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Abstract. Breadth-First Search is an important kernel used by many graph-processing applications. In many of these emerging

applications of BFS, such as analyzing social networks, the input graphs are low-diameter and scale-free. We propose a hybrid

approach that is advantageous for low-diameter graphs, which combines a conventional top-down algorithm along with a novel

bottom-up algorithm. The bottom-up algorithm can dramatically reduce the number of edges examined, which in turn accelerates

the search as a whole. On a multi-socket server, our hybrid approach demonstrates speedups of 3.3–7.8 on a range of standard

synthetic graphs and speedups of 2.4–4.6 on graphs from real social networks when compared to a strong baseline. We also

typically double the performance of prior leading shared memory (multicore and GPU) implementations.
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1. Introduction

Graph algorithms are becoming increasingly impor-

tant, with applications covering a wide range of scales.

Warehouse-scale computers run graph algorithms that

reason about vast amounts of data, with applications

including analytics and recommendation systems [17,

20]. On mobile clients, graph algorithms are important

components of recognition and machine-learning ap-

plications [19,28].

Unfortunately, due to a lack of locality, graph ap-

plications are often memory-bound on shared-memory

systems or communication-bound on clusters. In par-

ticular, Breadth-First Search (BFS), an important

building block in many other graph algorithms, has low

computational intensity, which exacerbates the lack of

locality and results in low overall performance. To ac-

celerate BFS, there has been significant prior work

to change the algorithm and data structures, in some

cases by adding additional computational work, to in-

crease locality and boost overall performance [1,9,16,

27]. However, none of these previous schemes attempt

to reduce the number of edges examined.

In this paper, we present a hybrid BFS algorithm

that combines a conventional top-down approach with

a novel bottom-up approach. By examining substan-

tially fewer edges, the new algorithm obtains speedups

1This paper received a nomination for the Best Paper Award at

the SC2012 conference and is published here with permission from

IEEE.
*Corresponding author. E-mail: sbeamer@eecs.berkeley.edu.

of 3.3–7.8 on synthetic graphs and 2.4–4.6 on real so-
cial network graphs. In the top-down approach, nodes
in the active frontier search for an unvisited child,
while in our new bottom-up approach, unvisited nodes
search for a parent in the active frontier. In general, the
bottom-up approach will yield speedups when the ac-
tive frontier is a substantial fraction of the total graph,
which commonly occurs in small-world graphs such as
social networks.

The bottom-up approach is not always advanta-
geous, so we combine it with the conventional top-
down approach, and use a simple heuristic to dynami-
cally select the appropriate approach to use at each step
of BFS. We show that our dynamic on-line heuristic
achieves performance within 25% of the optimum pos-
sible using an off-line oracle. Our hybrid implemen-
tation also provides typical speedups of 2 or greater
over prior state-of-the-arts for multicore [1,11,16] and
GPUs [21] when utilizing the same graphs and the
same or similar hardware. An early version of this al-
gorithm [5] running on a stock quad-socket Intel server
was ranked 17th in the Graph500 November 2011
rankings [15], achieving the fastest single-node im-
plementation and the highest per-core processing rate,
and outperforming specialized architectures and clus-
ters with more than 150 sockets.

2. Graph properties

Graphs are a powerful and general abstraction that
allow a large number of problems to be represented
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and solved using the same algorithmic machinery.

However, there is often substantial performance to be

gained by optimizing algorithms for the types of graph

present in a particular target workload.

We can characterize graphs using a few metrics,

in particular their diameter and degree distribution.

Graphs representing meshes used for physical simula-

tions typically have very high diameters and degrees

bounded by a small constant. As a result, they are

amenable to graph partitioning when mapping to paral-

lel systems, as they have mostly local communication

and a relatively constant amount of work per vertex,

which simplifies load-balancing.

