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Performance evaluation of direction-of-arrival (DOA) estimation algorithms has continuously drawn signi�cant attention in the
past years. Most previous studies were conducted under the situation that antenna element separation is about half wavelength in
order to avoid the appearance of grating lobes. On the other hand, recent developments in wireless communications have favoured
the use of portable devices that utilize compact arrays with antenna element separations of less than half wavelength. Performance
evaluation of DOA estimation algorithms employing compact arrays is an important and fundamental issue, but it has not been
fully studied. In this paper, the performance of the matrix pencil method (MPM) that applies to DOA estimations is investigated
through Monte Carlo simulations. 
e results show that closely spaced emitters can be accurately resolved using linear compact
array with an array aperture as small as around half wavelength.

1. Introduction

Direction-of-arrival (DOA) estimation is one of the most
important applications in array signal processing. In the
context of array signal processing, these algorithms can be
grouped into three categories: conventional methods, sub-
space methods, and maximum likelihood techniques [1–4].

roughout the last two decades, subspace methods have
achieved great success due to their low complexity and rea-
sonable performance. Out of all the subspace methods, Pisa-
renko’smethod [4] was one of the �rstmethods that exploited
the structure of the data model. Schmidt [5] then studied the
signal properties of a sensor array and introduced the Mul-
tiple Signal Classi�cation (MUSIC) algorithm. 
e MUSIC
algorithm exploits the geometrical structure of the signal.
Performance evaluations of the MUSIC algorithm have been
well studied in the 1980s tomid-1990s, for example [6, 7].
e
main advantage of subspace methods over the conventional
beamforming method is that the resolution is not limited by
the aperture of the entire array, and subspace methods are
therefore also known as super resolution techniques [8].

Another well-known subspace method is Estimation of
Signal Parameters via Rotational Invariance Techniques
(ESPRIT) [9, 10], which exploits the array structure such that
the speci�c knowledge of the array manifold is not required.
Compared to MUSIC, it is computationally more e�cient
without the need of searching peaks throughout the entire
range of angles. A review about subspace methods from the
statistical prospective can be found in [4]. In addition, there
is another subspace method, known as the matrix pencil
method (MPM), which was �rst applied to damped exponen-
tial extractions from transient electromagnetic signals [11–
13] and later to DOA estimations [14–20]. One signi�cant
advantage of MPM over MUSIC and ESPRIT is that DOA
estimation can be done using a single snapshot instead of the
covariance matrix that requires a large number of snapshots
[15, 16]. 
e incoming directions can be determined directly
without the need for searching among all the directions as in
the MUSIC. Even with coherent signals, spatial smoothing is
not required.


e DOA estimation problem is about estimation of
undamped exponentials based on the measured samples of
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the signal from an array. Performance evaluations of subspace
methods and the corresponding Cramer-Rao Lower Bound
(CRLB), which gives the lower bound on the variance of any
unbiased estimator, have been well studied for the estimation
of a single damped/undamped exponential (e.g., [21–28]).
Attempts have also been made for the case with two expo-
nentials embedded in the signal. For instance, Stoica and
Nehorai [26] have studied the DOA estimation performance
of MUSIC for the case of two equal powered signals, and
the results showed that the variance of MUSIC algorithm is
smaller when (i) the number of sensors (the length of data)
increases, (ii) the signals are not highly correlated, and (iii)
the two signals are not closely spaced. Steedly and Moses
[27] derived the complete expressions for the CRLB of the
parameters of an exponential model with one set of damped/
undamped exponentials and multiple sets of amplitude coef-
�cients. For the case of two exponentials, numerical examples
have shown that the angle CRLB is lower as the data length is
large enough, and the signals are not closely spaced. In these
studies, multiple snapshots of the signals or a single snapshot
with long data length [27] are considered, and the separation
between the sensors is usually �xed to the half wavelength.

