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Abstract—Direction of Arrival (DOA) estimation is a funda-
mental problem in acoustic signal processing. It is used in a
diverse range of applications, including spatial filtering, speech
dereverberation, source separation and diarization. Intensity
vector-based DOA estimation is attractive, especially for spherical
sensor arrays, because it is computationally efficient. Two such
methods are presented which operate on a spherical harmonic
decomposition of a sound field observed using a spherical micro-
phone array. The first uses Pseudo-Intensity Vectors (PIVs) and
works well in acoustic environments where only one sound source
is active at any time. The second uses Subspace Pseudo-Intensity
Vectors (SSPIVs) and is targeted at environments where multiple
simultaneous sources and significant levels of reverberation make
the problem more challenging. Analytical models are used to
quantify the effects of an interfering source, diffuse noise and
sensor noise on PIVs and SSPIVs. The accuracy of DOA estimation
using PIVs and SSPIVs is compared against the state-of-the-art in
simulations including realistic reverberation and noise for single
and multiple, stationary and moving sources. Finally, robust
performance of the proposed methods is demonstrated using
speech recordings in real acoustic environments.

Index Terms—Direction of arrival estimation, DOA local-
ization, speaker tracking, robot audition, microphone array
processing, spherical microphone array, spherical harmonics

I. INTRODUCTION

M
ANY applications of acoustic signal processing rely

on Direction of Arrival (DOA) estimation, including

spatial filtering, speech dereverberation, source separation and

diarization. Estimation of the DOA of a sound source is particu-

larly important in the context of robot audition where tracking

the directions of one or more moving sources enables an

‘awareness’ of the local environment, which is a requirement

for effective human-robot interaction.

To estimate both the vertical and horizontal angles of

arrival requires a three-dimensional microphone array. Array

geometries which sample the sound field such that it can

be represented in the Spherical Harmonic (SH) domain are

A. H. Moore, C. Evers and P. A. Naylor are with the Department of
Electrical and Electronic Engineering, Imperial College London, London SW7
2AZ, U.K. (e-mail: alastair.h.moore@imperial.ac.uk; c.evers@imperial.ac.uk;
p.naylor@imperial.ac.uk).

The research leading to these results has received funding from the
European Union’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 609465.

This work was supported by the Engineering and Physical Sciences
Research Council [grant number EP/M026698/1].

attractive because this representation allows the sound field to

be analyzed with equal resolution in all directions using algo-

rithms which are independent of the specific array geometry

[1]–[4].

A wide variety of DOA estimation algorithms have been

proposed for use in the SH domain [5]–[14]. Most of these

compute a metric over a dense azimuth-inclination grid before

identifying its peak(s) as the DOA(s). Such methods include

those that compute the Steered Response Power (SRP) due to

a beamformer which is steered towards all potential source

directions and those that compute the spatial spectrum using

subspace methods based on Multiple Signal Classification

(MUSIC) [15].

Many current DOA estimation methods make use of the

spatial covariance matrix [7], [9], [10], [12]. For example,

the SRP map produced by a Minimum Variance Distortionless

Response (MVDR) beamformer optimally rejects background

noise for each look direction by adjusting its beam pattern

according to the spatial covariance matrix and MUSIC [15]

directly decomposes the spatial covariance matrix into signal

and noise subspaces. However, in reverberation, coherent

reflections distort the spatial covariance matrix. For the MVDR

beamformer this is manifested as incorrectly placed attenua-

tion in the beam pattern. For MUSIC the fact that the reflections

are linearly dependent on the direct path signals means the

rank of the covariance matrix is reduced and division between

signal and noise subspaces can be prone to errors.

Frequency Smoothing (FS) [16] has been shown to improve

the accuracy of DOA estimation using MUSIC [7] and MVDR-

SRP [10]. The procedure decorrelates coherent reflections by

combining information across multiple frequency bands. In

the spatial domain, where microphone signals are processed

directly, special focussing matrices and an initial DOA estimate

are required. In the SH domain, FS can be applied as a

straightforward average by assuming frequency independence

of the (mode strength compensated) array manifold [7] [10].

To estimate multiple source DOAs, a number of authors have

proposed methods which exploit the sparsity of speech in the

Time-Freqeuncy (TF) domain. By identifying TF-regions where

a single source is dominant, single source DOA estimation

methods can be employed locally to those regions [12], [17],

[18]. This class of methods exploits the principle that, for

a single dominant source, the rank of the spatial covariance

matrix is unity. In [18] pairwise correlations between adjacent
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microphones of a circular array were estimated by averaging

over frequency bins within a single time frame. In [17]

the spatial covariance matrix between all microphones was

estimated at each frequency bin by averaging over time frames.

In [12] it was shown that estimating the spatial covariance

matrix by averaging (smoothing) over time and frequency

decorrelates the reflections and so the rank is only unity when

a single direct path is dominant. Accuracy of the subsequent

DOA estimation is substantially improved but the Direct-Path

Dominance (DPD) test described in [12] is reported to be

passed in only 3% of TF-regions. This may lead to time frames

in which there are no DOA estimates, which is problematic in

applications where the sources are moving.

Methods for DOA estimation in the SH domain which exploit

the directional sparsity of sound sources have been proposed

in a series of related works [19]–[22]. In [19] Independent

Component Analysis (ICA) of the SH domain signals was

performed and the DOAs estimated by comparing the columns

of the unmixing matrix to the steering vectors for plane waves

from all possible directions. In [20] the directional component

of the SH domain signals was obtained by subtracting an

estimate of the diffuse component, which were determined

using a subspace approach. An iterative optimization was then

performed to find a sparse set of weights for a dense dictionary

of plane wave elements. The directions associated with the

selected elements represent the estimated DOAs. In [21] and

[22] various approaches to combining the methods of [19] and

[20] were proposed, each with their own success in a particular

application scenario. However, none of these included live

recordings of real-world audio, where small source movements

may be important.

Intensity-based DOA estimation [8], [11], [13], [14] differs

from the previously discussed methods because, by directly

computing the direction of energy flow, there is no need to

compute a spatial cost function. This has the potential for

significant computational savings. The component of intensity

in a particular direction has been measured using two types of

intensity probe [23]. One approximates particle velocity using

the difference between two closely spaced omnidirectional

pressure sensors while the other measures particle velocity

directly [24]. The former approach is more common but

is sensitive to phase mismatch and sensor noise. Using an

array of intensity probes yields an intensity vector in 2 or 3

dimensions, from which the DOA can be found [25], [26].

In [8] DOA estimation using a spherical microphone array

was proposed whereby a large number of microphones was

used to transform the sound field into the SH domain from

which the particle-velocity was approximated. The resulting

vectors were termed Pseudo-Intensity Vectors (PIVs). Those

initial results demonstrated the effectiveness of the method

for single source DOA estimation in a noise-free environment.

In [11] DOA estimation of multiple sources was achieved using

k-means clustering of PIVs. In both [27] and [28] a DOA was

obtained for each TF-bin by first finding the PIV and then

refining the direction by evaluating a cost function using higher

order SHs over a spatially constrained grid around the PIV

direction. The final estimates of multiple sources’ DOAs were

then obtained by identifying the peaks of a histogram of all

the individual direction estimates.

