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Direction-of-Arrival Estimation Based on Deep

Neural Networks With Robustness

to Array Imperfections
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Abstract— Lacking of adaptation to various array imperfec-
tions is an open problem for most high-precision direction-
of-arrival (DOA) estimation methods. Machine learning-based
methods are data-driven, they do not rely on prior assumptions
about array geometries, and are expected to adapt better to array
imperfections when compared with model-based counterparts.
This paper introduces a framework of the deep neural network
to address the DOA estimation problem, so as to obtain good
adaptation to array imperfections and enhanced generalization
to unseen scenarios. The framework consists of a multitask
autoencoder and a series of parallel multilayer classifiers. The
autoencoder acts like a group of spatial filters, it decomposes the
input into multiple components in different spatial subregions.
These components thus have more concentrated distributions
than the original input, which helps to reduce the burden
of generalization for subsequent DOA estimation classifiers.
The classifiers follow a one-versus-all classification guideline
to determine if there are signal components near preseted
directional grids, and the classification results are concatenated
to reconstruct a spatial spectrum and estimate signal directions.
Simulations are carried out to show that the proposed method
performs satisfyingly in both generalization and imperfection
adaptation.

Index Terms— Array imperfection, deep neural network
(DNN), direction-of-arrival (DOA) estimation, multitask autoen-
coder, one-versus-all classification, supervised learning.

I. INTRODUCTION

D
IRECTION-of-arrival (DOA) estimation is a widely stud-

ied problem in various areas, including wireless com-

munications, astronomical observation, radar, and sonar [1].

A main trend of the research in DOA estimation is

improving precision and superresolution, enhancing adapta-

tion to demanding scenarios with limited snapshots, low

signal-to-noise ratio (SNR), and so on [2]. Various meth-

ods have been proposed to meet these requirements, such
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as beamformers [3]–[5], subspace-based methods [6]–[8],

sparsity-inducing methods [9]–[13], and maximum likelihood

methods [14]–[16]. There have been long-lasting develop-

ments in DOA estimation performance [2]. A common feature

of the above-mentioned methods is that they are para-

metric and formulate forward mappings from signal direc-

tions to array outputs and assume that the mappings are

reversible. Based on this assumption, the array outputs can

be matched by the preformulated mappings to realize direc-

tion estimation. Different matching criteria result in different

methods, e.g., manifold correlation for beamformers [3]–[5],

superplane fitting for subspace-based methods [6]–[8], raw

array output reconstruction on overcomplete dictionaries for

sparsity-inducing methods [9]–[13], and raw array output

fitting for maximum likelihood methods [14]–[16]. Perfor-

mances of these parametric methods depend heavily on the

consistency between the two mappings, the forward mapping

from signal directions to array outputs during data collection

and the inverse mapping from array outputs to signal directions

for DOA estimation.

Various imperfections may exist in array systems due to

nonideal sensor design and manufacture, array installation

and intersensor mutual interference, background radiation, and

so on [17]. As a result, the forward mapping from signal

directions to array outputs in practical systems is far more

complicated than its backward counterparts used in para-

metric DOA estimation methods [18], [19]. Some of these

imperfections are too complicated to be modeled accurately,

and the inaccurate modeling may pose significant negative

influence on the performance of DOA estimation [20], [21].

To facilitate method implementation, simplified models are

established to describe the effects of various imperfections,

and autocalibration processes are proposed to improve DOA

estimation precision [22]–[28]. Most of the simplifications on

array imperfections are made from mathematical perspectives

approximately with various additional assumptions, such as

uniform linearity/circularity array geometries [22]–[24], con-

strained sensor location errors within a particular line or

plane [25], [26], and intersensor independence of gain and

phase errors [27], [28].

Autocalibration DOA estimation methods have been proved

to be effective via simulations in previous studies [22]–[28].

However, in the simulations, array outputs are generated based

on artificially simplified models, and the formulations of
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imperfections are assumed to be known beforehand with some

unknown variables only. These simplifications and assump-

tions deviate practice with different degrees, and it is still

an open question to clearly explain how the autocalibration

methods behave in practical systems, especially when addi-

tional assumptions, such as linear/circular array geometries,

are deviated. Moreover, the combined effects of multiple kinds

of imperfections, which probably exist in practical systems, are

much more difficult to be modeled precisely and calibrated

automatically. Only a small number of studies have made

in-depth discussions on this problem [29]–[31].

Recent research introduces machine learning techniques

to solve the DOA estimation problem [32]–[36]. Although

ideas alike date back to the 1990s [37]–[39], they may be

resuscitated due to fast developing deep learning theory and

methods [40]–[43], which have largely enhanced modeling

capability than their shallow counterparts and other machine

learning techniques. Methods falling in this category establish

training data sets with DOA labels first, and then derive a

mapping from array outputs to signal directions with existing

machine learning techniques, such as radial basis function

(RBF) [39] and support vector regression (SVR) [32], [33].

The derived mapping is then used on test data to estimate

signal directions. These methods are data-driven and do not

rely on preassumptions about array geometries and whether

they are calibrated or not. They have been demonstrated to be

computationally more efficient than subspace-based methods

in simulations [32], [39] and perform comparably with them

in experiments [33].

Performances of the RBF- and SVR-based DOA estimation

methods [32], [33], [39] rely heavily on the generalization

characteristic of the machine learning techniques. They per-

form satisfyingly when the training and test data have nearly

identical distributions [44], [45]. However, in most DOA esti-

mation problems, it is very difficult or even impossible to

establish a large enough training data set to cover the distri-

butions of all test data. That is because too many unknown

parameters are present in the array output model, such as

signal number, signal directions, SNR, signal waveforms, and

noise samples.

In the past few years, some researchers have also intro-

duced deep learning techniques to solve DOA estima-

tion and source localization problems with microphone

arrays [46]–[50]. Very demanding scenarios with dynamic

acoustic signals [46], reverberant environments [47], [48], and

wideband signals [49], [50] are considered. It is very hard to

establish analytical signal propagation models in such appli-

cations, and parametric methods may encounter great difficul-

ties in solving these problems. However, deep learning-based

methods are able to reconstruct complicated propagation mod-

els based on training data sets, and then estimate source

directions and locations. In spite of the methods’ successes

in single-signal scenarios [47], [48] or in the area of acoustic

signal processing [46], [49], [50], they can hardly be used

directly for general DOA estimation. That is because super-

resolution of multiple temporally overlapped signals is usually

required for array signal processing methods, and acoustic

signals generally last for seconds and contain redundant

time-frequency features. Original acoustic signals are trans-

formed to the time-frequency domain first in the methods,

and the transformed signals are then treated as inputs of deep

neural networks (DNNs) [46], [49], [50]. DOA estimation of

acoustic signals is finally realized in a similar way as pattern

recognition of images. Nonetheless, in general, DOA estima-

tion problems, the snapshot number is usually on scales of

tens or hundreds, which is not large enough for time-frequency

transformation as that for acoustic signals. Moreover, most of

the deep learning methods locate sources on very coarse grids

with intergrid spacings of 5◦ [46], [49] or even 10◦ [50]. Such

coarse DOA estimates do not meet the precision requirements

in most general DOA estimation applications.