In contrast, graphs taken from social networks tend

to be both small-world and scale-free. A small-world

graph’s diameter grows only proportional to the loga-

rithm of the number of nodes, resulting in a low effec-

tive diameter [24]. This effect is caused by a subset of

edges connecting parts of the graph that would other-

wise be distant. A scale-free graph’s degree distribu-

tion follows a power law, resulting in a few, very high-

degree nodes [4]. These properties complicate the par-

allelization of graph algorithms to efficiently analyze

social networks. Graphs with the small-world property

are often hard to partition because the low diameter and

cross edges make it difficult to reduce the size of a cut.

Meanwhile, scale-free graphs are challenging to load-

balance because the amount of work per node is often

proportional to the degree which can vary by several

orders of magnitude.

3. Conventional top-down BFS

Breadth-First Search (BFS) is an important building

block of many graph algorithms, and it is commonly

used to test for connectivity or compute the single-

source shortest paths of unweighted graphs. Starting

from the source vertex, the frontier expands outwards

during each step, visiting all of the vertices at the same

depth before visiting any at the next depth (Fig. 1).

During a step of the conventional top-down approach

(Fig. 2), each vertex checks all of its neighbors to see

if any of them are unvisited. Each previously unvis-

ited neighbor is added to the frontier and marked as

visited by setting its parent variable. This algorithm

yields the BFS tree, which spans the connected com-

ponent containing the source vertex. Other variants of

BFS may record other attributes instead of the parent

at each node in the BFS tree, such as a simple boolean

breadth-first-search(vertices, source)

frontier ← {source}

next ← {}

parents ← [−1,−1, . . . ,−1]

while frontier �= {} do

top-down-step(vertices, frontier, next, parents)

frontier ← next

next ← {}

end while

return tree

Fig. 1. Conventional BFS algorithm.

top-down-step(vertices, frontier, next, parents)

for v ∈ frontier do

for n ∈ neighbors[v] do

if parents[n] = −1 then

parents[n] ← v

next ← next ∪ {n}

end if

end for

end for

Fig. 2. Single step of top-down approach.

variable that marks whether it was visited, or an integer

representing its depth in the tree.

The behavior of BFS on social networks follows di-

rectly from their defining properties: small-world and

scale-free. Because social networks are small-world

graphs, they have a low effective diameter, which re-

duces the number of steps required for a BFS, which

in turn causes a large fraction of the vertices to be vis-

ited during each step. The scale-free property requires

some nodes to have much higher degrees than average,

allowing the frontier growth rate to outpace the aver-

age degree. As a result of these two properties, the size

of the frontier ramps up and down exponentially dur-

ing a BFS of a social network. Even if a social network

graph has hundreds of millions of vertices, the vast ma-

jority will be reached in the first few steps.

The majority of the computational work in BFS is

checking edges of the frontier to see if the endpoint has

been visited. The total number of edge checks in the

conventional top-down algorithm is equal to the num-

ber of edges in the connected component containing

the source vertex, as on each step every edge in the

frontier is checked.
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Fig. 3. Breakdown of edges in the frontier for a sample search on

kron27 (Kronecker generated 128M vertices with 2B undirected

edges) on the 16-core system. (Colors are visible in the online ver-

sion of the article; http://dx.doi.org/10.3233/SPR-130370.)

Figure 3 shows a breakdown of the result of each

edge check for each step during a conventional parallel

queue-based top-down BFS traversal on a Kronecker-

generated synthetic graph (used for the Graph500

benchmark [15]). The middle steps (2 and 3) consume

the vast majority of the runtime, which is unsurpris-

ing since the frontier is then at its largest size, requir-

ing many more edges to be examined. During these

steps, there are a great number of wasted attempts to

become the parent of a neighbor. Failures occur when

the neighbor has already been visited, and these can be

broken down into three different categories based on

their depth relative to the candidate parent: valid par-

ent, peer and failed child. A valid parent is any neigh-

bor at depth d − 1 of a vertex at depth d. A peer is

any neighbor at the same depth. A failed child is any

neighbor at depth d + 1 of a vertex at depth d, but at

the time of examination it has already been claimed by

another vertex at depth d. Successful checks result in a

claimed child. Figure 3 shows most of the edge checks

do fail and represent redundant work, since a vertex in

a correct BFS tree only needs one parent.