In this current paper we review the formulation and use

of PIVs presented in [8]. We then provide a novel formula-

tion of the PIV which follows directly from the SH domain

representation of a sound field expressed in Cartesian form

and develop an extended analysis of PIVs under non-ideal

conditions. Further, we propose the Subspace Pseudo-Intensity

Vector (SSPIV) which we show to be more robust to noise and

reverberation than the PIV. Like DPD-MUSIC, it exploits FS and

subspace decomposition and assumes TF-sparsity of the input

signal. However, by directly computing a DOA for each TF-

region, rather than evaluating the spatial spectrum over all

possible directions, it is computationally more efficient. We

investigate the criteria under which smoothed histograms of

PIVs and SSPIVs give accurate estimates of the DOAs of multiple

sources in a noisy reverberant environment, including when

sources are moving. Some of the first steps of an earlier version

of the SSPIV method were presented in [13] and [29]. The

current paper extends both the theoretical analysis and the

evaluation of the PIV method compared to [8], especially in

the context of multiple and moving speakers and in real-world

applications.

The remainder of this paper is organized as follows. Sec. II

reviews the SH domain representation of a sound field. Sec. III

presents the PIV and SSPIV methods. Sec. IV analyses PIV and

SSPIV under non-ideal conditions, whether these be caused by

an interfering (independent or correlated) sound source, diffuse

noise or sensor noise. Sec. V presents simulated experiments

comparing the intensity-based methods to classical and state-

of-the-art DOA estimation methods. Sec. VI demonstrates the

effectiveness of the methods in real-world tests. Finally the

paper is concluded in Sec. VII.

II. REVIEW OF SH REPRESENTATION OF A SOUND FIELD

The SH representation of a sound field [4], [30] around

a particular point in space is determined by the complex-

valued plane-wave density a(k, θ, φ), which is a func-

tion of wavenumber k, inclination θ and azimuth φ. A

unit vector pointing towards the n-th plane wave, xn =
[

xn yn zn
]T

, where (·)T is the transpose operator, has

DOA, Ψn = (θn, φn), given by

θn = arccos(zn), φn = arctan2(yn/xn) (1)

where arctan2 is the arctangent function mapped to the correct

quadrant according to the signs of xn and yn. A plane-wave

density composed of N plane waves is given by

a(k, θ, φ) =

N
∑

n=1

δ (cos θ − cos θn) δ (φ− φn) sn (k) (2)

where sn (k) is the amplitude of the n-th plane wave and

δ (cos θ) δ (φ) is the Dirac delta function on the sphere, which

is zero everywhere on the sphere except (θ, φ) = (π/2, 0). The

complex SHs of order l and degree m ∈ {−l, . . . , l} provide a

set of orthogonal basis functions defined over the unit sphere

[30]

Y m
l (θ, φ) =

√

2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) eimφ (3)
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where Pm
l (·) is the associated Legendre function such that

a(k, θ, φ) =
∞
∑

l=0

l
∑

m=−l

alm(k)Y m
l (θ, φ). (4)

Substituting Ω = (θ, φ), the weights of each SH are the

Spherical Fourier Transform (SFT) of a(k, θ, φ)

alm(k) =

∫

Ω∈S2

a(k,Ω) [Y m
l (Ω)]

∗
dΩ (5)

where
∫

Ω∈S2 dΩ =
∫ 2π

0

∫ π

0
sin θdθdφ is the integral over the

unit sphere and (·)∗ denotes conjugation. Substituting (2) into

(5) gives

alm(k) =

N
∑

n=1

[Y m
l (Ψn)]

∗
sn (k) . (6)

Considering the (L+ 1)
2

SHs up to l ≤ L, (6) is expressed in

stacked vector notation as [12]

alm(k) = Y(Ψ)Hs(k) (7)

where subscript lm on a vector denotes that the elements

are SH coefficients, s(k) = [s1(k) . . . sN (k)]
T

, Ψ =
[Ψ1 . . . ΨN ]

T
,

Y(Ψ) =







y(Ψ1)
...

y(ΨN )






, (8)

y(Ψn) =
[

Y 0
0 (Ψn)Y

−1
1 (Ψn)Y

0
1 (Ψn)Y

1
1 (Ψn) . . . Y

L
L (Ψn)

]

and (·)H denotes the conjugate transpose.

The SH domain representation of the plane-wave density, as

expressed in (7), is useful because the steering vectors, y(Ψn),
are analytic functions which are independent of frequency.

In order to obtain this representation, the sound field in the

vicinity of the point of interest must be observed. The pressure

at a particular point is related to the plane-wave density by

the mode strength, which depends on the distance of the point

from the origin and whether a rigid scatterer is present [2], [3],

[30]. Although irregular sampling schemes are possible, for

mathematical convenience we use the pressure on the surface

of a sphere of radius r centered at the origin, p(k, r,Ω), for

which the mode strength can be denoted bl(kr). The SFT of

this function is

plm(k, r) = B(kr)alm(k) (9)

where B(kr) = diag {b0 b1 b1 b1 . . . bL}, plm(k, r) =
[

p00 p1(−1) p10 p11 . . . pLL

]T
is a vector of SH coefficients

and the functional dependence of the stacked terms has been

omitted for clarity. Sampling p(k, r,Ω) at Q points with

directions {Ωq}Q1 , the SFT is approximated using the discrete

SFT [4]

plm(k, r) ∼= Y (Ω)
H
Wp(k, r) (10)

where p(k, r) = [p1 . . . pQ]
T

is the pressure at each of the

sample points, W = diag {w1 w2 . . . wQ}, where {wq}Q1
are the weights of the sampling scheme, and Y (Ω) is a

Q×(L+1)2 matrix defined as in (8) but with the SHs evaluated

at {Ωq}Q1 . For the approximation in (10) to hold up to the

maximum spherical harmonic order, L, requires that there are

sufficient microphones, Q ≥ (L + 1)2, and that they are

adequately distributed over the sphere [31]. Furthermore, for a

given radius, the error in the approximation of (10) increases

with frequency. In practice the upper threshold is commonly

taken as kr < L [7], [12], although to avoid spatial aliasing

requires kr ≪ L [2], [31]. It has also been shown that to

accurately reproduce the pressure at a point due to a plane

wave using the inverse SFT requires a much more conservative

threshold [32].

Equating (9) and (10) the plane-wave density can be ob-

tained as

alm(k) = B(kr)−1Y (Ω)
H
Wp(kr). (11)

Let x(k, r) = p(k, r) + v(k) be the observation of p(k, r)
in the presence of sensor noise which we assume to be zero-

mean, normally distributed, uncorrelated between sensors and

uncorrelated with s(k). Applying the SFT and compensating

for the mode strength, the observed plane-wave density is

x̃lm(k) = Y(Ψ)Hs(k) + ṽlm(k) (12)

where

ṽlm(k) = B(kr)−1Y (Ω)
H
Wv(k). (13)

III. PSEUDO-INTENSITY VECTOR FORMULATION

The pseudo-intensity vector was proposed in [8] as an

approximation to the active intensity vector. This approach

is reviewed in Sec. III-A while in Sec. III-B an equivalent

vector is derived directly from the SH representation of the

sound field. Finally, in Sec. III-C, the SSPIV is formulated.