is is equivalent to the case where the array aperture is
large (more than a wavelength if more than 3 elements). Such
arrays are sometimes known as “standard arrays.” 
e half
wavelength separation is essentially the upper limit ofNyquist
sampling rate [4] that avoids the appearance of grating lobes
in the visible region of an array. At the same time, it provides
the largest possible array aperture potentially resulting in the
highest resolution, for instance, in conventional beamformers
[1]. In addition, another practical consideration is the mutual
coupling e�ect between antenna elements. In most array
signal processing algorithms, the algorithms are developed
under the assumption that interactions between array ele-
ments can be ignored. Mutual coupling is usually treated as
a source of noise. Calibrations and preprocessing procedures
are required to compensate such an undesirable e�ect [29–
31]. Recent work has demonstrated that the undesirable
mutual coupling e�ect can be e�ectively compensated for
arrays down to ≈ 0.1�, both numerically [32, 33] and experi-
mentally [34].

In the last two decades, there has been signi�cant
interest in reducing the physical dimensions of existing
electronic devices with the rapid development of the elec-
tronics industry. In line with this development, recent
applications in antenna arrays have been focused on com-
pact array design [35–37] with less than a half wave-
length element separation. To our knowledge, the perfor-
mance of subspace methods under the situations where
(i) the array aperture is signi�cantly reduced to less than
a wavelength and (ii) the increment of the number of
sensors is within such a small array aperture has not been
well exploited. Perturbation analysis for subspace meth-
ods and the corresponding CRLB are well studied for
the single exponential process. When there is more than
one mode embedded in the signals, however, the variance
[21] and the CRLB [27] of the estimation problem are
given in the form of matrix expressions. 
e results of how
array aperture and sampling rates change can a�ect the

performance of subspace methods, however, cannot be easily
observed.

In view of this, this paper aims to characterize the e�ect
of (i) changes in the array aperture with a �xed number
of elements and (ii) changes in the number of elements in
a �xed aperture on the accuracies DOA estimations with
signals corrupted by Additive Gaussian White Noise
(AGWN) using a Monte Carlo approach. In particular,
the MPM will be considered. 
e focus of this study is on
the e�ect of variations of the array aperture on the MPM
algorithm under the ideal sensor condition. A brief review of
MPM is �rst given followed by the Monte Carlo simulations
and discussions towards the end of the paper.

2. Matrix Pencil Method (MPM) for
DOA Estimation

Consider a space where there are � + 1 signals coming from
di�erent directions and a uniform linear array (ULA) of� + 1 identical sensors. 
e sensors are located along the�-axis with element separation between adjacent sensors
denoted by Δ. 
en, the signal �(�) received by the sensors
can be written as [11, 14–22]

� (�) = �∑
�=0


� exp(�
� + �2�Δ� cos��� ) , 0 ≤ � ≤ �,
(1)

where 
�, 
�, and �� are, respectively, the amplitude, phase,
and DOA of each of the � + 1 plane wave sources incident
on the ULA. � is the wavelength of the operation frequency.
Equation (1) can also be written as

� (�) = �∑
�=0

�����, (2a)

where

�� = 
� exp (�
�) , (2b)

�� = exp[(�2�Δ cos��)� ] . (2c)

In matrix form, this can be written as

[[[[
[

� (0)� (1)
...� (�)

]]]]
]
= [[[[
[

1 1 . . . 1�0 �1 . . . ��
...

...
. . .

...��0 ��1 ⋅ ⋅ ⋅ ���
]]]]
]
[[[[
[

�0�1
...��
]]]]
]

(2d)

or

x = Yc. (2e)
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Next, we de�ne the � × (� − � + 2)matrix X� using �( ), the
elements of X,

X
� = [[[[

[

� (0) � (1) ⋅ ⋅ ⋅ � (� − � + 1)� (1) � (2) ⋅ ⋅ ⋅ � (� − � + 2)
...

...
. . .