In this paper, we propose a hierarchical framework of

DNNs to deal with the general DOA estimation problem. The

covariance vector of the array outputs is computed and used

as the input of the DNN, and a multitask autoencoder is intro-

duced before multilayer classifiers to decompose the signal

components in the input into spatial subregions. Afterward,

a series of multilayer classifiers is introduced to realize DOA

estimation. Major contributions of this paper are threefold.

1) A DNN is established and an end-to-end method is

proposed for general DOA estimation. It does not

need to transform array outputs to the frequency

domain, and therefore is different from existing deep

learning-based DOA estimation methods for acoustic

signals [46], [49], [50].

2) An autoencoder is introduced to preprocess original

array outputs like spatial filters. This preprocessing step

helps to reduce distribution divergences of the input

data of DOA estimation NNs, which largely enhances

the generalization of the proposed method in unseen

scenarios.

3) If the DNN framework is trained using outputs of a

certain array, the corresponding DOA estimation method

will be robust to various kinds of imperfections in the

steering vector of the array without using any prior

information about them. Analyses are carried out to sup-

port such predominance, and simulation results provide

further evidence.

The rest of this paper consists of five parts. Section II

formulates the array output model. Section III presents a new

DNN framework and interprets how it fits DOA estimation

requirements. Section IV introduces training strategies of

the hierarchical DNN and highlights its behavior in array

imperfection adaptation. Section V carries out simulations to

demonstrate the predominance of the proposed method in gen-

eralization over previous machine learning-based methods, and

its predominance in imperfection adaptation over parametric

methods. Section VI concludes this paper.

II. PROBLEM FORMULATION

Assume that K -independent signals impinge onto an

M-element array consisting of omni-directional sensors,

the incident directions of the signals are θ1, . . . , θK , respec-

tively. The waveforms of the kth signal is sk(t), and the

array output is sampled at N uniquely spaced time instants
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t1, . . . , tN to obtain snapshots X = [x(t1), . . . , x(tN )]. The

array outputs are contaminated by the zero-mean Gaussian

noise v(t).

In most academic works on array signal processing, various

kinds of practical array imperfections are overlooked, and the

mappings from signal directions to array responding functions

are supposed to be deterministic and known beforehand.

Denote the imperfection-free mapping by θ �→ a(θ), the array

outputs can be formulated as follows:

x(tn) =

K
∑

k=1

a(θk)sk(tn) + v(tn), for n = 1, . . . , N (1)

where a(θ) and its perturbed variant a(θ, e) are assumed to

be unitary vectors, i.e., ‖a(θ)‖2 = ‖a(θ, e)‖2 = 1 with ‖α‖2

representing the l2-norm of vector α.

Various imperfections exist in practical sensor arrays.

Among the imperfections, gain and phase inconsistencies,

sensor position errors, and mutual coupling are widely stud-

ied ones. These imperfections cause deviations to the array

responding function a(θ), and the mapping between signal

directions and array outputs in (1) does not hold any longer.

Denote the imperfection parameters by e, the array outputs

should be modified accordingly as follows:

x(tn) =

K
∑

k=1

a(θk, e)sk(tn) + v(tn), for n = 1, . . . , N. (2)

Different kinds of array imperfections cast different influ-

ences on the array responding function, and it is still an open

problem to figure out a precise formulation for a(θ, e) in

practical arrays. Only after moderate simplifications, analyt-

ical mappings between (θ, e) and a(θ, e) can be formulated

approximately. However, such simplifications and approxima-

tions adapt only to particular array geometries and applica-

tions, and most existing autocalibration methods can hardly

be generalized to other geometries and applications when the

simplifications and approximations do not hold.

III. DEEP NEURAL NETWORK FRAMEWORK

FOR DOA ESTIMATION

In this section, we design a DNN framework for DOA

estimation.

A. DNN Structure

The DNN framework has two parts, a multitask autoencoder

that behaves as spatial filters, and a group of parallel multilayer

classifiers that realize spatial spectrum construction. A sketch

of the DNN structure is shown in Fig. 1.

The autoencoder denoises the DNN input and decomposes

its components into P spatial subregions. If some signals

located in the pth subregion impinge onto the array (possibly

together with some other signals located in the other P − 1

subregions), the output of the pth decoder equals the DNN

input when the other signals are absent. If no signal impinges

from this subregion, the output of the pth decoder equals zero.

A fully connected multilayer NN is designed for each

subregion afterward. Each of them behaves as a multiclass

classifier to determine if there are signals on a list of refined

directional grids within the spatial subregion. If a signal is

located on a certain grid or between two adjacent grids,

the outputs of the corresponding NN node(s) will be nonzero,

and the values of the node outputs indicate how close the

signal direction is to this grid. The grids are preseted properly

to ensure that any two signals do not coexist between two

neighbor grids.

In this DNN framework, each decoder output of the autoen-

coder contains signals impinging from a much narrower space

and has more concentrated distributions. Successive classifiers

thus do not have to consider signal components located in

other subregions, making the training of them much easier and

enhancing their generalization to previously unseen scenarios.

B. Autoencoder for Spatial Filtering

The autoencoder first compresses the input vector to a lower

dimensional one to extract the principal components in the

original input, and then recover it to the original dimen-

sion via multitask decoding, with the components belonging

to different subregions recovered in different decoders. The

encoding–decoding process helps to reduce the influence of

noise and perturbations in the autoencoder input [40].

