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Direction of Arrival Estimation for Reverberant

Speech Based on Enhanced Decomposition

of the Direct Sound
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Abstract—Direction of arrival (DOA) estimation for speech
sources is an important task in audio signal processing. This
task becomes a challenge in reverberant environments, which are
typical to real scenarios. Several methods of DOA estimation for
speech sources have been developed recently, in an attempt to
overcome the effect of reverberation. One effective approach aims
to identify time-frequency bins in the short time Fourier transform
domain that are dominated by the direct sound. This approach
was shown to be particularly adequate for spherical arrays, with
processing in the spherical harmonics domain. The direct-path
dominance (DPD) test, and a method which is based on the direc-
tivity of the sound field are recent examples. While these methods
seem to perform well, high reverberation conditions may degrade
their performance. In this paper, the structure of the spatial
correlation matrix is comprehensively studied, showing that under
some well-defined conditions, the DOA of the direct sound can
be correctly extracted from its dominant eigenvector, even when
contaminated by reflections. This new insight leads to the develop-
ment of a new test, performing an enhanced decomposition of the
direct sound (EDS), denoted the DPD-EDS test. The proposed test
is compared to previous DPD tests, and to other recently proposed
reverberation-robust methods, using computer simulations and
an experimental study, demonstrating its potential advantage. The
studies include multiple speakers in highly reverberant environ-
ments, therefore representing challenging real-life acoustics scenes.

Index Terms—Direction of arrival estimation, reverberation,
spherical arrays, plane wave decomposition.

I. INTRODUCTION

D
IRECTION-OF-ARRIVAL (DOA) estimation is an im-

portant task in the field of audio signal processing, em-

ployed extensively in applications such as signal enhancement,

video conferencing, and robot audition. Some common DOA es-

timation algorithms include beamforming [1], subspace meth-

ods such as Multiple Signal Classification (MUSIC) [2], and

time-delay estimation based methods [3].

DOA estimation becomes more challenging in reverberant en-

vironments, where room reflections mask the direct sound. This

may degrade the performance of the aforementioned DOA esti-

mation methods in practical, real-life acoustic scenes. Therefore,
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new methods for DOA estimation have been recently developed

to overcome the effect of reverberation.

One approach to overcome reverberation has been proposed

in the context of time-delay estimation. In this work, linear re-

gression of the time delay estimates has been computed, with

a cost function that is robust to outliers due to reverberation

[4]. However, this method was only designed and studied for

relatively low levels of reverberation. In [4], and later in [5], [6]

a moderate reverberation time of 0.4 s was employed. Further-

more, time-delay estimation methods assume that the micro-

phones are positioned in free space, therefore preventing their

use in arrays mounted around rigid bodies, for example.

A different set of methods that overcome reverberation while

facilitating a flexible array configuration, are based on relative

transfer function estimation [7]–[9]. The direct-path compo-

nent of the relative transfer-functions (DP-RTF) is typically es-

timated from the measured data. Therefore, the performance of

these methods strongly depends on the accuracy of the DP-RTF

estimation [7]. Moreover, acoustic parameters of the environ-

ment, such as reverberation time, direct-to-reverberation ratio

(DRR) and noise characteristics, should be available for a reli-

able estimation of the DP-RTF. In practice, however, these may

not be available or may be challenging to estimate.

Methods that do not require acoustic information related to the

environment, and do not rely on estimation of transfer functions,

include [10], and [11]. The former is designed for acoustic vector

sensors, which are not commonly used in practice, and which

may suffer from excessive noise at the low frequency range of

the speech signal.

The latter method [11] is designed for spherical arrays of

commonly-used pressure microphones, and is based on pro-

cessing in the spherical harmonics (SH) domain. This domain

supports a signal model with a frequency-independent array

manifold, such that frequency smoothing can be directly ap-

plied to decorrelate coherent sources and reduce the effect of

room reflections [12], [13]. The latter leads to the formulation of

the direct-path dominance (DPD) test, designed to select time-

frequency (TF) bins in the short time Fourier transform (STFT)

domain that are dominated by a single source, typically repre-

senting the direct sound. Only these selected bins are then used

for DOA estimation, providing accurate estimates even under

reverberation.

Several extensions have been developed for this method,

including Gaussian mixture modeling (GMM) to eliminate
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outliers in the DOA estimation [14], and improve the robust-

ness to challenging acoustic environments [15]. The computa-

tional cost of these methods is relatively high, since they require

eigendecomposition of the spatial spectrum matrix at each TF

bin. Hence, an alternative method has been proposed which is

based on a sound field directivity measure that does not require

eigendecomposition [16], and in this work will be referred to as

DPD-DIR. While these methods have been shown to perform

well, under high reverberation or highly challenging acoustic

conditions, a large proportion of TF bins that pass these tests,

may hold incorrect DOA information. Although these wrong

DOAs may be eliminated to some extent by identifying them as

outliers using GMM clustering [14], in some applications, the

remaining percentage of bins that hold correct DOA information

may not be sufficient for a reliable estimate of the source DOA,

e.g. when only a very short signal is available or when tracking

a moving speaker [17], [18].

This work aims to overcome the limitations of previous meth-

ods, offering several contributions.

1) An improved DPD test is developed, following a theoret-

ical analysis showing that under some well-defined con-

ditions, the information on the direct-path is accurately

maintained by the significant eigenvector of the spatial

correlation matrix, even when contaminated by room re-

flections. This leads to the development of a new test based

on enhanced decomposition of the direct sound (EDS for

short), and in this paper it is referred to as the DPD-EDS

test.