...� (� − 1) � (�) ⋅ ⋅ ⋅ � (�)
]]]]
]
, (3)

where � is the pencil parameter which satis�es the criteria of(� + 1 − �) ≥ � ≥ (� + 2). Applying a singular value decom-
position (SVD) to X�, we have

X
� = UΣV�. (4)


e superscript “"” denotes the complex conjugate transpose
of a matrix. If the data is not contaminated by noise, the
�rst � + 1 singular values are nonzero, and, hence, � can be
determined. If the data is noise contaminated, the parameter� is estimated by observing the ratio of the various singular
values to the largest one as de�ned by [11]

#�#max

≈ 10−	, (5)

where $ is the number of accurate signi�cant decimal digits
of the data �(�). 
e singular values for which the ratio in
(5) is below 10−	 are essentially noise singular values, and
they should be discarded. It should be noted that when the
incoming signals are spatially well resolved, these results in
larger singular values are easier to be solved. For instance, if
we have two cases with incoming signals from the directions
of (i) 5∘ and 6∘ and (ii) 5∘ and 46∘, the second singular value in
case (ii) is larger than that in case (i). As a result, only the cases
of closely spaced emitters are considered in this work. 
e
proposition here is that if we could �nd out how MPM per-
forms under various array con�gurations for closely spaced
emitters, it should also be able to work for spatially well-
resolved signals.

Once � is determined based on the condition given in
(5), the submatrix of U with the �rst � + 1 columns can
be formed and denoted as U�. To estimate the DOAs, the
following matrix pencil problem is solved:

U2 − ��U1 = 0, (6a)

or equivalently,

U1
+
U2 − ��I = 0, (6b)

where U1 is U� with the last row deleted, U2 is U� with the
�rst column deleted, �� is the eigenvalue of the matrix pencil
problem, I is the (� + 1) × (� + 1) identity matrix, and the
superscript “+” denotes the Moore-Penrose pseudoinverse of
a matrix [21] de�ned as

U1
+ = {U1�U1}−1U1�. (6c)


e superscript “−1” denotes the inverse of a matrix. Once
(6a), (6b), and (6c) are solved, the DOAs can be obtained by
the following formula [16, 18]:

�� = cos−1 [� ln (���)�2�Δ ] , (7)

where ' = 1, 2, . . . , � + 1 (� + 1 singular values from (6a),
(6b) and (6c)). It is well known that if the argument of the

function cos−1 in (7) is greater than 1 or a complex number,
the resultant angle will become complex which is considered
as a fail estimate for MPM.
e resultant complex estimation
angle can be used as a sanity check which indicates thatMPM
fails to resolve all the signals in that particular snapshot.

3. Monte Carlo Simulations


is section presents Monte Carlo simulations of DOA esti-
mations using ULAs with di�erent array apertures and dif-
ferent number of elements.
ree cases are presented to illus-
trate our �ndings. First, a four-element ULA with di�erent
apertures under the illumination of two closely spaced emit-
ters is studied. 
en, ULAs with �xed apertures but di�erent
numbers of elements are considered. Lastly, DOA estimations
of three closely spaced incoming signals using arrays with a
�xed aperture but di�erent numbers of elements are studied.

Case 1 (Four-Element ULAswithDi�erent Apertures (2 Incom-
ing Signals)). A ULA with four ideal isotropic sensors is
studied. 
e objective is to investigate how the accuracy of
DOA estimation is a�ected by the reduction of the array
aperture. 
e separation of the array elements is changed
from Δ = 0.5� down to 0.05�, with a step size of 0.05�. 
is
corresponds to a reduction of the array aperture (de�ned as
the physical length of the array) from 1.5� to 0.15�. 
e case
withΔ = 0.5� is the usual “standard” interelement separation
used in those conventional arrays.

Two equal-power and equal-phase coherent sources come
from the azimuth angles of �1 = 5∘ and �2 = 6∘, which are
close to the end�re direction (� = 90∘ corresponds to the
broadside direction).
e signals (bothmagnitude and phase)
are contaminated with AGWN at a signal-to-noise ratio
(SNR) of 5 dB. To evaluate the performance of the DOA esti-

mations, the average bias, *, is introduced and used as a
metric throughout this paper. It is given by

* = �∑

=1

*
-, (8)

where *
 = |�̂
 − �
| is the absolute value of the bias of the
estimated direction (�̂
 being the mean of the estimated

directions; �̂
 is determined from 10,000 independent Monte
Carlo simulations), - is the number of incoming signals
which is 2 in this case. For a successful DOA estimation, all
the signals should be accurately estimated. A small value of
average bias is obtained only if all the incoming signals are
accurately estimated.At each value of interelement separation
(Δ) shown in the �gures in this paper, the average bias is
obtained by 10,000 independent Monte Carlo simulations.