In the sketch shown in Fig. 1, suppose that each of the

encoder and decoders has L1 layers, the vectors c in the (L1 −

l1)th and the (L1 + l1)th layers have the same dimensions for

0 < l1 ≤ L1, and generally |c
(p)
l1

| < |c
(p)
l1−1|, with |c| denoting

the dimension of vector c. Neighbor layers of the autoencoder

are fully connected according to feedforward computations,

that is,

net
(p)
l1

= U
(p)
l1,l1−1c

(p)
l1−1 + b

(p)
l1

p =

{

1 for l1 = 1, . . . , L1

1, . . . , P for l1 = L1 + 1, . . . , 2L1

(3)

c
(p)
l1

= fl1

[

net
(p)
l1

]

(4)

where P denotes the spatial subregion number, superscript

(•)(p) denotes the variables associated with the pth subregion

and the pth autoencoder task, subscripts (•)l1 and (•)l1−1

denote the layer indexes, c
(p)
l1

stands for the l1th layer output

of the pth autoencoder, the superscript (•)(p) can be ignored

when l1 ≤ L1, and we also define c0 = r as the input of

the autoencoder. U
(p)
l1,l1−1 ∈ R

|c
(p)
l1

|×|c
(p)
l1−1| is the weight matrix

from the (l1 − 1)th layer to the l1th layer of the pth task,

b
(p)
l1

∈ R
|c

(p)
l1

|×1
is the additive bias vector in the l1th layer,

fl1 [•] represents the elementwise activation function in the

l1th layer.

The multitask autoencoder aims at decomposing the inputs

into P spatial subregions. A straightforward strategy for

defining the subregions is choosing P +1 particular directions

θ (0) < θ (1) < · · · < θ (P), which satisfy θ (1) − θ (0) =

θ (2) − θ (1) = · · · = θ (P) − θ (P−1) and [θ (0), θ (P)) spans the

potential scope of the incident signals. If a signal component

impinging from the pth subregion is used as the input to the

autoencoder, the output of the pth decoder, which is also
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Fig. 1. Structure of proposed DNN for DOA estimation. The network consists of two parts, one is a multitask autoencoder for spatial filtering and the other
is a fully connected multilayer NN for spatial spectrum estimation.

denoted as up = c
(p)
2L1

is expected to be equal to the input

r, while the other decoder outputs equals zero.1

There are many ways to design spatial filterlike autoen-

coders, so that F (p)(r) = r if the signal direction θ ∈

[θ (p−1), θ (p)) and F (p)(r) = 0 otherwise approximately,

where F (p)(•) is the overall function of the pth autoencoder

task. Furthermore, an additional requirement is necessary in

the autoencoder structure for the DOA estimation application,

i.e., F (p)(r1 + r2) = F (p)(r1) + F (p)(r2). The additive

property is required, because when multiple signals located

in different subregions impinge onto the array simultaneously,

the autoencoder should be able to decompose the input vector

to different decoder outputs. In order to make the autoencoder

additive, the activation functions f
(p)

l1
[•] should be linear,

therefore, we replace it with the unit function instead, that is,

c
(p)
l1

= net
(p)
l . (5)

As there is no nonlinear transformations in the autoencoder

hidden layers, each of the multilayer encoding and decoding

processes can be simplified to a single layer, i.e., L1 = 1, and

the autoencoder can be rewritten as

c1 = U1,0r + b1 (6)

up = U
(p)
2,1c1 + b

(p)
2 , p = 1, . . . , P. (7)

1The denoising ability of the autoencoder can be further enhanced by
using the perturbation-free counterpart of the input as the expected output
of the corresponding decoder. However, as it is not an easy task to collect
perturbation-free counterparts of the training data set, we use the original
noisy inputs as the outputs directly in this paper.

C. Multilayer Classifiers for Spectrum Estimation

Previous RBF-based [39] and SVR-based [32], [33]

machine learning methods for DOA estimation fix their

output node number as the incident signal number, which is

assumed to be known beforehand. The trained models do not

work if the incident signal number changes. Therefore, a set

of models should be trained for each case of incident signal

number. However, these models can hardly be integrated to

deal with the DOA estimation problems when the signal

number is not known beforehand.

A more flexible way to enhance the generalization of the

methods to unknown signal number is to use a list of one-

versus-all classifiers instead. In the DOA estimation problem,

each node of the classifier output stands for a preseted direc-

tional grid, and the final output value on the node represents

the probability of a signal locating in the neighborhood of the

grid. DOA of signals impinging from off-grid directions can

be estimated via interpolation between two adjacent grids.

As shown in Fig. 1, there are P parallel classifiers in

total, the pth classifier takes the output of the pth decoder

as input and analyzes the components of the input on the

preseted grids in the pth spatial subregion. There are no mutual

connections between different classifiers. The computations of

the classifiers are feedforward

net
(p)
l2

= W
(p)
l2,l2−1h

(p)
l2−1 + q

(p)
l2

p = 1, . . . , P; l2 = 1, . . . , L2 (8)

h
(p)
l2

= gl2

[

net
(p)
l2

]

(9)
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where h
(p)
l2

is the output vector in the l2th layer of the pth clas-

sifier, with h
(p)
0 = up and h

(p)
L2

= yp; W
(p)
l2,l2−1 ∈ R

|h
(p)
l2

|×|h
(p)
l2−1|

is the fully connected feed-forward weight matrix between

the (l2 − 1)th layer and the l2th layer, q
(p)
l2

is the additive bias

vector on the l2th layer; and gl2[•] is an elementwise activation

function for the inputs of the l2th layer nodes.

After obtaining all the outputs of the P classifiers in parallel

based on the P decoder outputs, the spatial spectrum associ-

ated with DNN input r can be estimated by concatenating the

P outputs in order, that is,

y =
[

yT
1 , . . . , yT

P

]T
. (10)

There are totally |y| one-versus-all classifiers in this part of

the DNN. In order to realize DOA estimation based on the

spectrum estimate, only the grid nodes close to the true signal

directions are expected to have positive values in y, while all

the others have zero values.

IV. DNN-BASED DIRECTION-OF-ARRIVAL ESTIMATION

Besides the framework described in Section III, training data

set structure and training strategy are two other factors that

play important roles in the performance of the DNN-based

DOA estimator. As the autoencoder and the parallel classifiers

implement different functions and work separately during

DOA estimation, and training deep NN as a whole gets trapped

in undesirable local minima more easily [51], we propose to

train the two parts of the DNN in separate procedures.