2) Computer simulations showing that the DPD-EDS test

is significantly more accurate in selecting TF bins that

contain correct DOA information, compared to previous

methods: the DPD test, the DPD-DIR test, the coherence

test [19], and a DRR based test [20]. The study specifically

shows that compared to previous tests, the new test can

extract more TF bins, and with a greater accuracy, from

the same data.

3) Experimental study with multiple speakers using data

taken from the recent challenge on acoustic source lo-

calization and tracking (LOCATA) [21] validates the con-

clusions from the computer simulation study.

While the work describing the DPD-EDS test has been ac-

cepted for publication in a conference paper [22], this new paper

presents a more comprehensive and extensive theoretical devel-

opment of the new test, a more extensive simulation study and

an experimental study with multiple speakers, that include a

comparison to previous work.

II. SYSTEM MODEL

This section presents the spherical microphone array based

system model, that will be utilized throughout this work.

The standard spherical coordinate system is used, denoted by

(r, θ, φ), where r is the distance from the origin, θ is the an-

gle measured downwards from the positive z axis to the xy

plane, and φ is the angle measured between the positive x

axis towards the positive y axis. Consider an array comprised

of Q omni-directional microphones, arranged in an arbitrary

configuration, with {rq ≡ (rq , θq , φq )}
Q
q=1 denoting the micro-

phones positions. Consider also a sound field which is com-

prised of L far field sources at wavenumber k, and with DOAs

of {Ψl ≡ (θl , φl)}
L
l=1 , such that the sound pressure measured by

the microphone array is described by the following narrowband

model [23]:

p(k) = V(k,Ψ)s(k) + n(k), (1)

where Q × 1 vector p(k) = [p(k, r1), p(k, r2), . . . , p(k, rQ )]T

holds the noisy sound pressure measured by the microphones,

the L × 1 source signal amplitudes vector is given by s(k) =
[s1(k), s2(k), . . . , sL (k)]T , V(k,Ψ) is a Q × L steering ma-

trix describing the propagation between each source and micro-

phone [23], the Q × 1 noise vector is given by n(k) = [n1(k),
n2(k), . . . , nQ (k)]T , and (·)T denotes the transpose operator.

The L sources can represent, in the context of this work, the di-

rect sound from speakers in a room, and reflections from room

boundaries.

The general model presented in (1), can also be used for an

array which is of a spherical geometry, such that rq = r for all

q = 1, . . . , Q. This spherical array can facilitate the processing

of signals in the SH domain [24]–[26]. Next, plane wave decom-

position can be performed, and assuming that the sound field is

comprised of far field sources (e.g., distant speakers) leads to

the following [27]:

anm (k) = YH (Ψ)s(k) + ñ(k), (2)

where the (N + 1)2 × 1 vector anm (k) = [a00(k), a1(−1)(k),
a10(k), . . . , aN N (k)]T holds the noisy plane wave density

(PWD) coefficients in the SH domain, the steering ma-

trix in this domain is denoted by the (N + 1)2 × L ma-

trix YH (Ψ) = [y∗(Ψ1),y
∗(Ψ2), . . . ,y

∗(ΨL ) ] , with columns

y(Ψl) = [Y 0
0 (Ψl), Y

−1
1 (Ψl), . . . , Y

N
N (Ψl)]

T , where Y m
n (·) are

the SH functions of order n and degree m, with N denoting

the maximal SH order, usually set to N = ⌈kr⌉ and satisfying

(N + 1)2 ≤ Q [26], [28]. ñ(k) is an (N + 1)2 × 1 vector hold-

ing the measurement noise components in the SH domain, (·)∗

and (·)H are the complex conjugate and the Hermitian operators,

respectively.

Next, the PWD measurements in (2) are transformed to the

STFT domain, where the W-disjoint orthogonality [29] can be

utilized:

anm (τ, ω) = YH (Ψ)s(τ, ω) + ñ(τ, ω), (3)

where τ is the time index and ω is the frequency index.

The local TF correlation matrices can now be computed for

every (τ, ω) by averaging the PWD measurements over Jτ time

frames and Jω frequency bins:

R̃a(τ, ω) =
1

Jτ Jω

Jω −1
∑

jω =0

Jτ −1
∑

jτ =0

anm (τ − jτ , ω − jω )

× anm
H (τ − jτ , ω − jω ). (4)

Note that since the steering vectors are frequency-independent

in this domain, frequency smoothing can be performed directly

as in (4) [13], without the need for focusing matrices. This
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frequency smoothing process is necessary to de-correlate co-

herent signals which are present in a multi-path environment

[12], therefore clearly separating the contributions of the direct

sound and room reflections within the spatial spectrum matrix.

III. OVERVIEW OF PREVIOUS DOA ESTIMATION METHODS

In this section, several previous DOA estimation methods are

presented that have been developed for speakers in reverberant

environments. These methods aim to identify TF bins that are

dominated by the direct sound, such that correct DOA estimation

can be performed with these bins even under reverberation.

Specifically, the coherence test [19], the DPD test [11], the DPD-

DIR test [16] and a method based on the DRR measure [20],

[30], are presented here. These are compared to the proposed

method in the simulation study and the experimental study, in

Sections VI and VII, respectively.