e results are shown in Figure 1. It is shown that the aver-
age biases decrease as the interelement separation increases.

is indicates that the estimated directions are more accurate
when the interelement separation is large. However, whenΔ = 0.05�, the average bias is 3∘ when the SNR levels of the
two incoming signals are both 5 dB. 
is means that MPM
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Figure 1: Summary of DOA estimations using MPM for a four-
element ULA with interelement separation varying from 0.05� to0.5�. Two equal-power incoming signals are from the directions of�1 = 5∘ and �2 = 6∘ with an SNR of 5 dB and 3 dB, respectively. 
e
graph shows (i) average bias of the estimated directions and (ii) bias
of the estimation of signals 1 and 2.

fails to resolve the two incoming signals as the di�erence
between the two signals is only 1∘. To probe further, the
biases of the estimated directions of the two signals are also
included. It is interesting to see that for the case of Δ = 0.05�,
the bias of �1 is about 0.4∘ (i.e., the estimated direction is
about 5.4∘), which is close to the mean of the two incoming
signals (5∘ and 6∘). 
e bias of �2 is around 6∘ which is far
from the actual incoming direction, which further con�rms
that MPM fails to resolve the two incoming signals under
such an array con�guration. To investigate if the performance
varies at di�erent SNR level, the same DOA problem is
repeated except that the SNR level is 3 dB. It is found that there
is no signi�cant di�erence as compared to the case of SNR =
5 dB.

Next, we study the e�ect on the performance of MPM
when the incoming signals are not of equal power and equal
phase. 
e entire procedure is repeated for the DOA estima-
tion of �1 = 5∘ and �2 = 6∘ except that the amplitudes of the
two signals are di�erent and they are 90∘ out of phase. For�2 = 6∘, four di�erent amplitudes of
2 = 2
1, 3
1, 5
1, and10
1 are considered, where 
1 and 
2 are the amplitudes of
the incoming signals at �1 = 5∘ and �2 = 6∘, respectively.

e amplitude of the signal from �1 = 5∘ remains to be the
same for all cases. 
e average biases for the four cases are
shown in Figure 2(a). 
e average biases in the range of 1.5∘
to 2∘ are found when Δ = 0.05�, which is considered as a fail
estimate as the di�erence between the two incoming signals is
only 1∘. AsΔ is larger than 0.2�, the average biases decrease to
the level of 10−3∘ which agrees with the results for the equal-
power and equal-phase case shown in Figure 1. 
e biases of

the two signals are also included in Figure 2(b). AtΔ = 0.05�,
the biases of�1 = 5∘ and�2 = 6∘ are at the levels of 0.5∘ and 3∘,
respectively, which is similar to the results for the two signals
with equal power in Figure 1. Such biases indicate that the two
signals cannot be accurately resolved with this array aperture.

To investigate the performance of MPM for DOA esti-
mations when the incoming signal direction changes, DOA
estimation problems with the two signals coming from the
directions of �1 = 10∘ to 90∘ and �2 = �1 + 1∘ are considered.
Here, only the angular range of 0∘ to 90∘ is considered
as the angular range of 90∘ to 180∘ is simply the mirror image
of that of 0∘ to 90∘. 
e same DOA estimation calculation
procedure is repeated for all cases independently. 
e step
size of Δ�1 = 5∘ is considered, and the results are shown in
Figure 3. Similarly, the average biases decrease as Δ increases
for the same incoming signals. 
e results show that the

average bias is below 10−3∘ when the array element separation
is greater than or equal to 0.2�. Furthermore, we also note
from the �gure that as the signals are coming from a direction
closer to the broadside direction of 90∘, the accuracy of esti-
mation increases quite signi�cantly even when the element
separation remains the same. For instance, when the element
separation is 0.05� with incoming signals of �1 = 10∘ and�2 = 11∘, an average bias of ∼ 0.7∘ is resulted. When the
incoming signals become �1 = 55∘ and �2 = 56∘, the average
bias now becomes < 10−4∘ which is considered as accurate
(with less than 0.01% error).