A. Review of sound intensity and pseudo-intensity

The active intensity vector is defined as the time-averaged

magnitude and direction of the net flow of energy and is given

by [30]

I (k) =
1

2
R
{

p (k)
∗
u (k)

}

(14)

where p(k) is the omnidirectional pressure, u (k) =
[ux (k) uy (k) uz (k)]

T
is a vector of the particle velocities

in the Cartesian directions and R{·} is the real operator. It is

useful for DOA estimation because acoustic energy flows in the

direction of wave propagation. For a planewave, the particle

velocity vector is related to direction of arrival (θ, φ) as [8]

u (k) = −p (k)
ρ0c





sin θ cosφ
sin θ sinφ

cos θ



 (15)

where ρ0 and c are the ambient density and speed of sound

in the medium, respectively. It can be seen that the elements

of u (k) have dipole directivity patterns aligned with the

Cartesian axes and that the resulting vector points in the

opposite direction from the DOA.

A beamformer with a dipole directivity pattern can be

obtained directly from first order SH coefficients as

D(k, ϕ,alm(k)) =

1
∑

m=−1

Y m
1 (ϕ)a1(m)(k) (16)
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where ϕ is the steering direction. Therefore to approximate

(14) using the SH coefficients of the plane-wave density

function the PIV is formulated [8]

I (k) =
1

2
R







a00(k)
∗





D(k, ϕ−x,alm(k))
D(k, ϕ−y,alm(k))
D(k, ϕ−z,alm(k))











(17)

where ϕ−x = (π/2, π), ϕ−y = (π/2,−π/2) and ϕ−z =
(π, 0).

B. Alternative formulation of PIV

From (6) the plane-wave decomposition for the n-th plane

wave is a
(n)
lm (k) = [Y m

l (Ψn)]
∗
sn (k). Expressing the first

order coefficients in Cartesian form gives

a
(n)
1(−1)(k) = sn(k)

√

3/8π (xn + iyn) (18a)

a
(n)
10 (k) = sn(k)

√

3/4πzn (18b)

a
(n)
11 (k) = sn(k)

√

3/8π (−xn + iyn) . (18c)

where the SHs are evaluated on the unit sphere. Rearranging

(18) gives

sn(k)xn =

√

8π

3

1

2

(

a
(n)
1(−1)(k)− a

(n)
11 (k)

)

(19a)

sn(k)yn =

√

8π

3

1

2i

(

a
(n)
1(−1)(k) + a

(n)
11 (k)

)

(19b)

sn(k)zn =

√

8π

3

1√
2
a
(n)
10 (k). (19c)

which can be interpreted as a weighted sum of the 1-order

plane-wave decomposition coefficients. Moreover, the weight

corresponding to each a
(n)
1(m)(k) is proportional to the order 1,

degree m SH evaluated in the required axial direction as

sn(k)̟n =
4π

3

1
∑

m=−1

Y m
1 (ϕ̟)a

(n)
1(m)(k) (20)

=
4π

3
D(k, ϕ̟,a

(n)
lm (k)) (21)

where (16) has been used to obtain (21), ̟ ∈ {x, y, z},

ϕx = (π/2, 0), ϕy = (π/2, π/2) and ϕz = (0, 0). To

obtain a vector pointing towards the n-th DOA, we note that

a
(n)
00 (k) =

√

1
4π sn(k) and evaluate (23) for ̟ ∈ {x, y, z}

leading to

Ĩ(k) =
4π

√
4π

3
R











a
(n)
00 (k)∗







D(k, ϕx,a
(n)
lm (k))

D(k, ϕy,a
(n)
lm (k))

D(k, ϕz,a
(n)
lm (k))

















(22)

= R
{

|sn(k)|2 xn

}

(23)

where, for a single plane wave in noise free conditions, the

argument to the real operator is intrinsically real but the

real operator may be needed in practical implementations

with finite precision. The direction of the PIV in spherical

coordinates can be extracted using (1) from the unit vector

given by Ĩ(k)/
∥

∥

∥
Ĩ(k)

∥

∥

∥
where ‖·‖ denotes the ℓ2-norm.

The formulation of (22) is structurally identical to (17), but

I (k) and Ĩ(k) point in opposite directions due to the steering

of the dipoles. Moreover, the inclusion of the 4π
√
4π/3

normalizing constant in (22) leads to the simplified form of

(23) which will make the notation of the subsequent analysis

more straightforward. For historical reasons Ĩ(k) is hereafter

referred to as the PIV but its orientation towards the DOA is

preferred for simplicity of describing the methods.

C. Subspace PIV

The SSPIV extends the concept of PIVs to take advantage

of higher order SHs and frequency smoothing and is aimed

at providing more accurate and reliable DOA estimates in

the presence of multiple and interfering sound sources and

reverberation. It follows from (7) that the covariance of alm
is [12]

Ralm
= E

{

almaHlm
}

(24)

= YH(Ψ)RsY(Ψ) (25)

where Rs = E
{

ssH
}

. Singular Value Decomposition (SVD)

leads to

Ralm
= UΣUH = [UsUn]

[

Σs 0
0 Σn

] [

UH
s

UH
n

]

(26)

where U is a unitary matrix, Σ is a diagonal matrix containing

the singular values of Ralm
and Us and Un respectively,

represent the conventional partitioning into signal and noise

subspaces [15]. In the simplest case of a single plane wave,

Us =
[

â00 â1(−1) â10 â11 . . . âLL

]T
is a column vector and

is proportional to the steering vector for the plane wave DOA,

y(Ψn). The SSPIV method applies the PIV method (c.f. (22)

and (16)) to the one-dimensional signal subspace as

Ĩss =
4π

√
4π

3
R







â∗00





D(k, ϕx,Us)
D(k, ϕy,Us)
D(k, ϕz,Us)











. (27)

to obtain a vector pointing towards the source. Whilst (27)

depends only on the 0 and 1st order components of Us,

through (25) and (26), their values do depend on the higher

order SH terms of alm. As with the PIV method, the benefit of

this approach is that a direction is obtained for each TF-region

directly, i.e. without evaluating all possible directions. The

implications of violating the assumption that a single plane

wave is present is addressed in Sec. IV.

IV. PIV AND SSPIV DISTRIBUTIONS FOR REPRESENTATIVE

EXAMPLE SOUND FIELDS

As described in Sec. II, an arbitrary sound field can be

decomposed into a sum of plane waves. In this section we

consider how the PIVs and SSPIVs are affected by amplitude,

phase and directional relationships between two plane waves.

These simplified cases provide some insight into the behavior

of pseudo-intensity vectors in real acoustic environments.
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A. Two plane waves - general case

For two plane waves with DOAs given by the unit vectors,

xn, n = {1, 2}, and source signals sn(k) = αn(k)e
iβn(k),

where αn(k) and βn(k) are the magnitude and phase at the

origin, respectively, the PIV is obtained from (2) and (22) as

Ĩ = R{(s1 + s2)
∗ (s1x1 + s2x2)} . (28)

= α2
1x1 + α2

2x2 + (x1 + x2)α1α2 cos (β1 − β2) (29)

where for brevity the dependence on k is assumed. This is

interesting because it implies that the resulting vector lies on

the plane containing the vectors x1 and x2 but that it does not

necessarily lie between the two. To illustrate this point, Fig. 1

shows Ĩ for various values of |β1 − β2|. The resulting vector

is nominally distributed about the direction of the stronger

source (i.e. x1) but is either drawn towards the direction of

the weaker source (i.e. x2) or repelled from it, depending on

the relative amplitudes and phases of the signals.