A. The Coherence Test

The coherence test described in [19], aims to identify TF bins

with contribution from only a single source. In the development

of this test, the environment is assumed to be anechoic, but

with multiple uncorrelated sources. This test does not require a

specific array geometry, and was developed for a space domain

system model, as in (1). The model is then transformed to the

STFT domain, from which the local spatial correlation matrices

are computed by averaging over Jt time frames:

R̃p(τ, ω) =
1

Jt

J t −1
∑

j=0

p(τ−j, ω)pH (τ−j, ω). (5)

The coherence test, suggested in [19], searches for TF bins with

R̃p(τ, ω) of a unit rank, representing the contribution from a

single source, as follows:

Acoh =
{

(τ, ω) : rank1(R̃p(τ, ω)) > T Hcoh

}

, (6)

where Acoh is the set of bins that pass the test, and rank1(·)
is one if the matrix has a unit rank, such that the threshold

T Hcoh should be set relatively close to 1. A measure based

on the computationally efficient pair-wise magnitude-squared

coherences (MSC) was proposed in [19], [31], but in this work,

a measure based on the eigenvalues ratio as in (8) has been

adopted.

DOA estimation is now performed using MUSIC with a signal

subspace of a single dimension, representing a single source:

Ωcoh =

{

Ω : arg max
Ω

1

||UH
n (τ, ω)v(Ω)||2

,∀(τ, ω) ∈ Acoh

}

,

(7)

where Un (τ, ω) is the noise subspace of size Q × (Q − 1) [2],

and v(Ω) is a Q × 1 steering vector corresponding to arrival

direction Ω. In the case of a single source, the final DOA estimate

can be computed as the mean of Ωcoh. Alternatively, clustering

the DOAs in Ωcoh can be applied to eliminate outliers, or, in the

case of multiple speakers, to estimate the DOA of each speaker

[11], [32]. Because room reflections are coherent with the direct

sound, bins that contain direct sound and reflections may still

have a rank close to one, potentially degrading the performance

of the coherence test, leading to errors under reverberation [11].

B. The DPD Test

Similar to the coherence test, the DPD test also measures the

rank of the local TF correlation matrix to determine if a TF bin

is dominated by a single source. Unlike the coherence test, the

correlation matrix, R̃a(τ, ω), as in (4), is computed by apply-

ing frequency smoothing to de-correlate coherent sources (i.e.,

direct sound and reflections), therefore reducing the harmful ef-

fect of room reflections on the test [11]. Now, a unit-rank test

is applied by computing the ratio of the two largest eigenval-

ues, σ1(τ, ω) and σ2(τ, ω) of matrix R̃a(τ, ω). This leads to the

definition of the DPD test [11]:

ADPD =

{

(τ, ω) :
σ1(τ, ω)

σ2(τ, ω)
> T HDPD

}

, (8)

where ADPD is the set of TF bins that pass the test, and T HDPD

is a threshold chosen to be sufficiently larger than 1.

Finally, MUSIC is applied to compute the DOAs:

ΩDPD =

{

Ω : arg max
Ω

1

||ŨH
n (τ, ω)y∗(Ω)||2

,∀(τ, ω) ∈ ADPD

}

,

(9)

where Ũn (τ, ω) is the noise subspace of R̃a(τ, ω) [2]. A single

DOA estimate can be computed as in Subsection III-A, by the

mean of ΩDPD or by performing a further step of clustering, such

as GMM [14].

C. The DPD-DIR Test

The DPD-DIR test also aims to identify bins dominated by

the direct sound, but unlike the DPD test, it is applied directly

on the PWD measurements in (3). The test uses the following

directivity measure of the sound field [16]:

DIR(τ, ω) =
maxΩ |y(Ω)T anm (τ, ω)|2

anm (τ, ω)H anm (τ, ω)
. (10)

The maximum directivity is (N + 1)2 [16], achieved when the

sound field is composed of a single plane wave. Hence, the

DPD-DIR test is defined as [16]:

ADIR =
{

(τ, ω) : DIR(τ, ω) > T HDIR

}

, (11)

where T HDIR ∈ [1, (N + 1)2 ], but typically set to a value close

to (N + 1)2 , such that the set ADIR is comprised of TF bins

dominated by a single plane wave. Note that no decomposition

of matrix R̃a(τ, ω) is necessary; the computation complexity

of this test is therefore significantly lower than that of the DPD

test.

The DOA estimation for each bin is given by the argument Ω
that maximizes |y(Ω)T anm (τ, ω)|2 , already computed in (10),

ΩDIR =

{

Ω : arg max
Ω

|y(Ω)T anm (τ, ω)|2 ,∀(τ, ω) ∈ ADIR

}

.

(12)
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Similarly to the coherence and DPD tests, a single DOA estimate

can be computed as the mean of ΩDIR or by performing a further

step of clustering, as described in [16].

D. A DRR Based Test

Another test that can be used to identify TF bins dominated

by the direct sound, is based on the DRR, generally given by:

DRR =
PD

PR

, (13)

where PD and PR are the energy of the direct sound and the

reverberant components of the sound field, respectively. There-

fore, DRR with a high value means dominance of the direct

sound over the reverberant component [30]. Several methods

have been presented to estimate the DRR measure for each TF

bin using spherical arrays, [20], [33]. In this work, the DRR

was computed according to the method in [20], which is based

on the decomposition of R̃a(τ, ω) into direct and reverberant

components. Since this method requires an initial DOA of the

direct sound for DRR estimation, the DOAs from all TF bins

were computed prior to DRR estimation. For further details on

this method, the reader is referred to [20]. Finally, the DRR

based test can be applied as follows:

ADRR =
{

(τ, ω) : DRR(τ, ω) > T HDRR

}

, (14)

where ADRR is the set of TF bins that pass the test, and T HDRR

is a test threshold which should be sufficiently high (typically

satisfying T HDRR ≫ 1) to indicate that the TF bin is dominated

by the direct sound. Similarly to previous methods, a single DOA

estimation can then be computed only from bins that pass the

test.