Case 2 (Fixed Aperture ULAs with Di�erent Numbers of
Elements (2 Incoming Signals)). In the previous case, when
the two closely spaced emitters approach to the end�re
directions, it was found that the array aperture of the four-
element ULA has to be ≥ 0.60� (Δ ≥ 0.2�) for an
accurate DOA estimation. Figure 4 shows the results of DOA
estimations with di�erent �xed array apertures that ranged
from 0.25� to 1�, but with a di�erent number of array
elements varying from 4 to 20. Note that under a �xed
array aperture, the interelement separation has to be changed
with the change in the number of elements in the array. For
example, for the four-element array with an aperture of 0.5�,
the interelement separation is 0.1667�(= 0.5�/(4 − 1)).


e array apertures of 0.25� and 0.5� are �rst considered,
and the results are shown in Figures 4(a) and 4(b). When the
incoming signals are close to the end�re directions (between5∘ and 15∘), the average biases decrease when the number
of elements increases from 4 to 20. As the incoming signals
aremoving towards the broadside direction (between 20∘ and90∘), the average biases decrease rapidly with an average bias

less than 10−4∘ regardless of the number of elements.
Now, the same estimation procedure is repeated with an

array aperture of 0.75�. When the aperture is increased from0.5� to 0.75�, as shown in Figure 4(c), the average biases have
been signi�cantly reduced for all cases (below 2.2 × 10−3∘ for
all cases).
emaximum average bias is reduced from 1.56 ×10−2∘ (0.5� aperture) to 2.2 × 10−3∘ (0.75� aperture), which
is almost a factor of 7. 
is indicates a signi�cant improve-
ment of the DOA estimations compared with the two cases
of aperture size of 0.25� and 0.5�.
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Figure 2: Summary of DOA estimations using MPM for a four-element ULA with interelement separation varying from 0.05� to 0.5�. 
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1 = 90∘) and �2 = 6∘(
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2 = 180∘) with an SNR of 5 dB.
(a) Average biases of the estimated directions; (b) biases of the estimation of signal 1 and signal 2.
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e step size
of Δ�1 = 5∘ is considered.
e �gure shows the average biases of the
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e previous results show that for a �xed small array
aperture (especially for the cases of 0.25� and 0.5�), the
accuracies of DOA estimation can be improved by increasing
the number of elements when the incoming signals are close
to the end�re directions. When the incoming signals are
moving towards to the broadside direction, increasing the

number of elements under a �xed aperture does not neces-
sary improve the accuracies of the estimation. Comparing
between signals coming from the broadside direction and the
end�re directions, better accuracies are expected under the
same array con�guration.

When the array aperture is further increased to 1�, as
shown in Figure 4(d), it is not obvious if increasing the
number of elements enhances the DOA performance under
this aperture. On the other hand, it is worth noting that as the
array aperture increases from 0.25� to 1�, the average biases
for all cases (di�erent number of elements and incoming
signals) decrease. 
is indicates that the accuracy of DOA
estimation depends more on the array aperture than on the
number of elements when the aperture is su�ciently large.
While not presented here, the results on the array apertures
of 1.25� and 1.5� indicate that there is some improvement
of DOA accuracy as the number of elements increases. 
ese
results show that further increase in the number of elements
for large aperture arrays (> 1�) only yields minor improve-
ment to the accuracy of the estimated angles.