Implementations of this same basic algorithm can

vary in a number of performance-impacting ways, in-

cluding: data structures, traversal order, parallel work

allocation, partitioning, synchronization or update pro-

cedure. The process of checking if neighbors have been

visited can result in many costly random accesses. An

effective optimization for shared-memory machines

with large last-level caches is to use a bitmap to mark

nodes that have already been visited [1]. The bitmap

can often fit in the last-level cache, which prevents

many of those random accesses from touching off-chip

DRAM. These optimizations speed up the edge checks

but do not reduce the number of checks required.

Fig. 4. Breakdown of edges in the frontier for a sample search on

kron27 (Kronecker generated 128M vertices with 2B undirected

edges) on the 16-core system. (Colors are visible in the online ver-

sion of the article; http://dx.doi.org/10.3233/SPR-130370.)

The theoretical minimum for the number of edges
that need to be examined in the best case is the num-
ber of vertices in the BFS tree minus one, since that

is how many edges are required to connect it. For the
example in Fig. 3, only 63,036,116 vertices are in the
BFS tree, so at least 63,036,115 edges need to be con-

sidered, which is about 1
67 th of all the edge examina-

tions that would happen during a top-down traversal.
This factor of 67 is substantially larger than the input

degree of 16 for two reasons. First, the input degree
is for undirected edges, but during a top-down search
each edge will be checked from both endpoints, dou-

bling the number of examinations. Secondly, there are
a large number of vertices of zero degree, which re-
duces the size of the main connected component and
also further increases the effective degree of the ver-

tices it contains. There is clearly substantial room for
improvement by checking fewer edges, although in the
worst case, every edge might still need to be checked.

Figure 4 zooms in on the edge check results of Fig. 3
for the sample search. This progression of neighbor
types is typical among the social networks examined.

During the first few steps, the percentage of claimed
children is high, as the vast majority of the graph is un-
explored, enabling most edge checks to succeed. Dur-

ing the next few steps, the percentage of failed chil-
dren rises, which is unsurprising since the frontier has
grown larger, as multiple valid parents are fighting over
children. As the frontier reaches its largest size, the

percentage of peer edges dominates. Since the frontier
is such a large fraction of the graph, many edges must
connect vertices within the frontier. As the frontier size

rapidly decreases after its apex, the percentage of valid
parents rises since such a large fraction of edges were
in the previous step’s frontier.
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4. Bottom-up BFS

When the frontier is large, there exists an oppor-

tunity to perform the BFS traversal more efficiently

by searching in the reverse direction, that is, going

bottom-up. Note that in Step 3 there are many valid

parents, but the other ends of these edges mostly re-

sulted in failed children during Step 2. We can ex-

ploit this phenomenon to reduce the total number of

edges examined. Instead of each vertex in the frontier

attempting to become the parent of all of its neigh-

bors, each unvisited vertex attempts to find any parent

among its neighbors. A neighbor can be a parent if the

neighbor is a member of the frontier, which can be de-

termined efficiently if the frontier is represented by a

bitmap. The advantage of this approach is that once a

vertex has found a parent, it does not need to check

the rest of its neighbors. Figure 4 demonstrates that for

some steps, a substantial fraction of neighbors are valid

parents, so the probability of not needing to check ev-

ery edge is high. Figure 5 shows the algorithm for a

single step of this approach.

The bottom-up approach also removes the need for

some atomic operations in a parallel implementation.