In order to reduce the variability of the DNN input, which

is influenced significantly by uncertain signal waveforms,

we follow the guidelines of the RBF- and SVR-based methods

to compute the array covariance matrix [32], [33], [39] and

reformulate the off-diagonal upper right matrix elements as

an input vector to the DNN

r = [R1,2, R1,3, . . . , R1,M , R2,3, . . . , R2,M , . . . , RM−1,M ]T

∈ C
(M−1)M/2×1 (11)

r = [Real{rT }, Imag{rT }]T /‖r‖2 (12)

where Rm1,m2 is the (m1, m2)th element of the covariance

matrix R̂ = 1
N

∑N
n=1 x(tn)x

T (tn), and Real{•} and Imag{•}

represent the real and image parts of a complex-valued entity,

respectively. The input vector is slightly different from that

of the RBF- and SVR-based methods [32], [33], [39]. The

diagonal covariance elements are not included due to the

unknown noise variance, and the lower left elements are

abandoned because they are conjugate replicas of the upper

right ones.

A. Autoencoder Training

As the autoencoder is designed to be linear and has

additive property, its performance of spatial filtering can be

guaranteed if it performs well in the single-signal scenarios.

Therefore, we construct the training data set using the r’s

corresponding to one-signal scenarios, with the signal direction

varying from θ (0) to θ (P). A straightforward selection of the

signal directions is the equally spaced spectrum grids of the

classifier outputs, which are denoted by ϑ1, ϑ2, . . . , ϑI . I is

supposed to be dividable by P with I/P = I0 being an

integer.

If the covariance vector r(ϑi ) corresponding to the signal

from direction ϑi is inputted to the autoencoder, the output of

the pi th (pi = ⌈i/I0⌉ with ⌈α⌉ equaling the smallest integer

not smaller than α) decoder is expeced to be r(ϑi ), while

the outputs of the other P − 1 decoders expected to be 0κ×1

where κ = |r|. By concatenating the outputs of all the P

decoders, the expected output of the whole autoencoder can

be obtained as

u =
[

uT
1 , . . . , uT

P

]T

=

⎡

⎢
⎣0T

κ×1, . . . , 0T
κ×1

︸ ︷︷ ︸

p−1

, rT (ϑi ), 0T
κ×1, . . . , 0T

κ×1
︸ ︷︷ ︸

P−p

⎤

⎥
⎦

T

. (13)

When ϑi varies from θ (0) to θ (P), the pi s corresponding to

i = 1, . . . , I are 1, . . . , 1
︸ ︷︷ ︸

I0

, 2, . . . , 2
︸ ︷︷ ︸

I0

, . . . , P, . . . , P
︸ ︷︷ ︸

I0

. Denote the

autoencoder label corresponding to data r(ϑi ) by u(ϑi ), then

the data set for autoencoder training is

Ŵ(1) = [r(ϑ1), . . . , r(ϑI )] (14)

and the columnwise label set associated with the data set is

�(1) = [u(ϑ1), u(ϑ2), . . . , u(ϑI )]

=

⎡

⎢
⎢
⎢
⎣

�1 0κ×I0 0κ×I0 0κ×I0

0κ×I0 �2 0κ×I0 0κ×I0

0κ×I0 0κ×I0

. . . 0κ×I0

0κ×I0 0κ×I0 0κ×I0 �P

⎤

⎥
⎥
⎥
⎦

(15)

where superscript (•)(1) is used for variables related to the

autoencoder, and superscript (•)(2) will be used for the clas-

sifiers, and

�p = [r(ϑ(p−1)I0+1), . . . , r(ϑpI0)]. (16)

The data-label pair of (Ŵ(1),�(1)) is then used as input and

expected output to train the autoencoder. The squared l2-norm

distance between the actual output and the expected one is

used as the loss function, that is,

ǫ
(1)(ϑi ) =

1

2
‖ũ(ϑi )‖

2
2 (17)

where

ũ(ϑi ) = u(ϑi ) − û(ϑi ) (18)

and û(ϑi ) is the actual output of the autoencoder when r(ϑi )

is inputted.

The weight matrices and bias vectors are then updated based

on the backpropagated gradients of the loss function with

respect to the variables. The gradients can be computed via

straightforward mathematical derivations and are listed in the
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Fig. 2. Performance of multitask autoencoder for spatial filtering. (a) Gain
responses. (b) Phase responses. (c) Filter outputs of two signals in the same
subregion (θ1 = 5◦, θ2 = 15◦). (d) Filter outputs of two signals in different
subregions (θ1 = 10◦ , θ2 = 30◦).

following:

∂ǫ
(1)(ϑi )

∂[U2,1]i1,i2

= [ũ(ϑi )]i1 [U1,0r(ϑi ) + b1]i2 (19)

∂ǫ
(1)(ϑi )

∂[U1,0]i1,i2

= ũT (ϑi )[U2,1]:,i1 [r(ϑi )]i2 (20)

∂ǫ
(1)(ϑi )

∂[b1]l

= ũT (ϑi )[U2,1]:,l (21)

∂ǫ
(1)(ϑi )

∂[b2]l

= [ũ(ϑi )]l (22)

where [α]l represents the lth element of vector α, and [A]i1,i2

represents the (i1, i2)th element of matrix A. The variants are

then updated iteratively as

αnew = αold + µ1
∂ǫ

(1)(ϑi )

∂α
(23)

where α can be any element of matrices U1,0, U2,1 or vectors

b1, b2, µ1 is the learning rate, and αold and αnew denote

the values of the variables before and after current update,

respectively.

Fig. 2(a)–(d) show the spatial responses of six trained filters,

i.e., P = 6, in the spatial scope of [−60◦, 60◦).2 Fig. 2(a)

shows the spatial gains of the filters, that is,

g(p)
a = |rH (ϑi )up|, for p = 1, . . . , P; i = 1, . . . , I (24)

where superscript (•)H represents the conjugate trans-

pose of matrices and vectors, up is the complex-valued

variant of up by taking the first half of the vec-

tor as the real part and the second half as imaginary

part. Fig. 2(b) shows the phase responses of the filters,

2Detailed descriptions of the simulation settings are delayed to Section V.

that is,3

g
(p)
b =

|rH (ϑi )up|

‖r(ϑi )‖2‖up‖2
, for p = 1, . . . , P; i = 1, . . . , I.

(25)

The gain g
(p)
b describes how much the phase shifts between

the elements of r(ϑi ) are kept unchanged after being filtered

by the autoencoder, and g
(p)
a also combines the effect of

amplitude attenuation of different filters. It can be seen in

Fig. 2(a) and (b) that the consistency between the phase shifts

of the autoencoder input and its expected output is satisfying

within the divided subregions, and the gain attenuates fast near

the edges of the subregions. The outputs of the decoders other

than the assigned one are minor in amplitude and inconsistent

with the input in phase.