Case 3 (Fixed Aperture ULAs with Di�erent Number of
Elements (3 Incoming Signals)). In the last case, we consider
DOA estimation problems of three closely spaced, equal-
power, and equal-phase signals with an SNR of 5 dB come
from the directions from �1 = 45∘ to 90∘ with Δ�1 = 5∘,�2 = �1 + 1∘, and �3 = �1 + 2∘. First, the array aperture
of 0.75� is investigated. 
e number of array elements varies
from 6 to 20 (the minimum number of sensors required for
resolving 3 incoming signals using MPM is 6). 
e average
biases of the DOA estimations are shown in Figure 5(a). It
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Figure 4: Summary of DOA estimations using MPM for a four-element ULA with the number of array elements varying from 4 to 20. Two
equal-power incoming signals are from the directions of �1 = 10∘ to 90∘ and �2 = �1 + 1∘ with an SNR of 5 dB. 
e step size of Δ�1 = 5∘ is
considered. 
e �gures show the average biases of the estimated direction. 
e apertures of the arrays are (a) 0.25�, (b) 0.5�, (c) 0.75�, and
(d) 1�.
can be clearly seen that the average biases decrease with the
number of the elements. Compared to the case with two
signals of �1 = 45∘, �2 = 46∘ with the array aperture of 0.25�
(Figure 4(a)) and the case of �1 = 5∘, �2 = 6∘ with the
array aperture of 0.75� (Figure 4(c)) with 6 array elements,
the average biases presented in Figure 5(a) (6∘) are much

higher than those in Cases 1 and 2 (10−4∘ and 10−3∘, resp.).

is is because resolving three incoming signals using MPM
and resolving two incoming signals are two di�erent math-
ematical problems with di�erent CRLB, and they should
be considered separately. As expected, when the incoming
signals are moving towards the broadside directions, the
average biases reduce to 2∘ for the case of 6 antenna elements.

e average biases are also reduced as the number of elements
increases. However, even with 20 elements, the average biases
are between 0.5∘ and 3∘. 
ese bias values are considered as

high as the actual separations between the three sources, only1∘, and thus it cannot be concluded that the sources are clearly
resolved.

Lastly, the incoming signals of the same DOA problems
and the array aperture are increased to 1� and 1.25�, and
the average biases are shown in Figures 5(b) and 5(c),
respectively. For the same DOA problem, the average biases
decrease as the number of array element increases. At an array
aperture of 1�with 20 array elements, the average biases are at
a level less than 0.1∘ for DOA when the incoming signals are
more than 75∘. For the DOA problem with incoming signals
(�1 = 45∘, �2 = 46∘, and �3 = 47∘) with 20 array elements,
the average bias is 0.628∘. However, when the array aperture is
further increased to 1.25�, the average bias reduces to smaller
than 0.1∘ with the 20 array elements (as shown in Figure 5(c)).

e average biases for the same DOA estimation problem
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Figure 5: Summary of DOA estimations using MPM for a four-element ULA with the number of array elements varying from 6 to 20.
ree
equal-power incoming signals are from the directions of �1 = 40∘ to 90∘, �2 = �1 + 1∘, and �3 = �1 + 2∘ with an SNR of 5 dB. 
e step size
of Δ�1 = 5∘ is considered. 
e �gures show the average biases of the estimated directions with array aperture (a) 0.75�, (b) 1.00�, (c) 1.25�,
and (d) 1.50�.

but with an array aperture of 1.5� are shown in Figure 5(d).
As can be seen, when the signal sources are closer to the
broadside direction, the average biases are smaller. However,
an increasing number of array elements do not necessarily
increase the accuracy of DOA estimation in this aperture.
On the other hand, when the signal sources are closer to
the end�re direction, the accuracy of DOA estimation does
increase substantially when the number of array elements is
increased (see Figure 5(d)).

4. Discussions and Conclusions

In this paper, we have investigated the performance of
MPM in DOA estimations using ULAs with di�erent array
apertures and di�erent numbers of array elements through
Monte Carlo simulations. 
e results show that minimum
linear array apertures of 0.6� and 1� are required to resolve

two and three incoming signals, respectively (i.e., element
separation of≤ 0.2�).
e performance could be improved by
increasing the number of elements. In practice, the emitters
are less closely spaced which would be easier to resolve,
and potentially, the size of the array and/or the number of
elements can be further reduced.
e�nding provides uswith
the fundamental limit of DOA estimation in compact array.
Arguably, the conclusions from this study are not limited
to DOA estimations using compact antenna arrays (with
interelement separation of 0.25� [35] down to 0.125� [37])
with MPM but are also applicable to acoustic or sonar arrays,
as well as to other subspace methods.
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