IV. ANALYSIS OF DIRECT SOUND INFORMATION IN THE

CORRELATION MATRIX

In this section, the eigendecomposition of the local TF corre-

lation matrix, R̃a(τ, ω), is investigated. It is shown that under

some well-defined conditions, accurate direct sound informa-

tion is available in the first eigenvector corresponding to the

largest eigenvalue, even when the sound field is composed of

room reflections in addition to the direct sound. This important

understanding will be used later to develop the DPD-EDS test.

Following the formulation of the PWD coefficients in (3),

consider the simple case where the sound field is comprised of

L = 2 far field sources. Equation (3) in this case is described by

anm (τ, ω) = y∗(Ψ1)s1(τ, ω) + y∗(Ψ2)s2(τ, ω) + ñ(τ, ω),
(15)

where Ψ1 and Ψ2 are the DOAs of the sources. In this case, the

correlation matrix, computed using expectation, (estimated in

(4) using summations), takes the following form:

Ra(τ, ω) = E[anm (τ, ω)anm
H (τ, ω)]

=
[

y∗(Ψ1) y∗(Ψ2)
]

Rs(τ, ω)

[

yT (Ψ1)
yT (Ψ2)

]

+ Rñ (τ, ω), (16)

where Ra(τ, ω) is the correlation matrix of size (N + 1)2 ×
(N + 1)2 at TF (τ, ω), Rs(τ, ω) is the 2 × 2 source correlation

matrix, and Rñ (τ, ω) is the (N + 1)2 × (N + 1)2 noise corre-

lation matrix. Next, it is assumed that the signals s1(τ, ω) and

s2(τ, ω) are uncorrelated, such that

Rs(τ, ω) =

[

σ2
1 (τ, ω) 0

0 σ2
2 (τ, ω)

]

, (17)

where σ2
1 (τ, ω) and σ2

2 (τ, ω) are the variances of signals s1(τ, ω)
and s2(τ, ω), respectively.

Assuming further that the noise is white, leads to

Rñ (τ, ω) = σ2
nI, (18)

where σ2
n is the noise variance and I is the identity matrix of

size (N + 1)2 . Substituting (17) and (18) in (16) yields:

Ra(τ, ω) = σ2
1 (τ, ω)y∗(Ψ1)y

T (Ψ1)

+ σ2
2 (τ, ω)y∗(Ψ2)y

T (Ψ2)

+ σ2
nI. (19)

Note that while (19) was derived for two uncorrelated sources, it

will also approximately hold for a direct sound and its reflection

after frequency smoothing, which has been shown to perform de-

correlation [12], [13], and which is performed when Ra(τ, ω)
is estimated as in (4).

Next, (19) is multiplied from the right by y∗(Ψ1):

Ra(τ, ω)y∗(Ψ1) = σ2
1 (τ, ω)y∗(Ψ1)y

T (Ψ1)y
∗(Ψ1)

+ σ2
2 (τ, ω)y∗(Ψ2)y

T (Ψ2)y
∗(Ψ1)

+ σ2
ny∗(Ψ1). (20)

Note that the terms yT (Ψ1)y
∗(Ψ1) and yT (Ψ2)y

∗(Ψ1) are

scaled versions of samples of the maximum directivity beam-

pattern in the SH domain [26]. Thus, if Ψ1 and Ψ2 are suffi-

ciently spatially separated with respect to the beamwidth of the

maximum directivity beampattern, the following will typically

hold:

yT (Ψ2)y
∗(Ψ1) ≪ yT (Ψ1)y

∗(Ψ1). (21)

Now, the spatial angle Θ between Ψ1 and Ψ2 , is defined as

cos Θ = cos θ1 cos θ2 + cos(φ1 − φ2) sin θ1 sin θ2 (22)

and the beamwidth of the maximum directivity beampattern has

been shown to approximately equal to π
N

, [34], which provides

an approximated criterion for the inequality in (21) to hold:

Θ > π
N

.

Next, substituting (21) in (20) yields

Ra(τ, ω)y∗(Ψ1) ≈ [σ2
1 (τ, ω) ‖y∗(Ψ1)‖

2 + σ2
n ]y∗(Ψ1), (23)

which means that y∗(Ψ1) is an eigenvector of Ra(τ, ω) and its

eigenvalue is [σ2
1 (τ, ω) ‖y∗(Ψ1)‖

2 + σ2
n ]. Therefore, according

to (23), the eigendecomposition of Ra(τ, ω) may include a

normalized version of y∗(Ψ1) as its eigenvector. While eigen-

decomposition is not unique, the vector space comprised of

eigenvectors corresponding to identical eigenvalues is unique

[35]. Therefore, if σ2
1 (τ, ω) is larger than σ2

2 (τ, ω), then y∗(Ψ1)
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and y∗(Ψ2) correspond to different eigenvalues (note that (23)

also holds for y∗(Ψ2)). Hence, in this case, the first eigenvector

corresponding to the largest eigenvalue, denoted u1(τ, ω), will

satisfy

u1(τ, ω) ≈ cy∗(Ψ1), (24)

where c is some complex constant, such that u1(τ, ω) is of unity

norm. Now, assuming y∗(Ψ1) represents the direct sound, and

y∗(Ψ2) a reflection, and assuming they are sufficiently spatially

separated, the direct sound information is accurately maintained

in the first eigenvector of Ra(τ, ω), even when anm (τ, ω) is

corrupted by the reflection.

Although the analysis leading to (24) was presented for only

two sources, for simplicity, this theoretical formulation can be

extended to the more general case of multiple sources, repre-

senting a direct sound with multiple reflections, assuming the

reflections are sufficiently separated from the direct sound. Nev-

ertheless, a rigorous formulation and proof are left for future

work.