We then input vectors r corresponding to two-signal sce-

narios to the autoencoder to test the additive property of

the autoencoder. First, two signals impinge from directions

θ1 = 5◦ and θ2 = 15◦ in the same subregion [0◦, 20◦), the gain

response g
(p)
a of the six decoder outputs are shown in Fig. 2(c).

The spatial gain response of the assigned decoder looks very

like basic beamformers, while that of the other decoders are

very small. Second, we set the directions of the two signals to

be θ1 = 10◦ and θ2 = 30◦, so that they locate in two adjacent

subregions, then g
(p)
a of the six decoder outputs is shown

in Fig. 2(d). The two-signal components are well separated

by the filters, and the irrelevant filters’ outputs are negligible.

B. Parallel Classifier Training

The P parallel classifiers take the decoders’ outputs as

inputs and estimate the spatial spectrum in the corresponding

subregions separately. When compared with r, each of the

autoencoder outputs up (p = 1, . . . , P) contains signals

located only in a much smaller subregion. As spatially closer

signal components in the array outputs generally have more

similar steering vectors, ups thus have much more concen-

trated distributions than r. In the layer of parallel classifiers,

we use more than one hidden layers and add nonlinear

activations to enhance expressivity, so as to realize refined

DOA estimation. In order to retain the polarity of the inputs at

each layer of the classifiers, we use an elementwise hyperbolic

tangent function for activation, that is,

tanh(α) = [tanh(α1), tanh(α2), . . . , tanh(α−1)]
T (26)

tanh(α) =
eα − e−α

eα + e−α
(27)

where α−1 is the last element of α.

When the training of the autoencoder has been completed,

we keep its weights and biases fixed, then the input vector r

and the reconstructed spectrum y form a new end-to-end

NN framework. The weights and biases of the classification

NNs should be trained to detect and estimate directions of

coexisting signals in different subregions. To achieve this goal,

we recollect another training data set with two simultaneous

signals.3

3This data set can also be established by adding two r(θ)s in the training
data set of the multitask autoencoder.
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We choose several intersignal angles � = {
 j }
J
j=1 and

form input vectors r(θ,
 j ) corresponding to two incident

signals from directions θ and θ + 
 j , where θ (0) ≤ θ <

θ (P) − 
 j and j = 1, . . . , J . The expected classifier output

corresponding to input r(θ,
 j ) is y(θ,
 j ) with

[y(θ,
 j )]l =

⎧

⎪
⎪⎪
⎪
⎨

⎪
⎪
⎪⎪
⎩

θ − ϑl−1

ϑl − ϑl−1
, ϑl−1 ≤ θ < ϑl , θ ∈ {θ, θ + 
 j }

ϑl+1 − θ

ϑl+1 − ϑl

, ϑl ≤ θ < ϑl+1, θ ∈ {θ, θ + 
 j }

0, otherwise.

(28)

That is, the reconstructed spectrum is expected to have nonzero

positive values only on the grids adjacent to the true signal

directions, and the direction of each signal can be estimated

precisely via linear amplitude interpolation between the two

adjacent grids.

The training data set of the classifiers can be written as

Ŵ(2) =
[

Ŵ
(2)
1 , . . . , Ŵ

(2)
J

]

(29)

where

Ŵ
(2)
j = [r(ϑ1,
 j ), . . . , r(ϑI − 
 j ,
 j )] (30)

and the associated label set is

�(2) =
[

�
(2)
1 , . . . , �

(2)
J

]

(31)

where

�
(2)
j = [y(ϑ1,
 j ), . . . , y(ϑI − 
 j ,
 j )]. (32)

During the training process, the reconstruction error of

the spatial spectrum is backpropagated to update the NN

parameters of the parallel classifiers. Denote the expected and

actual classifier outputs corresponding to r(θ,
) by y(θ,
)

and ŷ(θ,
), respectively, and also denote the reconstruction

error by

ỹ(θ,
) = ŷ(θ,
) − y(θ,
). (33)

The loss function for the classifiers is taken as the squared

l2-norm of the spectrum reconstruction error, that is,

ǫ
(2)(θ,
) =

1

2
‖ỹ(θ,
)‖2

2. (34)

The gradients of the loss function with respect to the classi-

fier variants can be derived via straightforward mathematical

analyses. We skip details of the derivations here and refer

readers interested in them to previous studies such as [43].

Most deep learning platforms, such as TensorFlow [52], also

provide callable instructions for computing the gradients auto-

matically.

The elements of the weight matrices and bias vectors are

then updated using their gradients as follows:

αnew = αold + µ2
∂ǫ

(2)(θ,
)

∂α
(35)

where µ2 is the learning rate.

After training the classifiers with the settings detailed

in Section V, we reinput the array covariance vectors

Fig. 3. Reconstructed spatial spectrum of two signals. (a) θ1 = 5◦ and
θ2 = 15◦. (b) θ1 = 10◦ and θ2 = 30◦.

r(θ = 5◦,
 = 10◦) and r(θ = 10◦,
 = 20◦) associated with

Fig. 2(c) and (d) to the whole DNN and get the reconstructed

spectra shown in Fig. 3(a) and (b). The two signals in both

scenarios are well separated, no matter they impinge from

the same or different spatial subregions. There are only slight

perturbations on the spectrum grids without incident signals.

The directions of the signals can finally be estimated based

on the estimated spectrum via linear interpolation within the

spectrum peaks.

C. Adaptation to Array Imperfections

As has been discussed in Section II, data-driven DOA

estimation methods are expected to have built-in adapta-

tions to typical array imperfections, such as gain and phase

inconsistence [27], [28], sensor position error [25], [26], and

mutual coupling [22]–[24]. We validate such property of the

proposed method in this section.

Suppose that the responding function of the array is per-

turbed by a particular kind of or combined imperfections

with parameters e, and the mapping from signal directions to

covariance vectors is θ
e

�−→ re(θ). The DNN is assumed to have

no prior information about the imperfections and the perturbed

array responding function. When the perturbed vector re(ϑi )

with ⌈i/I0⌉ = p is inputted to the autoencoder, the associated

label vector is

u =
[

uT
1 , . . . , uT

P

]T

=

⎡

⎢
⎣0T

κ×1, . . . , 0T
κ×1

︸ ︷︷ ︸

p−1

, rT
e (ϑi ), 0T

κ×1, . . . , 0T
κ×1

︸ ︷︷ ︸

P−p

⎤

⎥
⎦

T

. (36)

That is to say, the vector is filtered into the pth filter even in

the presence of array imperfections.

