.05 orbits indicating that satura-
tion is actively being prevented. Without the presence of σ(·) and
β(·), the desired angular velocity control command plus the desired
proportional control command could saturate the actuators.

Next, closed-loop control using the filtered PD controller pre-
sented in Section 6.2 will be compared to closed-loop control using
the PD controller in (16). The same initial conditions, noise, k , and
ūi previously stated are used once again. The value of kd is initially
chosen using (20)–(22) given k , I2 and re = 1.05 × 10−5(rad2)
and rω = 1.03 × 10−7(s−2), and then further tuned during simula-
tion leading to kd = (N · m · s). Next, T is chosen so that gc(s) =
kd/(Ts + 1) rolls-off below the lowest frequency component of
the angular velocity noise, and then further tuned using (20)–(22),
(25), (26) and (28), leading to T = 0.5(s). The closed-loop sys-
tem response as controlled by both the PD and the filtered PD
controllers is shown in Fig. 3. Notice that the overall attitude
and angular velocity response is almost identical indicating that

using the filtered PD controller is not necessarily accompanied
by a significant performance penalty. However, of note is norm
of τc. Consider the norm of τc when the system has essentially
reached steady state. Between t1 = 0.15 orbits and t2 = 0.2 orbits
‖τc‖[t1,t2] = 1.0305 × 10−3(N · m) when the filtered PD controller

is used, while ‖τc‖[t1,t2] = 2.3073 × 10−3 (N · m) when constant-
gain derivative control is used. Over this time window the norm of
τc is 2.2389 times greater when constant-gain PD control is used
compared to when filtered PD controller is used. This is because
the SPR controller filters out the noise in the angular velocity
measurement. As such, when noise corrupts the angular velocity
measurement, which is arguably always the case, using the method
proposed in this paper is clearly advantageous compared to using
constant-gain derivative control.

Now closed-loop control using the saturation prevention tech-
nique presented in [10] will be compared to the closed-loop control
using the filtered PD controller presented in Section 6.2. In [10],
the control law

τc = −k

[
3
∑

i=1

ai (E1i)
× 1i

]

− kd,ω(ω)ω (29)

is presented where

k = α1

a1 + a2 + a3
,

kd,ω(ω) = α2 diag

{
1

1 + |ω1|
,

1

1 + |ω2|
,

1

1 + |ω3|

}

0 < a1 < a2 < a3 < ∞, and 11 = [1 0 0]T, 12 = [0 1 0]T
and 13 = [0 0 1]T. A similar control law to that of (29) is pre-
sented in [11]. A nice feature of the controller in (29), and the
controller in [11], is that the a1, a2 and a3 terms can be used in
addition to α1 and α2 as ‘tuning knobs’ to further tune the closed-
loop response about individual axes. However, (9) and (16) also
have some desirable features that (29) does not. It is shown in [10]
that |τc,i| ≤ α1 + α2, and hence actuator saturation is prevented if
α1 + α2 < τ̄c,i. Recall that (9) and (16) guarantee that k + ūi < τ̄c,i
thereby preventing actuator saturation. Comparing α1 + α2 < τ̄c,i
associated with (29) and k + ūi < τ̄c,i associated with (9) and (16),
the maximum torque in each axis is the same when (29) is used
for closed-loop control, while the maximum torque in each axis is
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Fig. 3 Closed-loop system response subject to noisy measurements;

constant-gain derivative control and filtered PD (SPR) control

permitted to be different when (9) or (16) is employed for closed-
loop control. This design freedom in (9) and (16) permits the use
of different sized actuators, or if a particular actuator is exhibiting
faulty behaviour, the overall torque applied by that actuator can be
limited without affecting the remaining actuators. The control law
(29) does not permit such tailoring. Moreover, the angular velocity
gain in (9) and (16) is decoupled from the angular velocity satura-
tion limit, ūi, unlike the control law (29) where the angular velocity
gain is effectively the angular velocity saturation limit. Again, (9)
and (16) afford more design freedom. In addition, like the control
laws (9) and (16) (see the discussion at the end of Section 4), (29)
is conservative in that the proportional control component and the
angular velocity control component have know knowledge of each
other; if the proportional control in one axis is not saturating then
the angular velocity control in the same axis does not have to be
limited in such a conservative fashion. Next, notice that the angular
velocity control in (29) is