The SSPIV depends on the SVD of Ralm
, which is determined

primarily by the source covariance, Rs =

[

σ2
1 σ21

σ12 σ2
2

]

,

where σ2
1 and σ2

2 are the variances of the two plane waves

and σ12, σ21 is their covariance. The dimensionality of Ralm

depends on the maximum SH order, L, but is independent of

the number of plane waves.

B. Uncorrelated sources

Consider two uncorrelated sources in a free-field with fixed

DOAs and amplitude ratio. We assume that β1 and β2 are

independent with identical uniform distribution U(0, 2π) such

that ∆β = β1−β2 is a triangular distribution over the interval

∆β ∈ [−2π, 2π] which, due to periodicity of the phase,

reduces to ∆β ∈ [−π, π] with probability p (∆β) = 1/(2π).
The expected value of Ĩ is obtained by integrating (29) with

respect to ∆β,
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Fig. 2. Error in E
{

Ĩ

}

and Ĩss for for L = {1, 3, 7} as function of ∠(x1,x2)

with (a) SIR 20 dB and (b) SIR 3 dB.

E
{

Ĩ
}

=

∫ π

−π

Ĩp (∆β) d∆β (30)

= α2
1x1 + α2

2x2

+
(x1 + x2)α1α2

2π

∫ π

−π

cos (β1 − β2) d∆β (31)

= α2
1x1 + α2

2x2. (32)

The SSPIV is determined by the source covariance, Rs ∝
[

α2
1 0
0 α2

2

]

, the DOAs and the maximum order of SHs con-

sidered. Without loss of generality, let x1 point in the direction

of the desired source such that the Signal-to-Interference Ratio

(SIR) in dB is 10 log10(α
2
1/α

2
2) ≥ 0. Figure 2 shows the error

angle ∠(x1, Ĩss) as a function of the interferer angle ∠(x1,x2)
for SIRs of 20 dB and 3 dB and for different values of L. These

plots were produced by collating, without averaging, SSPIVs

calculated according to (25), (26) and (27) for interferers

at 794 approximately equally distributed directions and 5

random target directions. The variation in error as a function of

interferer angle has multiple peaks and nulls corresponding to

the number of lobes in the real (or imaginary) part of highest

order SH considered but is independent of the target direction.

Increasing L reduces the worst case error, which confirms that

higher order SHs are being utilized by the SSPIV. Also shown is

∠(x1, E
{

Ĩ
}

) where E
{

Ĩ
}

is calculated according to (32).

Figure 2(a) shows that PIVs and SSPIVs are both accurate to
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Fig. 3. Error in Ĩ due to coherent source as a function of incidence angle and
phase difference with SIR of (a) 20 dB and (b) 3 dB. Higher errors shown as
darker colors.

within 1◦ when a single source is dominant but Fig. 2(b) shows

that when the SIR is low, SSPIVs are substantially more accurate

than expected by averaging PIVs.

C. Coherent sources

Multipath propagation, as encountered in enclosed spaces,

leads to coherent plane waves arriving at the microphone array.

We consider here the simplified case of two incident plane

waves where the second is a delayed and attenuated version

of the first. The relative gain, 0 ≤ g ≤ 1, and phase, −π <
γ ≤ π, of the second plane wave with the respect to the first

give α2 = gα1 and β2 = β1 + γ. Therefore, from (29),

Ĩ = α2
1 [(1 + g cos γ)x1 + g(g + cos γ)x2] (33)

which by inspection has a number of special cases. If

cos γ = −g or x2 = −x1 the terms in x2 cancel leaving

Ĩ =
(

α2
1(1− g2)x1

)

which is the desired direction. From the

law of sines, the error angle is

∠(x1, Ĩ) = cos−1

(

c+ a cos θ
√

(a2 + c2 + 2ac cos θ

)

(34)

where c = 1 + g cos γ, a = g(g + cos γ) and θ = ∠(x1,x2).
Figure 3 shows ∠(x1, Ĩ) as a function of |γ| and θ for two

different values of g. The error is highly dependent on all

the factors but for any interferer angle the error is zero when

cos |γ| = −g and increases as |γ| → 0◦ and |γ| → 180◦.

If both wavefronts originate from an omnidirectional point

source such that first wavefront is the direct path and the

second has undergone one or more reflections, g is related

to the individual wavefront amplitudes according to

α1 ∝ 1

r
, α2 ∝ ρ(k)

r+d , g =
rρ(k)

r + d
(35)

where r is the distance of the source from the origin, d is the

path difference and ρ(k) is the accumulation of the reflection

coefficients associated with all the reflections encountered by

the interfering wavefront. Similarly, the phase difference is

given by γ = kd/(2π). Thus, a reflected wavefront will

produce a systematic bias in Ĩ(k) which is periodic with

frequency and independent of the direct path signal strength.
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Fig. 4. Error in Ĩss due to coherent source as a function of incidence angle
and phase difference with SIR of (a,c,e) 20 dB and (b,d,f) 3 dB and (a,b) L=1,
(c,d) L=3 and (e,f) L=7. Higher errors shown as darker colors.

Assuming g is independent of frequency over a bandwidth of

∆k and p(k) = 1/∆k, the expected PIV is

E
{

Ĩ(k)
}

=

∫ k+∆k/2

k−∆k/2

Ĩ(k)p(k)dk (36)

= α2
1

(

x1 + g2x2 + f(k,∆k)
)

(37)

where f(k,∆k) = 4πg
∆kd

(x1 + x2) sin
(

∆kd
4π

)

cos
(

kd
2π

)

. The

term 4π
∆kd

sin
(

∆kd
4π

)

is a sinc function which takes its max-

imum at ∆kd = 0. As ∆k becomes large E
{

Ĩ(k)
}

→
α2
1

(

x1 + g2x2

)

which is independent of k but over a limited

bandwidth the f(k,∆k) term leads to significant variations.

The SSPIV for two correlated sources depends on the source

covariance

Rs =

[

σ2
1 σ21

σ12 σ2
2

]

= σ2
1

[

1 g2 cos γ
g2 cos γ g2

]

.

The effect of off-diagonal elements in Rs on ∠(Ĩss,x1) is

shown in Fig. 4. In contrast to the uncorrelated case, increasing

L does not substantially reduce the error. To reduce the

correlation between the direct path and the reflection we
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consider Frequency Smoothing [7], [10], [12]. For a monopole

source with single reflection as in (35) the covariance is

σ12/σ
2
1 = g2 cos

(

kd

2π

)

(38)

which varies periodically with frequency. Integrating (38) over

frequency, similar to (36), gives

∫ k+∆k/2

k−∆k/2

σ12
σ2
1

p(k)dk =
4πg2

∆kd
sin

(

∆kd

4π

)

cos

(

kd

2π

)

=
4π

∆kd
sin

(

∆kd

4π

)

σ12
σ2
1

(39)

where again the multiplicative factor introduced by the integra-

tion can be recognized as a sinc function whose absolute value

is guaranteed to be less than one for all ∆kd > 0. This shows

that FS decorrelates the coherent reflection. Figure 5 illustrates

the extent of the decorrelation for two different values of d.