Afterward, the decoder outputs are inputted to the clas-

sifiers. As the component corresponding to the signal from

direction ϑi is embedded in the output of the pth decoder,

it will be processed by the pth classifier. The associated

spectrum label contains a spectrum peak on the one or two

grids closest to ϑi , which can be interpolated to obtain a

DOA estimate of ϑi exactly. Therefore, the whole DNN (the

autoencoder together with the parallel classifiers) actually

forms an inverse mapping of re(θ)
e

�−→ θ , no matter which

kinds of imperfections are present and how they perturbs

the array responding function. The derived inverse mapping

from DNN inputs to signal directions with the effect of array
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imperfections embedded in it also adapts to test data and is

expected to obtain correct DOA estimates in spite of array

imperfections.

V. SIMULATIONS AND ANALYSES

This section carries out simulations to show the predomi-

nance of the proposed method over state-of-the-art machine

learning-based DOA estimation method [32], [33] in gener-

alization, and also its predominance over the most com-

mon parametric method [6] in imperfection adaptation. The

simulations are implemented on TensorFlow [52], and the

gradients are computed using its embedded tools directly. The

more recently proposed methods [46]–[50] are not chosen as

baselines, because some of them work only in single-source

scenarios [47], [48], and the others take time-frequency repre-

sentations of incident signals as inputs [46], [49], [50]. They

do not adapt to the considered multisource scenarios with

only a few hundreds of snapshots in the simulations. Autocal-

ibration techniques [22]–[28] are not introduced in parametric

methods, as no prior information (neither formulation nor

value) about array imperfections is assumed to be known

beforehand. Such settings help to show the robustness of

different methods to uncalibrated arrays and make fairer per-

formance comparisons. Also, this simulation setting prevents

usages of calibration techniques designed for certain kinds of

imperfections with preassumed formulations [22]–[28].

A. Simulation Settings

In the following simulations, we use a 10-element uniform

linear array (ULA) to estimate directions of signals impinging

from the spatial scope of [−60◦, 60◦), i.e., M = 10, θ (0) =

−60◦, and θ (P) = 60◦. The interelement spacing of the ULA is

half-wavelength, and the potential space is divided into P = 6

subregions with equal spatial scopes. The spatial spectrum is

constructed with a grid of 1◦, thus there are I = 120 grids

in total with ϑ1 = −60◦, ϑ2 = −59◦, . . . , ϑI = 59◦, and

each spatial subregion has I0 = 20 grids. The covariance

vectors r in the training data sets of both the autoencoder

and the classifiers, and also, the vectors in the test data sets

are obtained from N = 400 snapshots.

For the training of the autoencoder, the [−60◦, 60◦) space

is also sampled with an interval of 1◦ to obtain a direction

set with ϑ1 = −60◦, ϑ2 = −59◦, . . . , ϑI = 59◦ and compute

the covariance vectors and associated labels according to (14)

and (15). At each of the directional grids, only one group

of snapshots is collected to compute one covariance vector.

The SNR of the snapshots is 10 dB. The minibatch training

strategy [53] is followed with a batch size of 32 and learning

rate of µ1 = 0.001, and 1000 epochs are taken for the training

with the data set shuffled in each epoch. The size of the input

layer is κ = M(M − 1)/2 = 45, and that of the hidden and

output layers are ⌊45/2⌋ = 22 and κ I = 45 × 6, respectively.

The autoencoder parameters are fixed after the training

process, and another data set is collected in the two-signal

scenarios to train the classifiers. The intersignal angle 


is sampled from the set of {2◦, 4◦, . . . , 40◦}, which covers

scenarios from very close signals to signals separated by twice

the width of a subregion. Then, the direction of the first signal

(denoted by θ ) is sampled with an interval of 1◦ from −60◦ to

60◦ − 
, and the direction of the second signal is θ + 
. The

SNR of both signals is 10 dB, and 10 groups of snapshots are

collected for each direction setting with random noise. Finally,

(118 + 116 + · · · + 80) × 10 = 19800 covariance vectors are

collected in the data set. The vectors are used for training with

the minibatch size of 32 and learning rate of µ2 = 0.001,

and the order of the vectors is shuffled during each of the

300 training epochs. The number of the hidden layers is chosen

to be L2 − 1 = 2 as a tradeoff between the expressivity

power (improves with deeper networks [41]) and undertraining

risk (aggravates with more network parameters [51]) of the

classifiers, and the sizes of the hidden and output layers in

each classifier are ⌊2/3 × κ⌋ = 30, ⌊4/9 × κ⌋ = 20 and

I0 = 20, respectively. All the weights and biases of the DNN

are randomly initialized according to a uniform distribution

between −0.1 and 0.1.

Three typical kinds of array imperfections are considered

in the simulations, including gain and phase inconsistence,

sensor position error, and intersensor mutual coupling. The

imperfections may be very complicated to be modeled with

concise mathematical models, so we use simplified models to

facilitate simulations in this paper. The gain biases of the array

sensors are

egain = ρ × [0, 0.2, . . . , 0.2
︸ ︷︷ ︸

5

,−0.2, . . . ,−0.2
︸ ︷︷ ︸

4

]T (37)

where the parameter ρ ∈ [0, 1] is introduced to control the

strength of the imperfections.The phase biases are

ephase = ρ × [0,−30◦, . . . ,−30◦

︸ ︷︷ ︸

5

, 30◦, . . . , 30◦

︸ ︷︷ ︸

4

]T . (38)

The position biases are

epos = ρ × [0,−0.2, . . . ,−0.2
︸ ︷︷ ︸

5

, 0.2, . . . , 0.2
︸ ︷︷ ︸

4

]T × d (39)

where d is the intersensor spacing of the ULA. The mutual

coupling coefficient vector is

emc = ρ × [0, γ 1, . . . , γ M−1]T (40)

where γ = 0.3e j60◦
is the mutual coupling coefficient between

adjacent sensors.

By specializing ρ, the array imperfections will be deter-

mined, and the perturbed array responding function is rewritten

as follows:

a(θ, e) = (IM + δmcEmc) × (IM + Diag(δgainegain))

× Diag(exp( jδphaseephase)) × a(θ, δposepos) (41)

where δ(•) is used to indicate whether a certain kind of

imperfection exists, IM is the M × M unitary matrix, Diag(•)

forms diagonal matrices with the given vector on the diagonal,

Emc is a toeplitz matrix with parameter vector emc [22], and

a(θ, δposepos) is the actual array responding vector correspond-

ing to the signal from direction θ when position error epos is

embedded in the array geometry.