τd,r = −α2

[ ω1

1+|ω1|
ω2

1+|ω2|
ω3

1+|ω3|
]T

The effective angular velocity control is reduced for any value
of ωi, i = 1, 2, 3. As such, this angular velocity control will be
referred to reduced D control. In contrast, in (9) and (16), for
i = 1, 2, 3 the σi(·) and βi(·) functions are dormant unless an indi-
vidual ui exceeds ūi. If a ui, which is a function of ωi via (10),
is below ūi, the applied angular velocity control is not modified.
The control given in (9), where the SPR controller in (10) is
synthesised using either method presented in Sections 6.1 or 6.2,
and even the constant gain PD controller given in (16), afford
a designer more design freedom and does not limit the effec-
tive angular velocity control as severely as the control law given
in (29). Consider now the closed-loop system response as con-
trolled by both the controller in (29) and the filtered PD controller
(i.e. control law (9) and (10) along with the synthesis method in
Section 6.2). Simulation results are shown in Fig. 4. The filtered
PD gains from the previous simulation are used. The gains in
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Fig. 4 Closed-loop system response subject to noisy measurements; con-

trol from the existing literature and filtered PD (SPR) control

(29) are α1 = 0.0015 (N · m), α2 = 0.0084 (N · m · s), a1 = 0.99,
a2 = 1 and a3 = 1.01. The values of α1 and α2 ensure torques in
each axis are strictly less than 0.01 (N · m). If α1 = 0.0075 (N · m)

and α2 = 0.0024 (N · m · s) are used the response degrades further.
The reason the closed-loop response as controlled by the filtered
PD law is superior to the closed-loop response controlled via (29) is
that the angular velocity control in (29) is reduce for any non-zero
value of ω. The filtered PD law does not limit the angular velocity
unless saturation must actively be prevented. However, the most
important point is that (29) does not actively filter out noise in the
angular velocity measurement. On the other hand, the filtered PD
law employs a simple filter that allows high-frequency noise to be
filtered.

Last, the impact of changing k while keeping the filtered
PD controller constant will be investigated. Specifically, the pro-
portional control gain k will be varied between 0.0038 and
0.0098 (N · m) at increments of 0.002 (N · m). To prevent actu-
ator saturation ūi is set equal to ūi = k − 0.01 − δ, where δ =
0.0001 (N · m) for each value of k . The spacecraft properties, initial
conditions, noise and so on, used in simulation remain unchanged
from the previous simulations presented. Each value of k satis-
fies (12). Closed-loop simulation results are presented in Fig. 5. The
closed-loop response when k = 0.0075 (N · m) is included in Fig. 6
also. For low values of k the system response is overdamped, and
for high values of k the system response is underdamped. Plotted
in Fig. 5 is φe, ‖ω‖ and ‖τc‖ against k . The attitude error, φe,
against k curve has a minimum at k = 0.0075 (N · m); for low
and high values of k the attitude error φe increases compared
to when k = 0.0075 (N · m). The ‖ω‖ and ‖τc‖ against k curves
increase modestly as between k = 0.0038 and 0.008 (N · m). Above
k = 0.008 (N · m) the φe, ‖ω‖ and ‖τc‖ against k curves increase
sharply indicating lager attitude and angular velocity errors as well
as in increased control effort. In order to reduce attitude error, angu-
lar velocity error, and the control effort, k should be kept small.
Unfortunately, via (12), the set of allowable initial conditions is
reduced when k is reduced.
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Fig. 5 Closed-loop system response subject to noisy measurements while

varying k between 0.0038 and 0.0098 (N · m)
The two dashed lines are associated with kp = 0.0038 (N · m) and

kp = 0.0098 (N · m), while the light solid line is associated with kp =
0.0075 (N · m)
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The dots correspond to k = 0.0075 (N · m). Notice in the norm of φe against

k plot the dot is at the curves inflection point

8 Closing remarks

In this paper, set-point attitude control of a rigid body explicitly
disallowing actuator saturation is considered. The particular form of
the control method ensures that actuator saturation is prevented and
asymptotic stability of a desired closed-loop equilibrium point is
guaranteed. The control architecture is composed of a proportional
control term, and an angular velocity control term. The propor-
tional control term is a function of the attitude error as described
by the attitude error DCM, and is naturally bounded. The angu-
lar velocity control term is also restricted by a saturation function.
The angular velocity control is generated by an SPR system driven
by an input non-linearity. The form of the SPR system’s input
non-linearity is dictated by the saturation function. Two SPR syn-
thesis methods are considered. The first considered designing the
SPR system matrices using the LQR formulation and the KYP
lemma. The second considered the use of a simple low-pass filter
that is naturally SPR thereby realising a filtered PD controller. This
is significant because in practice a simple low-pass filter is often
used to reject high-frequency noise, while the proposed method
guarantees closed-loop stability and the prevention of actuator satu-
ration. Future work will focus on DCM-based attitude control laws
that disallow actuator rate saturation, as well as magnitude satu-
ration. In addition, an interesting avenue to explore is the use of
non-linear antiwindup techniques, such as [32], for control without
parameterising the DCM.
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