The value of r is adjusted to maintain the same value of g
in both cases. Larger path differences cause the covariance

to change more rapidly with frequency such that a particular

integration bandwidth achieves more decorrelation.

D. Single desired source in spherically isotropic noise

Diffuse (ambient) noise and late reverberation are well

modeled by spherically isotropic noise. In this case x2 points

in all directions with equal probability, p(x2) = 1/(4π), so

(32) integrated over all possible directions of x2 (i.e. over the

surface of a unit sphere) becomes

E
{

Ĩ
}

=

∫

φ2

∫

θ2

(

α2
1x1 + α2

2x2

)

p(x2) sin θ2dθ2dφ2

= α2
1x1 (40)

which is simply a scaled version of x1, the desired source

direction. This suggests that regardless of the noise amplitude,

the expected value of the PIV provides an unbiased estimate

of the source direction.
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Fig. 6. Mean error in SSPIV DOA as a function of SNR of spherically isotropic
noise averaged over 794 approximately equally distributed target directions,
L = 3. Error bars show ±1 standard deviation.

The plane-wave density of spherically isotropic noise is

given by substituting a(2)(k, θ, φ) = α2/(4π) into (5). The

covariance between the SH coefficients is thus

a
(2)
lm

[

a
(2)
l′m′

]∗

=

( |α2|
4π

)2 ∫

Ω∈S2

[Y m
l (Ω)]

∗
Y m′

l′ (Ω)dΩ

=

( |α2|
4π

)2

δl−l′,m−m′

where the simplification in the second line arises from the

orthogonality of SHs [4, p. 11]. The complete noise covariance

matrix is therefore

R(2)
alm

=

( |α2|
4π

)2

I[(L+1)2×(L+1)2] (41)

and the total covariance is

Ralm
= |α1|2 y(Ψ1)y(Ψ1)

H +R(2)
alm

. (42)

The effect of diagonal loading of Ralm
due to spherically

isotropic noise on the calculated SSPIV is shown in Fig. 6. The

error is negligible for positive SNRs and the average error is

less than 2◦ with SNR of -10 dB.

E. Single desired source plus spatially white noise

Sensor noise is typically modeled as spatially white noise

such that E
{

vvH
}

= σ2
vI[Q×Q] where σ2

v is the variance of

the noise, which is assumed to be the same at all sensors.

The spatial covariance matrix in the presence of spatially

white noise is

Rx̃lm
= E

{

x̃lmx̃H
lm

}

(43)

= Ralm
+Rṽlm

(44)

where Ralm
is defined in (25) and Rṽlm

= E
{

ṽlmṽH
lm

}

.

Substituting (13) gives
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Rṽlm
(kr) =E

{

ṽlmṽH
lm

}

(45)

=E
{

B(kr)−1Y (Ω)
H
Wv(k) (46)

·v(k)HWHY (Ω)
[

B(kr)−1
]H
}

(47)

≈σ2
v

4π

Q
B(kr)−1

[

B(kr)−1
]H

(48)

where Y (Ω)
H
WWHY (Ω) ≈ (4π/Q) I[Q×Q]. Thus

Rṽlm
(kr) is a diagonal matrix whose elements vary with

diag
{

1
|b0(kr)|

2

1
|b1(kr)|

2

1
|b1(kr)|

2

1
|b1(kr)|

2 . . .
1

|bL(kr)|2

}

which

is frequency dependent. At low frequencies, where L ≫ kr,

bl(kr) decreases with l and so the squared reciprocal of the

higher order terms dominate Rṽlm
(kr). This turns out to have

relatively little effect on the SSPIV accuracy. On the other

hand, at higher frequencies, bl(kr) is more similar for different

values of l making Rṽlm
(kr) closer to a scaled identity matrix.

For a particular SNR this has a more detrimental effect on the

SSPIV accuracy. Substituting the expressions in (25) and (48)

into (44), the average error in the SSPIV DOA is shown in Fig. 7

as a function of SNR for different values of kr for 32 sensors

on a rigid spherical baffle and L = 3. The results suggest that

spatially white noise, such as sensor noise, at positive SNRs

will cause < 1◦ error in the SSPIVs. The effect of estimation

errors in the spatial covariance matrices is addressed through

numerical simulations and real experiments in Sec. V and VI,

respectively.

V. NUMERICAL EXPERIMENTS

The PIV and SSPIV-based DOA estimation methods are

compared to two baseline methods from the literature for

single and multiple speech sources in a simulated reverberant

environment. Performance in a real acoustic environment is

later described in Sec. VI.

A. Simulation setup

Acoustic Impulse Responses (AIRs) were simulated up to 6th

order for a 32-element rigid spherical microphone array with

radius 4.2 cm centered at Cartesian co-ordinates (2.0 m, 2.5 m,

1.5 m) in a 5×6×3 m rectangular room using the image-source

method [33] modified to account for the scattering of a rigid

sphere [34].

Anechoic speech for each of 5 male and 5 female speakers

arbitrarily selected from the TIMIT database [35] was concate-

nated (without inserting any pauses) and randomly segmented

into ten 6-second sections per speaker. In each trial for each

source a randomly selected segment was convolved with the

simulated AIR to every microphone, the leading 2 seconds

were removed to ensure that the amount of reverberation was

consistent across the whole segment and the level adjusted

such that the direct path was normalised according to [36].

Independent realizations of white Gaussian noise were added

to each of the 32 microphone signals to give the desired direct

path SNR with respect to each source.

Condition 1: In each trial, a single source was placed 1.5 m

from the array in one of 24 directions given by all combi-

nations of φ ∈ {0◦, 30◦, . . . , 330◦} and θ ∈ {80◦, 100◦}.

Within each test condition, 4 different speech signals were

used, giving 96 test samples per condition.

Condition 2: Four sources were placed 1.5 m from the

array at 60◦ intervals in azimuth alternating between 80◦ and

100◦ inclination. To ensure the specific locations of the sources

did not bias the results, 12 possible source orientations were

separately tested by rotating the azimuth angles of all 4 sources

in 30◦ increments. For each orientation of the four sources, 8

combinations of speech signals were generated giving a total

of 96 test samples per condition.

Condition 3: Three moving source trajectories were simu-

lated lasting 10 seconds. For the first second the sources were

positioned at (80◦, 330◦), (100◦, 210◦) and (80◦, 90◦). For the

following 8 seconds the first source was stationary, while the

azimuths of the second and third sources followed sinusoidal

trajectories each with an amplitude of 30◦ and periods of 8 s

and 16 s, respectively, ending at (100◦, 150◦) and (80◦, 90◦).

For the last second all three sources were again stationary.

The trajectories were quantized to the nearest 5◦ azimuth

and the relevant segments of clean speech convolved with the

appropriate AIR using an overlap-add scheme. For each of the

10 speakers a single 10 second clean speech segment was used

in this case. In each of 30 trials a different random assignment

of speakers to source trajectories was used.