Finally, although the condition related to the spatial separation

between the direct sound and room reflections leading to (24)

may not always hold in practice, it may still approximately hold

for a significant number of bins, potentially leading to a more

accurate decomposition of the direct sound component from

the spatial spectrum matrix. Equation (24) will be used in the

following section for the development of the DPD-EDS test.

V. THE PROPOSED DPD-EDS TEST

In this section, a new DPD test is developed. The new test aims

to be more robust to reverberation than previous tests, based on

the new insights into the decomposition of the spatial correlation

matrix, as presented in Section IV. These new insights led to the

result that the first eigenvector, u1(τ, ω), of R̃a(τ, ω), may be

approximately proportional to the steering vector of the direct

sound. Motivated by this important result, the extent to which

u1(τ, ω) in a given TF bin represents a direct sound, can now

be measured. One way is to quantify the similarity between

u1(τ, ω) and a vector of the form y∗(Ω), using a MUSIC-based

measure

EDS(τ, ω) = max
Ω

1
∥

∥

∥
P⊥

u1 (τ ,ω )y
∗(Ω)

∥

∥

∥

2 , (25)

where

P⊥
u1 (τ ,ω ) = I −

u1(τ, ω)uH
1 (τ, ω)

‖u1(τ, ω)‖2 (26)

is the projection into the subspace which is orthogonal to

u1(τ, ω). This measure is invariant to scaling, necessary to com-

pensate for the unknown scalar c in (24). Note that other scale-

invariant measures for the proximity between u1(τ, ω) and a

single plane wave, y∗(Ω), can also be used.

Finally, the DPD-EDS test can be formulated as

AEDS =
{

(τ, ω) : EDS(τ, ω) > T HEDS

}

, (27)

where AEDS is the set of bins that pass the DPD-EDS test, and

T HEDS is a threshold value which should be chosen sufficiently

larger than 1. This is because the measure suggested in (25)

returns zero in the denominator for perfect similarity to a single

plane wave, and so, an expected high score for the measure

should satisfy T HEDS ≫ 1.

Now, bin-wise DOA estimation is given by the argument Ω
that maximizes EDS(τ, ω),

ΩEDS =

{

Ω : arg max
Ω

EDS(τ, ω),∀(τ, ω) ∈ AEDS

}

, (28)

already computed in (25). A single DOA estimate can then be

computed as the mean of ΩEDS or by a further step of clustering,

similarly to as described in Section III.

It is important to address the differences between the DPD-

EDS test and the previous DPD and DPD-DIR tests, in order to

understand the novelty of the new test. Unlike the original DPD

test, which only measures the ratio of the first two dominant

eigenvalues of R̃a(τ, ω), the DPD-EDS test explicitly exam-

ines the presence of a direct sound information in the dominant

eigenvector of R̃a(τ, ω). Thus, it is less likely for TF bins dom-

inated by reverberation to pass the DPD-EDS test, even if their

correlation matrix has a dominant first eigenvalue. The original

DPD test, on the other hand, may pass such bins, as will be

demonstrated in the next section. In addition, note that both the

original DPD test and the DPD-EDS test use similar expres-

sions for the noise subspace, as described in (9) for the DPD

test, and in (25) for the DPD-EDS test. However, the latter uses

this noise subspace for identifying direct TF bins, as in (27) and

for DOA estimation as in (28), while the DPD test uses the noise

subspace only for the DOA estimation stage, as in (9). While

the DPD-DIR test also examines the proximity to a single plane

wave sound field, by using the directivity measure, it does so

directly for the measured PWD coefficients, anm (τ, ω). If they

are distorted by reflections, the DPD-DIR test will score low,

not passing these TF bins. However, as argued in Section IV,

the direct sound information may be present at the dominant

eigenvector, even in the case of contribution from reflections.

This is a potential advantage for the DPD-EDS test, which may

extract accurate direct sound information from more TF bins.

The computation complexity of the proposed method may

be of importance when only limited computing resources are

available. Hence, the computation complexity of the proposed

test is presented in Table I, also compared to the coherence test,

the DPD test, and the DPD-DIR test. The table shows the com-

plex multiplications necessary for each test at each TF bin. Each

step within the test is presented separately: correlation matrix

estimation, eigendecomposition, and the grid search to estimate

the DOAs. It is clear that the DPD-DIR is the most efficient

among the four tests, since no correlation matrix estimation nor

eigendecomposition are necessary. The DPD-EDS test is the

most computationally complex in the grid search stage, since

the DPD and coherence tests use grid search only for bins that

pass the test, while the DPD-EDS test uses grid search for all

TF bins. Recall from Subsection III-D, that the DRR based test

also calculates matrix R̃a(τ, ω) and uses grid search for all TF

bins. In addition, the method uses matrix multiplication that re-

quires O
(

(N + 1)8
)

complex multiplications for each TF bin
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE COHERENCE TEST, THE DPD TEST, THE DPD-DIR TEST, AND THE DPD-EDS TEST, SHOWN IN TERMS OF COMPLEX

MULTIPLICATIONS NEEDED FOR EACH STEP AND FOR EACH TF BIN

[20]. Hence, this method is more computationally complex than

the DPD-EDS test.

VI. SIMULATION STUDY

In this section, a simulation study is presented, aiming to

evaluate the performance of the proposed DPD-EDS test, and

compare it to the other tests described in Section III.