The array responding function given in (41) has been

largely simplified when compared with its counterpart in



LIU et al.: DOA ESTIMATION BASED ON DNNS WITH ROBUSTNESS TO ARRAY IMPERFECTIONS 7323

practical applications, which can be measured more pre-

cisely with computational electromagnetic methods, such

as [54]–[56]. The array imperfection formulations in (37)–(40)

can also be modeled more precisely following previous stud-

ies, such as [57]–[60] for mutual coupling. However, we use

the simplified formulations mainly to facilitate simulation,

and we believe that these simplifications are reasonable

for performance comparison. That is because the proposed

machine-learning method does not make use of any prior

information about the array imperfections and steering vectors.

The proposed end-to-end training and testing strategies can

be generalized straightforwardly to other array geometries

and imperfections, no matter how the antennas are fed and

how much the array steering vector has been biased by

imperfections.

In Figs. 4–7, we use dashed lines to represent true values

of signal directions, and dots with triangular or circle markers

to represent their estimates and (statistical) estimation errors.

B. Generalization to Untrained Scenarios

In this section, we compare the proposed method with

the state-of-the-art machine learning-based DOA estima-

tion method, i.e., the SVR-based DOA estimator [32], [33],

to show how they generalize to scenarios not included in the

training data set. No array imperfection is considered in the

simulations.

First, two signals with an angular distance of 9.4◦ and

SNR = 10 dB are assumed to impinge onto the array

simultaneous, and the direction of the first signal varies

from −60◦ to 50◦. This angular distance is not contained

in the training set �, and the direction of the second signal

deviates from the preseted training directions and the output

spectrum grids. The final DOA estimates are obtained via

amplitude interpolation within the two most significant peaks

of the reconstructed spectra. The estimated directions and the

estimation errors of the two signals when the first signal

direction increases from −60◦ with a step of 1◦ to 50◦ are

shown in Fig. 4(a) and (b), respectively. The DOA estimates

well match their true values and most of the estimation errors

are smaller than 0.5◦. In Fig. 4(c) and (d), we plot the

results of the SVR-based DOA estimation results in the same

scenarios. In Fig. 4(c), the SVRs are trained with the same

training data set as the DNN classifiers, except that the array

outputs for training are noise-free, while the testing data

are noise contaminated with SNR = 10 dB. In Fig. 4(d),

the training data of the SVRs are also polluted by noise with

SNR = 10 dB, the same as the proposed method without

exceptions. The SVRs also perform well when the training data

are noise-free, but their performance aggravates significantly

when there are perturbations in the training data. As it is very

difficult or even impossible to collect noise-free training data,

the proposed method is believed to behave better than the

SVR-based method in practice.

Second, two signals with different SNRs impinge onto

the array simultaneously, with the SNR of the first signal

being 10 dB and that of the second one being 13 dB. The

angular distance between them is 16.4◦ and the direction of

Fig. 4. DOA estimation performance of off-grid signals. (a) DNN-based
DOA estimates. (b) DNN-based DOA estimation errors. (c) SVR-based DOA
estimates with noise-free training data. (d) SVR-based DOA estimates with
training data of SNR = 10 dB.

the first signal varies from −60◦ to 43◦. In order to improve

the ability of the proposed method in adaptation to power

divergences between multiple signals, we enlarge the training

data set of the classifiers introduced in Sections III-C and IV-

B. Intersignal SNR divergences of ±6, ±3, and 0 dB are

considered in addition to original training data set settings,

and the network training process keeps unchanged. The DOA

estimation results and errors of the proposed DNN-based

method are shown in Fig. 5(a) and (b), and the performances of

the existing SVR-based method are shown in Fig. 5(c) and (d).

In order to obtain valid DOA estimates, the SVRs are trained

with noise-free data set, while the DNN is trained with array

outputs of SNR = 10 dB. The DNN-based method still

performs satisfyingly in DOA estimation precision in spite of

intersignal SNR divergences. On the contrary, as the different

signal SNR introduced diversities to the distributions of the

training and testing data, the SVR-based method only obtained

biased DOA estimates. The DOA estimation biases of the first

signal, which has lower SNR, are as large as 4◦∼5◦ in most

of the cases.

We then keep the SNR of the two signals fixed at 10 dB

and enlarge their angular distance to 60◦, which deviates

from 
s in the training set largely. When the first signal

direction varies from −60◦ to −1◦, the DOA estimates of the

DNN-based method and the SVR-based method are shown

in Fig. 6. The proposed DNN-based method again shows

much better adaptation to such a previously unseen scenario

during training, and the SVR-method fails to obtain valid DOA

estimates for the signals.

Finally, we show how the proposed method behaves when

the testing data contain different number of signals as the

training data. The DNN and SVR have been trained with

array outputs in two-signal scenarios, and the SVR-method

forms two regression machines for processing test data and
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Fig. 5. DOA estimation performance of two unequally powered signals
with SNR of 10 and 13 dB. (a) DNN-based DOA estimates. (b) DNN-based
DOA estimation errors. (c) SVR-based DOA estimates. (d) SVR-based DOA
estimation errors.

Fig. 6. DOA estimation results of two signals separated by 60◦, much
larger than the separations in the training data set. (a) DNN-based method.
(b) SVR-based method.

outputs two DOA estimates for each given data [32], [33].

If the input covariance vector contains more or fewer sig-

nal components, the SVR outputs make no sense. However,

the proposed DNN-based method still performs satisfyingly

in the one-signal and three-signal scenarios, as are shown

in Fig. 7. The SNR of the signals are all 10 dB, and the

angular distances between adjacent signals in the three-signal

scenarios are both 14◦. There is also a similar phenomenon

in Fig. 7(b) as that in Fig. 5(b), i.e., when some of the

incident signals are located at the edge of the filter subregions,

the corresponding DOA estimates aggravate in precision or

even disappear in the estimated spectrum. The strategy of

spatially overlapping filters is again suggested to improve the

behavior of the proposed method in such scenarios.