B. Calculation of PIVs and SSPIVs

For each trial, the 32 discrete-time microphone signals

were transformed into the Short Time Fourier Transform

(STFT) domain using a Hamming window with 75% overlap.

The stacked signal vector x(k, r) defined after (11) is then

reformulated as x(ν, ℓ) where ν and ℓ are the STFT frequency

index and frame index, respectively. An initial pilot study

was performed to investigate the choice of frame size. The

results indicated that frames of 4 to 8 ms gave the highest

concentration of PIVs around the true DOAs compared to frames

≥16 ms. The short frames increase the probability that the

Window-Disjoint Orthogonality (WDO) assumption [37] is true

and by having more TF-bins the distribution of the vectors’

directions is more regular.
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The maximum SH order used was L = 3 giving a maximum

frequency of 3850 Hz to ensure kr < L. The lowest frequency

bin was centered at 500 Hz, which avoids excessive noise

amplification due to mode strength compensation at lower

frequencies. The SFT was applied as in (10) with x(ν, ℓ)
replacing p(kr) and wq − 4π/Q ∈ [−0.0187, 0.0112].

The PIVs, Ĩ(ν, ℓ), were calculated according to (22) where k
has been replaced with the time-frequency index. The SSPIVs,

Ĩss(ν, ℓ), were calculated as detailed in Sec. III-C but using

R̂x̃lm
(ν, ℓ) in place of Ralm

, which is approximated in the

vicinity of frame index ℓ and frequency index ν by

R̂x̃lm
(ν, ℓ) =

1

JνJℓ

Jν−1
∑

jν=0

Jℓ−1
∑

jℓ=0

x̃lm(ν + jν , ℓ+ jℓ)

× x̃H
lm(ν + jν , ℓ+ jℓ) (49)

where Jν and Jℓ are the number of frequency bins and time

frames, respectively, included in the average. The averaging

across frequency is possible because in the SH domain the

steering vectors are independent of frequency [7]. A com-

prehensive experimental study was performed to investigate

the relationship between Jν , Jℓ and the STFT frame size.

Considering Jℓ giving time ranges of 4-256 ms, Jν giving

frequency ranges of 125-1000 Hz and STFT frame lengths of

4-64 ms, the results showed that calculating (49) over time and

frequency range of 32 ms and 250 Hz, respectively, with STFT

frame length of 8 ms gave the best results, although frame

lengths in the range 4-16 ms gave very similar results.

C. Baseline methods

The proposed intensity-based methods were compared to

the classical Plane-Wave Decomposition (PWD)-SRP approach

[5] and state-of-the-art FS-MUSIC with DPD test method (DPD-

MUSIC) [12].

1) PWD-SRP: The plane-wave decomposition (or regular)

beamformer [38] output is formulated as

Z(ϕ, ν, ℓ) = wlm(ν, ϕ)Hxlm(ν, ℓ) (50)

where ϕ is the look direction, wlm(ν, ϕ) =
[

W00W1(−1)W10W11 . . .WLL

]T
and Wlm(ν, ϕ)∗ =

bl(kr)Y
m
l (ϕ). The PWD beamformer maximizes the directivity

index and is equivalent to the MVDR under the assumption of

an uncorrelated diffuse noise field. The SRP follows directly

as SPWD(ϕ) =
∑

ν,ℓ Z(ϕ, ν, ℓ)Z(ϕ, ν, ℓ)
∗ up to a constant

factor. For consistency with the proposed methods, the frame

length was 8 ms.

2) DPD-MUSIC: The MUSIC spectrum is calculated from the

noise subspace of the frequency-smoothed spatial covariance

matrix, as defined in (26), as [12], [15]

SMUSIC(ϕ) =
∑

(ν,ℓ)∈A

1

‖UH
n (ν, ℓ)y(ϕ)∗‖2

(51)

where A defines the subset of TF-region indices which pass the

DPD test A = {(ν, ℓ) : η(ν, ℓ) > ε} where η(ν, ℓ) is the ratio

of first to second singular values of R̂x̃lm
(ν, ℓ) and ε = 6 is an

algorithm parameter, which was set as in [12]. It is assumed

that the effective rank of R̂x̃lm
(ν, ℓ) in those TF-regions which

pass the DPD test is unity and so the noise subspace has

dimension (L+ 1)
2 − 1. The frame length and values of Jν

and Jℓ were set as for SSPIV as this led to improved results

in Condition 2 compared to the parameter choice in [12] and

allows a direct comparison of computational complexity.

D. DOA estimation from PIVs and SSPIVs

A variety of approaches to DOA estimation from a set of

vectors have been proposed to deal with single [8], [26] and

multiple [11], [14] source situations. The analysis in Sec. IV

has shown that the directions of the calculated PIVs or SSPIVs

are expected to be concentrated around the DOA(s) of the

dominant sound source(s). The approach taken here finds

the peaks of a spatial cost function which approximates the

probability distribution of vectors as a smoothed histogram

over a regular 2D grid of directions.

For practicality of implementation we precompute a dictio-

nary containing a Gaussian kernel centered at each direction

lying on a regularly spaced NKθ×NKφ 2D grid. The jθ, jφ-th

element is thus defined as

Kjθ,jφ (ϕ) =
1

σ
√
2π

exp

(

−∠
(

ϕ, ψjθ,jφ

)2

2σ2

)

(52)

where ϕ is the direction of interest (or look direction),

σ is the standard deviation of the Gaussian kernel, jθ ∈
{0 . . . NKθ − 1} and jφ ∈ {0 . . . NKφ − 1}) denote the incli-

nation and azimuth indices, respectively, of the DOA, ψjθ,jφ =
(jθπ/NKθ, jφ2π/NKφ). A sparse dictionary is enforced by

setting entries smaller than λ to zero, i.e.

K̂jθ,jφ (ϕ) =

{

0 Kjθ,jφ (ϕ) < λ

Kjθ,jφ (ϕ) otherwise
. (53)

Defining χ(ν, ℓ) , (θχ, φχ) to be the direction associated

with each TF-bin (region) calculated using PIV (SSPIV), the

corresponding dictionary indices are determined according

to Jθ(χ(ν, ℓ)) = ⌊θχNKφ/π + 0.5⌋ and Jφ(χ(ν, ℓ)) =
⌊φχNKφ/(2π) + 0.5⌋ where ⌊·⌋ is the floor operator. Thus the

smoothed histogram is calculated without any multiplications

as

H (ϕ) =
∑

(ν,ℓ)∈T

K̂Jθ(χ(ν,ℓ)),Jφ(χ(ν,ℓ)) (ϕ) (54)

where T is the set of TF-bins in the observation interval.

Finally, the DOAs are estimated as the directions corre-

sponding to all the peaks in H or the Nd largest peaks,

whichever is smaller. This allows an analysis of the trade-off

between missed detections and clutter measurements, which

is important for tracking moving sources.