A spherical array is simulated using MATLAB [36], consist-

ing of Q = 32 microphones arranged around a rigid sphere of

radius r = 4.2 cm (similar to the Eigenmike [37]) facilitating SH

processing with an order of N = 3. The array was positioned

in a room with dimensions 8 × 5 × 3 m simulated using the im-

age method [38], and with its center located at (4, 3, 0.8) m. The

walls reflection coefficients were chosen to lead to reverberation

time of T60 = 1 s, and a critical distance of 0.6 m. Three point

sources were positioned in the room with the following distances

from the array center: 1.87 m, 1.78 m and 1.81 m, and with the

following DOAs: Ψ1 = (61.3◦, 267.5◦), Ψ2 = (66.9◦, 192.4◦),
and Ψ3 = (56.5◦, 57.6◦), respectively. Speech signals from the

TIMIT [39] database were used for the three source signals,

with lengths of approximately 4 s, and a sampling frequency

of 16 kHz. A diffuse noise was superimposed on the sound

field generated by the three sources, with a signal-to-noise ratio

(SNR) of 20 dB at the microphones. Sensor noise with an SNR

of 40 dB was also added to the microphone signals. A transfor-

mation of the signals to the STFT domain was performed with

a Hanning window of size 512 samples, and an overlap of 50%.

An analysis frequency range of [400, 5000] Hz was employed,

which leads to a total of approximately 38,000 TF bins for a 4 s

recording. The PWD coefficients, as in (2), were computed from

the pressure measurements in (1), with a similar method to the

R-PWD described in [40] (equation (2.27)). The calculation of

the spatial correlation matrix for the coherence test, R̃p(τ, ω) as

in (5) was performed with Jt = 7 time frames. The calculation

of the local TF correlation matrix, R̃a(τ, ω), for the DPD test,

the DRR based test, and the DPD-EDS test was performed as

in (4) with Jτ = 2 time frames, and Jω = 15 frequency bins.

Finally, each of the tests described in this work, namely the

coherence test [19], the DPD test [11], the DPD-DIR test [16],

the DRR based test [20], and the newly developed DPD-EDS

test, was computed for the recorded microphone signals. The

simulation parameters described above were used in all of the

following subsections of this simulation study.

An example of typical running times for these methods is

presented in Table II. The running times were measured on

a MacBook Pro laptop computer, 2015 model, with 8 GB of

RAM, and 2.7 GHz Intel Core i5 processor. For this running

TABLE II
TYPICAL RUNNING TIMES FOR THE TESTS UNDER STUDY FOR A 4 S

RECORDING, ON A MACBOOK PRO LAPTOP. THE TEST THRESHOLDS FOR EACH

TEST HAS BEEN SET SUCH THAT 5000 BINS PASS THE TEST

time comparison only, the thresholds for each test were chosen

such that 5000 TF bins pass the tests, which are approximately

13% of all bins. Table II shows that the DRR based test has

the longest running time, since it requires the largest number of

complex multiplications, as described in Section V. The second

longest running time is for the DPD-EDS test, since it requires

the eigendecomposition of the correlation matrix for all TF

bins. In addition, the running time for the coherence test is

significantly longer than the running time of the DPD test, which

may be due to the fact that Q > (N + 1)2 in this case, see

(2), leading to correlation matrices of much higher dimension.

Nevertheless, in [19] a computationally efficient alternative was

proposed which was not implemented here. The shortest running

time is achieved by the DPD-DIR test, because it does not require

matrix decomposition.

A. Performance Analysis - DOA Histograms

In this subsection, 3D histograms of the DOA estimates from

TF bins that passed each test are presented, with the aim of

studying the DOA distribution compared to the true direction

of the sources. The threshold for each test was chosen such

that 4000 bins pass the test, which are approximately 10.5%
of all available TF bins. This approach to threshold selection

was chosen so that the different tests, which use a diverse set of

measures, could be evaluated on a common basis.

Fig. 1 presents the 3D histogram of the DOA estimates from

TF bins that passed the coherence test. The horizontal green

bars indicate the true DOAs. It seems that a significant number

of TF bins hold DOA information which is far from the true

DOAs. This is somewhat expected, because for this test, bins

that are contaminated by coherent reflections may still have a

rank close to one and pass the test (see Section III-A). Figs. 2,

3, and 4 present the histogram of the DOA estimates from TF

bins that passed the DPD test, the DPD-DIR test, and the DRR

based test, respectively. Note that unlike the histogram of the

coherence test in Fig. 1, there are clearly visible three dominant
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Fig. 1. Histogram of DOA estimates from TF bins that passed the coherence
test. The threshold was chosen such that 4000 bins passed the test. The horizontal
green bars indicate the true DOAs.

Fig. 2. Same as Fig. 1, but for TF bins that passed the DPD test.

Fig. 3. Same as Fig. 1, but for TF bins that passed the DPD-DIR test.

Fig. 4. Same as Fig. 1, but for TF bins that passed the DRR test.

Fig. 5. Same as Fig. 1, but for TF bins that passed the DPD-EDS test.

clusters corresponding to TF bins that hold a relatively cor-

rect DOA information on the three speakers. In addition, other

(θ, φ) regions, which are far from the true DOAs, also contain

contribution from TF bins, although, they seem less dominant

compared to the coherence test. This is expected as all three

tests are designed for reverberant speech.

Finally, Fig. 5 presents the histogram of the DOAs estimated

from bins that passed the DPD-EDS test. In this case, the TF

bins located around the true DOAs seem the largest in number,

compared to all other tests, as evident from the histogram height

scale. In addition, (θ, φ) regions far from the true DOAs seem

to have relatively few TF bins. This is a first evidence to validate

the theoretical development leading to the DPD-EDS test - the

test manages to extract accurate direct sound information even

under high reverberation.

The analysis presented in this subsection is somewhat

qualitative. In the following subsection, the performance of

DOA estimation will be investigated with several quantitative

measures.