C. Array Imperfection Adaptation

In this section, we carry out simulations to demonstrate

the adaptation of the proposed DNN-based method to

various kinds of array imperfections and compare it with

the most widely studied parametric DOA estimation method

MUltiple SIgnal Classification (MUSIC) [6]. There are many

state-of-the-art parametric methods with improved DOA

Fig. 7. DOA estimation results in one-signal and three-signal scenarios with
DNN trained with two-signal data set. (a) One-signal case. (b) Three-signal
case with adjacent angular distances of 14◦ and 14◦.

estimation precision when compared with MUSIC, such as

the sparsity-inducing ones [9]–[13]. However, in the presence

of significant array imperfections, the differences in DOA

estimation precision between different parametric methods are

much minor. Among the existing parametric methods, we have

chosen MUSIC as it is a widely accepted baseline method.

The SVR method is also excluded here because it lacks

robustness to noisy training data sets, and SVR models trained

with noise-free data sets will make the comparisons unfair.

Two signals with SNR = 10 dB are assumed to impinge

onto the array from directions of 31.5◦ and 41.5◦, both off the

training and output spectrum grids. The adjusting parameter ρ

in (37)–(40) varies from 0 to 1. When ρ = 0, no imperfection

is contained in the array responding functions. Four cases

with different array imperfections are considered by setting the

δ(•)’s to different values in (41) . We first set δgain = δphase = 1

and δpos = δmc = 0, i.e., only gain and phase imperfections

are added to the array. The root-mean-square errors (RMSEs)

of the two-signal direction estimates in 100 simulations when

ρ varies from 0 to 1, are shown in Fig. 8(a). Then, we set

δgain = δphase = δmc = 0 and δpos = 1 to consider the sensor

position error only, and the DOA estimation RMSEs are shown

in Fig. 8(b). Afterward, we set δgain = δphase = δpos = 0 and

δmc = 1 to retain the mutual coupling effect only, and the

corresponding DOA estimation RMSEs are shown in Fig. 8(c).

Finally, we set δgain = δphase = δpos = δmc = 1 to consider

a combination of all the three kinds of array imperfections at

the same time and obtain the DOA estimation RMSEs shown

in Fig. 8(d).

We have also carried out similar simulations on uniform

circular arrays with mutual coupling. In the results, the pro-

posed method again surpasses MUSIC largely in adaptation

to array imperfections. We do not include the results here to

avoid redundancy.

When ρ = 0, the array responding function is ideal and

consistent with its counterpart preassumed in the parametric

methods, thus MUSIC obtains DOA estimates with very high

precisions. However, as the array imperfections become more

and more significant, its DOA estimation error increases

almost linearly. They have to be modified with various cal-

ibration methods to seek for precision improvements. On the

contrary, the proposed DNN-based method performs slightly

worse than MUSIC when no imperfections are present. How-

ever, as it does not rely on any preassumed information about

the array geometry or array responding function, it is very
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Fig. 8. DOA estimation RMSE of MUSIC and the proposed method for two
signals from directions of 31.5◦ and 41.5◦ in the presence of different array
imperfections. (a) Gain and phase inconsistence. (b) Sensor position error. (c)
Mutual coupling. (d) Combined imperfection.

robust to different and even combined array imperfections,

and its DOA estimation precision seldom changes with the

amplitudes of the imperfections. When ρ is as small as

0.1∼0.3, the DNN-based method performs comparably as

MUSIC, and when ρ becomes larger and the array responding

function deviates farther away from its ideal counterpart, the

DNN-based method performs much better than MUSIC.

In order to demonstrate the contribution of the multitask

autoencoder in DOA estimation, we select different decoder

numbers to show how the DOA estimation precision changes

with the spatial filter (also the decoder) number. Three filter

numbers of 3, 6, and 10 are selected, and the corresponding

DNNs are trained and tested in scenarios of different kinds of

array imperfections and different ρs. Parameters of the training

and testing data sets and processes are set the same as that in

the simulations corresponding to Fig. 8. The DOA estimation

RMSE is shown in Fig. 9. The results show that when the

filter number is as small as 3, each of the filter covers a wide

spatial subregion and the filter outputs are still much divergent

in distribution. Thus, the trained DNN does not work well

in some of the testing scenarios, and the DOA estimation

RMSEs have very large variances. When the filter number

increases to 6, the DOA estimation RMSE becomes very small

and keeps stable in different scenarios. Afterward, when we

further increase the filter number to 10, the RMSE does not

decrease largely any more. It can be concluded from this

group of simulation results that decoder numbers smaller than

a certain threshold lead to worse DOA estimation performance

in the proposed DNN framework, while decoder numbers

larger than the threshold do not lead to significant performance

improvements. Therefore, we have set the decoder number to

be 6 in previous simulations empirically. Another special value

of the decoder number is 1, which is equivalent to removing

the autoencoder in the proposed DNN framework in Fig. 1.

In this case, a single classifier will be trained for DOA

Fig. 9. DOA estimation RMSE of the proposed method with different spatial
filters in the presence of array imperfections. (a) Gain and phase inconsistence.
(b) Sensor position error. (c) Mutual coupling. (d) Combined imperfection.

estimation directly. The results in Fig. 9 indicate that the DOA

estimation performance of the single classifier will be much

worse than that of a DNN with a three-task autoencoder. That

is why we have introduced a multitask autoencoder in the DNN

framework to spatially filter the inputs to concentrate their

distributions, so as to reduce the burden in the generalization

of the subsequent DOA estimation classifiers.

VI. CONCLUSION

This paper proposes a DNN framework to deal with the

problem of DOA estimation, so as to make up for the

drawbacks of previous parametric and data-driven methods

in terms of array imperfection adaptation and generalization.

The proposed DNN-based framework consists of a multitask

autoencoder and a series of parallel multilayer classifiers. The

two parts are trained separately with different data sets, and the

data set for training the refined classifiers is generated only in

two-signal scenarios. In spite of the simplicity of the training

data set, the proposed method is demonstrated via simulations

to own much-enhanced generalizations when compared with

the SVR-based method in the machine learning community.

It adapts well to noisy training data, off-grid signals, unequally

powered signals, much large angular distances, and even

different numbers of signals as that in the training data set.

The proposed method has also been shown to adapt well to

various kinds of array imperfections. It obtains DOA estimates

with much higher precisions than the most widely studied

parametric method of MUSIC when the imperfections are

significant.

The proposed method also has an obvious drawback when

compared with existing parametric counterparts, such as

MUSIC. It requires a large amount of labeled data to train

the DNN framework for DOA estimation, which may be very

demanding in practical applications when it is difficult to

collect such data. Therefore, a potential future work of our
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research is reducing the size of the training data set or using

other substitutional training processes, e.g., training the DNN

with simulation data first and then adjust it for practical usage

via transfer learning with a small amount of practical data

collected with arrays.
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