The employed method of estimating DOAs from a set of vec-

tors is similar to [18] in the formation of a smoothed histogram

but it does noes not use matching pursuits to find the peak

positions. This makes our approach more generic (because it

does not require Reverberation Time (RT)-dependent dictionary

elements) and computationally more efficient, which is signif-

icant when considering a reasonably dense 2D search grid (

[18] only considered 1D DOA estimation).
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The parameters specific to the proposed method were:

σ = 4◦; NKθ=91 and NKφ=180, which corresponds to 2◦

resolution in azimuth and inclination; and λ = 0.001/(σ
√
2π),

which removes entries >15◦ from the look direction.

For all methods (PIV, SSPIV, PWD-SRP and DPD-MUSIC) the

corresponding spatial cost function were computed over a

2D grid with 2◦ resolution in azimuth and inclination. In

Conditions 1 (and 2) the number of sources was assumed

known a priori. Thus, using Nd = 1 (and 4) a single (set

of) estimated DOA(s) was obtained for each trial by setting

the observation interval to the full length of the signal (4

seconds). In Condition 3 the number of sources was assumed

unknown. In this case Nd = 12 DOA estimates were obtained

every 100 ms using a causal 250 ms observation interval. For

moving sources the optimal length of observation interval is a

trade-off between robustness to noise and the ability to follow

the true source direction.

E. Performance metrics

For Condition 1 the Root Mean Square (RMS) error in the

DOA of the single source was computed directly. For Condition

2 the four DOA estimates were first associated with the true

DOAs. Following the procedure of [12], the error was calculated

for each possible permutation and a source was considered

found if the error was less than 20◦. This limit ensured that

any estimated DOAs lying approximately midway between the

true DOAs were excluded. The assignment which led to the

maximum number of found sources was chosen. The RMS error

in the estimated DOAs was calculated across those trials in

which all 4 sources were found.

For Condition 3, with 3 moving sources and up to 12 esti-

mated DOAs, there were potentially more estimated DOAs than

sources. For each time step an estimated DOAs was assigned

to a source if it was within 30◦ of the true source direction

at that time where the wider limit compared to Condition 2

reflects the observed variance in the estimates around the true

source DOAs. With this approach, each source could have more

than one estimate assigned to it. The RMS error was calculated

for each source for all assigned estimates. In many time steps

a particular source had no estimates assigned to it. The miss

rate for each source was the proportion of time steps in which

this occurred. The clutter rate was calculated as the average

number of estimates which were not assigned to a source on

each time step.

F. Results

Figure 8 shows the angular error in estimated DOA averaged

across 96 trials in Condition 1 for each combination of

SNR, RT and algorithm. In general, the error increases with

reverberation time and noise level. PWD-SRP is the only method

not to achieve perfect performance under anechoic conditions

while DPD-MUSIC achieves the best performance in all cases.

Comparing PIV and SSPIV, any benefit of SSPIV is only apparent

under the worst case conditions (RT: 0.7 s, SNR: 10 dB) where

SSPIV is 0.4◦ (18%) more accurate than PIV. This suggests that

for single source DOA estimation the PIV method is adequate

in our tests.

Figure 9 shows the number of found sources in Condition 2.

For both PIV and PWD-SRP increasing reverberation has a strong

effect on the ability to localize all the sources. SSPIV provides a

clear improvement over both these methods while DPD-MUSIC

is hardly affected by reverberation and only slightly by noise.

Figure 10 shows the RMS error in the estimated DOAs for

those trials in which all four sources were found. Since for PIV

with RT 0.7 s there were relatively few, if any, trials in which

this condition was satisfied those results should be disregarded.

In general, the error is substantially more than in Condition 1

(apart from when there is no reverberation, where again only

PWD-SRP is less than perfect) and the general trend for the error

to increase with RT is as expected. The SSPIV method achieves

less than half the error of PWD-SRP and a substantial (1.8-

3.8◦) improvement over PIV. Even under the most challenging

conditions tested (RT 0.7 s, SNR 10 dB) the RMS error is only

4.8◦. Compared to DPD-MUSIC the increase in error for SSPIV

under reverberant conditions is between 0.8◦ (RT 0.3 s, SNR

25 dB) and 1.9◦ (RT 0.7 s, SNR 40 dB).

Figure 11 shows the number of found sources as the

duration of the observed signals increases for RT: 0.5 s

and SNR: 25 dB. With 2 s of data, DPD-MUSIC is able to

identify all the sources. Whilst longer observation intervals

continue to improve the performance of both PIV and SSPIV, the

performance of PWD-SRP plateaus after 2 s. With only 250 ms

of data, none of the methods consistently finds all the sources.

Condition 3 addresses the trade-off between the accuracy of

DOA estimation, the probability of identifying each source

and the number of erroneous estimates.

Figure 12 shows the estimated azimuth angles obtained in

a representative trial in Condition 3. The symbols convey

the assignment of each estimate to a particular source or

classification as clutter based on knowledge of the ground

truth. Qualitatively, it can be observed that SSPIV has a lower

error and fewer missed detections than PIV. DPD-MUSIC has low

error but a high amount of clutter. This is caused by DPD-MUSIC

only computing the spatial spectrum over those TF-regions

where one direct path is dominant (51). If a particular source

was not dominant in any TF-regions during the observation

interval no peak will exist at the corresponding position in the

spatial spectrum. Since, in this example, the 3 largest peaks

are always selected, regardless of their amplitude, one or more

of those peaks can be erroneous.

For all methods the amount of clutter can be reduced by

discarding peaks which fall below a threshold. However, this

risks discarding weak observations which are in fact accurate.

Figure 13(a) shows the relationship between RMS error and

miss rate due to varying the threshold. As expected, for all

methods, when only the largest peaks are retained the error

is reduced but at the expense of more misses. Consistent

with the results in Condition 2, SSPIV is more accurate than

PIV, achieving approximately 4◦ less error for a given miss

rate and DPD-MUSIC achieves the lowest RMS error. However,

the relationship between clutter rate and miss rate, shown

in Fig. 13(b), suggests that, for a particular miss rate, SSPIV

achieves the lowest clutter rate. This is especially apparent for

miss rates between 0.25 and 0.5 where DPD-MUSIC averages

0.7-2.3 clutter measurements per time step whereas SSPIV
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Fig. 8. Effect of RT and SNR on RMS DOA estimation error for (a) PIV, (b) SSPIV, (c) PWD-SRP and (d) DPD-MUSIC for Condition 1 (one source).
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Fig. 9. Effect of RT and SNR on number of found sources for (a) PIV, (b) SSPIV, (c) PWD-SRP and (d) DPD-MUSIC for Condition 2 (maximum of 4).
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Fig. 10. Effect of RT and SNR on RMS DOA estimation error for (a) PIV, (b) SSPIV, (c) PWD-SRP and (d) DPD-MUSIC for Condition 2 (four sources).
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Fig. 11. Average number of found sources as a function of length of
observation for Condition 2 with RT: 0.5 s and SNR: 25 dB.

averages less than 0.3. These results suggest that SSPIV is better

suited to applications where clutter measurements and missed

detections are more damaging than a small increase in absolute

error.