138 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 13, NO. 1, MARCH 2019

TABLE III
THE THRESHOLD FOR EACH TEST, REQUIRED TO ACHIEVE THE PERCENTAGE

OF TF BINS PASSING EACH TEST, AS DENOTED IN FIG. 6. THE TOTAL NUMBER

OF BINS IS 38,000

B. Performance Analysis - DOA Estimation

In this subsection, the extent to which the TF bins that passed a

test hold correct DOA information will be investigated quantita-

tively. As a first step in this analysis, TF bins that passed each test

were assigned to one of the three speakers. Let ΨTF = (θTF, φTF)
denote the DOA estimated from a given TF bin. The error be-

tween ΨTF and the true DOA Ψi = (θi , φi) for i = 1, 2, 3, i.e.,

the three speakers, is calculated as

∆Θi = cos−1
(

cos θTF cos θi + cos(φTF − φi) sin θTF sin θi

)

,

(29)

which is the relative spatial angle, similar to (22). Next, each

TF bin was associated with the nearest speaker, based on ∆Θi .

The spatial angle between the DOA for that bin and the DOA of

the selected speaker is denoted as ∆Θ.

It should be noted that this informed assignment of speak-

ers to TF bins was performed to avoid limitations of practical

clustering methods [11], [14], [16], and focus the analysis in

this work on performance of the tests to provide accurate DOAs

from individual bins.

The performance of bin-wise DOA estimation is studied next

for all tests, with respect to the following measures:

1) ΘERR, defined as the mean of ∆Θ averaged over all TF

bins that passed the test and all three speakers.

2) σERR, defined as the standard deviation (STD) of ∆Θ with

respect to the true directions, averaged over all TF bins

that passed the test and all three speakers.

3) P10◦ , defined as the percentage of TF bins with DOA

estimates satisfying ∆Θ < 10◦ relative to all TF bins that

passed the test [30].

Fig. 6(a) presents ΘERR as a function of the percentage of

TF bins that passed each test. Control over the percentage of

bins that pass each test was achieved through the test threshold.

Typical threshold values are presented in Table III. Fig. 6(a)

shows that the errors of the TF bins that passed the DPD-EDS

test are significantly lower than all other methods, in particular

when 5%–25% of the TF bins pass the test. The TF bins that

passed the DPD-DIR test also perform well but mainly when

only a relatively small percentage of bins pass the test. The bins

that passed the DPD test and the DRR based test have relatively

similar errors at the lower percentage range, while at the higher

range, the DRR based test has lower errors. As expected, the

bins that passed the coherence test achieve the largest errors of

all tests.

Fig. 6(b) presents σERR as a function of the percentage of TF

bins that passed each test. Bins that passed the DPD-EDS test

have the lowest STDs among all tests for percentage values up

to 30%. At 30% and higher, the coherence test has the lowest

Fig. 6. (a) ΘERR, (b) σERR and (c) P10◦ as a function of the percentage of TF
bins that passed each test with the simulated data of three speakers. The total
number of bins is 38,000.

STDs. However, at this range, the mean error ΘERR is relatively

high, and so this may not be a useful operating point for all

tests. Nevertheless, it may serve to demonstrate the limits of

performance of the tests in terms of percentage of useful TF

bins.

Finally, Fig. 6(c) shows the measure P10◦ as a function of the

percentage of TF bins that passed each test. The figure shows

that TF bins that passed the DPD-EDS test achieve very high

values of P10◦ , when the percentage of bins is 10% or less. The

P10◦ remains higher than all the other methods for all percentage

values. However, at 30% and higher, this measure is low for all

tests, suggesting that the threshold may be too low, as discussed

above. The bins that passed the DPD-DIR test also achieve a

relatively high percentages of P10◦ , for percentage values around

1%. The remaining tests, and in particular the coherence test,

have relatively low values of P10◦ at the entire percentage range.

To summarize this study, the DPD-EDS test has been shown

to have superior performance over previous tests. In the scenario

analyzed here, the DOA estimates from TF bins that passed the

DPD-EDS test showed the lowest DOA estimation errors, the

lowest STDs at the majority of the TF bins percentage range,

and the highest P10◦ percentage values. These results validate the

theoretical basis of the proposed method - accurate DOAs can be

estimated from TF bins even if contaminated by reverberation.

The improved level of accuracy is reflected by the fact that



MADMONI AND RAFAELY: DOA ESTIMATION FOR REVERBERANT SPEECH BASED ON EDS 139

Fig. 7. A spectrogram of the three speech signals.

Fig. 8. A spectrogram of the recorded reverebrant speech from the three speak-
ers. The TF bins that passed the coherence test are marked on the spectrogram,
with green, blue and red colors corresponding to the three speakers. The test
thresholds was set such that 4000 TF bins passed the test, out of a total of 38,000
bins.

many more bins pass the proposed test, and with a smaller DOA

estimation error, compared to previous tests.

C. Speech Spectrograms and DPD Maps

The aim of the analysis presented in this subsection is to

provide further insight into the proposed test, by presenting the

selected TF bins on top of speech spectrograms, using maps re-

ferred to as DPD maps [32]. Once again, the threshold for each

test was chosen such that the percentage of TF bins that pass

each test will be 10.5%, to support a common basis for compar-

ison. The clean speech spectrogram is presented in Fig. 7, for

reference, while in the following figures, the reverberant speech

spectrogram is highlighted with TF bins that passed each test.

Bins are assigned to speakers using the method described in the

previous subsection.

TF bins that passed the coherence test are marked on Fig. 8,

with the three colors representing the three speakers. Note that

Fig. 9. Same as Fig. 8, but for the DPD test.

Fig. 10. Same as Fig. 8, but for the DPD-DIR test.

the majority of TF bins that passed the coherence test are located

at the low frequency range. One possible explanation is the

relatively higher spatial correlation of reverberant or diffuse

sound fields at low frequencies [41], leading to higher coherence

scores between microphones at low frequencies.