G. Computational cost

The computational costs of the proposed methods were

compared to the baseline algorithms for a scenario with

two simultaneous sources for different grid resolutions. The

computational cost of the algorithms is evaluated in terms of

their real-time factor (i.e. the ratio of elapsed time for the

computation to the duration of the signal) as implemented in

Matlab running on a general purpose computer (dual core Intel

Core i5 processor, 2.6 GHz clock speed, 8 GB RAM). This

metric does not include the precomputation time for signal

independent variables. In our implementation the PWD-SRP

and DPD-MUSIC algorithms use precomputed steering vectors

while the PIV and SSPIV methods use precomputed dictionary

elements. These took {0.0073, 0.0122, 0.0726, 0.2954} s and
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Fig. 12. First 3 estimated azimuth angles as a function of time for one representative trial in Condition 3 using (a) PIV, (b) SSPIV, (c) PWD-SRP and (d)
DPD-MUSIC. Lines show ground truth trajectories. Symbols represent source assignment used to calculate metrics ( : source 1, : source 2, : source 3, :
clutter).
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Fig. 13. The effect of varying the estimate acceptance threshold on the
relationship between (a) RMS error and miss rate, and (b) clutter rate and
miss rate for each algorithm ( : PIV, : SSPIV, : DPD-MUSIC).
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Fig. 14. Real-time factors of the compared algorithms for different angular
resolutions.

{0.0040, 0.0181, 0.3051, 2.9103} s, respectively, to compute

for grid resolutions {10◦, 5◦, 2◦, 1◦}.

The results are shown in Fig. 14. From (22) and (27), the

computational cost of calculating PIVs and SSPIVs does not

depend on the resolution of the DOA analysis. However, the

grid density determines the number of directions for which the

summation in (54) must be performed. This weak dependence

on grid resolution is noticeable in Fig. 14 for PIV, because the

calculation of the PIVs themselves is very fast (10× faster than

real-time), but not for SSPIV, where the computation time is

dominated by (49) and (26). In contrast, both PWD-SRP and

DPD-MUSIC have rapidly increasing computational cost as the

grid density is increased because all directions in the grid

are evaluated for every TF-bin. With a 2◦ resolution, as used

in the reported performance evaluation, SSPIVs is an order of

magnitude faster than DPD-MUSIC.

H. Discussion

The results for Condition 1 and the clear computational

advantages suggest that for single source DOA estimation the

PIV method is preferable to the other methods considered.

However, Condition 2 demonstrates that when multiple talkers

are simultaneously active subspace methods offer substan-

tial improvements. By using the noise subspace and only

considering TF-regions with a single dominant source, DPD-

MUSIC achieves slightly better accuracy than SSPIV. However,

Condition 3 shows that when short observation intervals are

used, as is required for moving sources, this selectivity comes

at the price of a higher proportion of clutter estimates for

a given miss rate. Since SSPIV also requires significantly

less computation than DPD-MUSIC at dense grid resolutions,

it is particularly well suited to DOA estimation in situations

involving multiple, moving speakers.

VI. EXPERIMENTAL VERIFICATION

To demonstrate the efficacy of the proposed methods, speech

was recorded in a real room with dimensions of approximately

10.3×9.2×2.6 m and a reverberation time of 0.4 s. Speech

signals were recorded using an Eigenmike 32 channel rigid

spherical microphone array with radius 4.2 cm located close

to the centre of the room. In the first scenario four talkers were

simultaneously active. These were arranged at approximately

60◦ intervals and their inclinations alternated to be above or

below the horizontal plane of the array, according to whether

they were seated or standing. In each case the projection of

the source distance in the horizontal plane was approximately

1.5 m. Figure 15 shows smoothed histograms for a single 4 s

observation interval of PIVs and SSPIVs. Peaks corresponding

to the four sources are present in both cases but the definition

of the peaks is much more distinct for SSPIV.

DOA estimates were calculated every 0.1 s using a sliding

4-second observation window of PIVs and SSPIVs. For each

observation a smoothed histogram was computed and the

largest four peaks selected as the DOA estimates. The azimuth

angle estimates for a representative extract of the signal are
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Fig. 15. Smoothed histogram of (a) PIVs and (b) SSPIVs for observation
interval at 14 s in experiment 1. Contours indicate histogram values in dB
with respect to maximum value. Colormap is the same in both plots.
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(×) SSPIV using a 4 second observation interval. Grey lines indicate ground
truth azimuth.

shown in Fig. 16. The ground truth DOAs were measured with

an estimated uncertainty of ±2.5◦ and are shown as thick

grey lines. The DOA estimates produced by both the proposed

methods coincide with the ground truth, but it can be seen

that the SSPIV method has less variability and is free from

erroneous estimates.

So as to be relevant to practical scenarios with moving

sound sources, in the second scenario, two sources were

recorded whilst moving around a radius of 1.5 m. In this

case, in order to resolve the position, a sliding snapshot of

250 ms was used. Therefore each histogram was constructed

from 1/16 of the data points compared to the first scenario. The

resulting azimuth estimates as a function of time are shown

in Fig. 17. The estimated error in the ground truth is ±10◦.

Compared to the static case, the estimates are clearly more

noisy but generally follow the ground truth trajectories. SSPIV

and DPD-MUSIC clearly have fewer outlying estimates than PIV

or PWD-SRP and in most cases these can be attributed to short

pauses in the speech. Since it is assumed that both sources are

active at all times, a peak in the histogram or spatial spectrum

due to noise will yield an erroneous DOA. For all methods apart

from PWD-SRP there is a clearly visible oscillatory component

to the estimated trajectories. The ground truth indicates the

overall trajectory but video analysis of the recordings reveals

that the talkers’ heads followed an oscillatory motion due to an

inverted pendulum effect as they side-stepped radially around

the microphone array. This suggests that in practical situations
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Fig. 17. Estimated DOAs as a function of time for (a) PIV, (b) SSPIV (c) PWD-
SRP and (d) DPD-MUSIC using a 0.25 s observation interval for two moving
sources. Grey lines indicate ground truth trajectory and voice activity.

both the proposed methods would be suitable for tracking

detailed source movements with the SSPIV method producing

fewer outlier estimates.

VII. CONCLUSIONS

Two intensity-based methods of DOA estimation operating

in the SH domain have been presented and compared. The

PIV method was shown to be computationally efficient and,

in simulated experiments with a single source, was accurate

to within about 1◦ across a range of SNRs (25-40 dB) and RTs

(≤0.7 s) and to within 2.5◦ in the most challenging case tested

(SNR 10 dB, RT 0.7 s).

The SSPIV method exploits frequency smoothing followed

by subspace decomposition of the spatial covariance matrix.

As a result it demonstrated better robustness to interfering

sound sources, coherent reflections, diffuse noise and sensor
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noise than PIV. The SSPIV method is an order of magnitude

faster than DPD-MUSIC, yet is only slightly less accurate.

In simulated experiments with four simultaneously active

sources, the mean angular error in the most challenging

condition (SNR 10 dB, RT 0.7 s) was 4.8◦ for SSPIV, compared

to 3.2◦ for DPD-MUSIC and 8.8◦ for PWD-SRP. Furthermore,

it was shown that for moving sources SSPIV offered a better

trade-off between the number of clutter measurements and the

number of missed detections. This suggests the SSPIV method

is particularly suitable for tracking applications such as in

robot audition.

Finally a real world experiment demonstrated both PIVs

and SSPIVs to be effective in practice for both stationary and

moving sources.
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