A similar spectrogram is presented in Figs. 9, 10, and 11,

with TF bins that passed the DPD test, the DPD-DIR test, and

the DRR based test, respectively. Note that most TF bins that

passed these tests are located at frequencies above about 800 Hz.

This could be the result of the processing in the SH domain, to

robustly compute PWD coefficients, with poor estimation of the

coefficients at low frequencies due to sensor noise, leading to an

ineffective test. The DPD-DIR test does not perform averaging

of TF bins, and as a result, the TF bins that passed this test are

more sparsely scattered, compared to other tests.

Finally, Fig. 12 presents the same spectrogram with TF bins

that passed the DPD-EDS test. Note that the bins that passed this

test are located above 1.3 kHz, a range that is higher than that

of the other tests. This may suggest that the DPD-EDS test is

slightly more sensitive to errors in the computation of the PWD



140 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 13, NO. 1, MARCH 2019

Fig. 11. Same as Fig. 8, but for the DRR test.

Fig. 12. Same as Fig. 8, but for the DPD-DES test.

coefficients, which are more distorted at the lower frequencies.

Furthermore, note that the bins that passed the DPD-EDS test

seem to be the most tightly grouped in the spectrogram, and

located around speech segments that start after pauses in speech

and which may hold mainly direct sound information. This is

another possible indication to the accuracy of the test in correctly

identifying direct sound regions in the spectrogram.

VII. EXPERIMENTAL STUDY

In this section, a performance study of the different tests

with real recorded data is presented. This data is taken from

the LOCATA challenge [21]. In this challenge, several acoustic

scenes of sound sources in a laboratory room of the Department

of Computer Science at Humboldt University Berlin and of di-

mensions 7.1 × 9.8 × 3 m, were presented, with sound recorded

using several arrays. The approximate reverberation time of the

room is T60 = 0.55 s. In this work, five scenarios from the LO-

CATA challenge with stationary sources and the Eigenmike [37]

microphone array were used for the analysis. The number of

sources, their distance from the array and their DOAs for each

TABLE IV
THE NUMBER OF SOURCES, THEIR DISTANCE FROM THE ARRAY AND THEIR

DOAS FOR THE FIVE RECORDINGS IN THE EXPERIMENTAL STUDY (TAKEN

FROM THE LOCATA CHALLENGE)

Fig. 13. (a) ΘERR, (b) σERR and (c) P10◦ as a function of the percentage of TF
bins that passed each test for recordings 1–3 from the LOCATA challenge (see
Table IV). These recordings include a single speaker. The results are averaged
over the three recordings.

recording are presented in Table IV. The recorded signals have

been down-sampled from 44 kHz to 16 kHz, and transformed to

the STFT domain, from which the PWD coefficients, matrices

R̃p(τ, ω) and R̃a(τ, ω), were computed as described in Section

VI. Array calibration was performed using the reference DOAs,

to reduce potential measurement errors of the array and source

positions. The measures ΘERR, σERR and P10◦ were calculated

for each recording and for each test, as in Section VI.

Recordings 1–3 that contain a single source are analyzed first.

Fig. 13 presents the performance measures of all tests averaged

over the three recordings, as a function of the percentage of TF

bins that passed each test. The percentage values were controlled

by adjusting the test thresholds, to support a common basis for
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Fig. 14. (a) ΘERR, (b) σERR and (c) P10◦ as a function of the percentage of
TF bins that passed each test for recording 4 from the LOCATA challenge (see
Table IV). This recording includes two speakers.

Fig. 15. (a) ΘERR, (b) σERR and (c) P10◦ as a function of the percentage of
TF bins that passed each test for recording 5 from the LOCATA challenge (see
Table IV). This recording includes four speakers.

comparison, as in the simulation study. The figure shows that the

coherence test and the DRR based test achieve the worst results

at the lower percentage range. The DPD and the DPD-DIR

tests perform better, but the performance of the latter seems to

degrade more significantly as the threshold decreases and more

bins pass the test. The DPD-EDS test has the best performance,

with the lowest ΘERR and σERR, and the highest P10◦ measure,

in particular at the 10%–30% range.

Next, performance with recordings 4 and 5 that contain mul-

tiple speakers is analyzed. Figs. 14 and 15 present the perfor-

mance measures of all tests for recording 4 and 5, respectively.

Performance of all tests for recordings 4 and 5 seems similar

to the performance presented in Fig. 13. Note that most tests

achieve better performance measures in recording 4, compared

to recordings 1–3 and 5. This may be explained by the relative

proximity of the sources to the array in recording 4 compared to

the other recordings. Thus, the direct sound may be more dom-

inant in this recording. The DPD-EDS test achieves the best

performance measures also for recordings 4 and 5. The results

presented for the five recordings validate, on experimental data,

the simulation studies and the theoretical foundations for the

potentially high accuracy of the proposed method in estimating

source DOAs. Finally, note that most tests achieve better per-

formance measures in this experimental study compared to the

simulation study, as in Fig. 6. This may be due to the fact that

the reverberation time is significantly lower in this experimental

study compared to the simulation study.

VIII. CONCLUSIONS

In this work, a new method has been developed, based on

the enhanced decomposition of the sound field, to identify TF

bins that are dominated by the direct sound, and extract accurate

source DOA estimates from these bins. The performance of the

method is compared to the coherence test, the original DPD test,

the DPD-DIR test, and a DRR based test. Extensive multiple-

speaker computer simulations and an experimental study veri-

fied the superiority of the new DPD-EDS test, under different

test conditions.
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