In the top-down approach, there could be multiple par-

allel writers to the same child, so atomic operations are

needed to ensure mutual exclusion. With the bottom-

up approach, only the child writes to itself, removing

any contention. This advantage, along with the poten-

tial reduction of edges checked, comes at the price of

serializing the work for any one vertex, but there is still

massive parallelism between the work for different ver-

tices. The bottom-up approach is advantageous when a

large fraction of the vertices are in the frontier, but will

result in more work if the frontier is small. Hence, an

bottom-up-step(vertices, frontier, next, parents)

for v ∈ vertices do

if parents[v] = −1 then

for n ∈ neighbors[v] do

if n ∈ frontier then

parents[v] ← n

next ← next ∪ {v}

break

end if

end for

end if

end for

Fig. 5. Single step of bottom-up approach.

efficient BFS implementation must combine both the

top-down and bottom-up approaches.

If the graph is undirected, performing the bottom-

up approach requires no modification to the graph data

structures as both directions are already represented.

If the graph is directed, the bottom-up step will re-

quire the inverse graph, which could nearly double the

graph’s memory footprint.

5. Hybrid algorithm

The pairing of the top-down approach with the

bottom-up approach is complementary, since when the

frontier is its largest, the bottom-up approach will be

at its best whereas the top-down approach will be at its

worst, and vice versa. The runtime for either the top-

down approach or the bottom-up approach is roughly

proportional to the number of edges examined. The

top-down approach will examine every edge in the

frontier while the bottom-up approach could examine

every edge attached to an unvisited vertex, but hope-

fully fewer. Figure 6 illustrates this behavior by show-

ing the time per step for each approach using the same

example search as in Section 3. As the size of the fron-

tier ramps up, the time per step of the top-down ap-

proach rises correspondingly, but the time per step for

the bottom-up approach drops.

Our hybrid algorithm uses the top-down approach

for steps when the frontier is small and the bottom-up

approach for steps when the frontier is large. We be-

gin each search with the top-down approach and con-

tinue until the frontier becomes too large, at which

point we switch to the bottom-up approach. Although

it is difficult to tell from Fig. 6, it is usually worth-

while to switch back to the top-down approach for the

final steps. During some searches there can be a long

tail, and edges that are not in the connected component

continue to consume runtime using the bottom-up ap-

proach.

The step when transitioning from the top-down ap-

proach to the bottom-up approach provides an enor-

mous opportunity, since all of the edge checks that

would happen during the top-down step (all of the

edges in the frontier) are skipped. For this reason, the

optimum point to switch is typically when the number

of edges in the frontier is at its largest. This is fortu-

itous, since the first bottom-up step will probably ben-

efit from a high percentage of valid parents, as Fig. 4

shows.

To control the hybrid approach, we use a heuristic

based on: the number of edges to check from the fron-
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Fig. 6. Sample search on kron27 (Kronecker 128M vertices with

2B undirected edges) on the 16-core system. (Colors are visi-

ble in the online version of the article; http://dx.doi.org/10.3233/

SPR-130370.)

Fig. 7. Control algorithm for hybrid algorithm. (convert) indicates

the frontier must be converted from a queue to a bitmap or vice versa

between the steps. Growing and shrinking refer to the frontier size,

and although they are typically redundant, their inclusion yields a

speedup of about 10%.

tier (mf ), the number of vertices in the frontier (nf ),

and the number of edges to check from unexplored

vertices (mu). These metrics are efficient to compute,

since they only require: summing the degrees of all

vertices in the frontier, counting the number of ver-

tices added to the frontier, or counting how many edges

have been checked. Note that with an undirected graph,

mf or mu might be counting some edges twice since

each edge will be explored from both ends. Figure 7

shows the overall control heuristic, which employs two

thresholds, CTB and CBT , together with mf and nf .

Since the top-down approach will always check mf

edges, and the bottom-up approach will check at most

mu, if mu is ever less than mf , there is a guarantee that

switching to the bottom-up approach at that step will

check less edges. Since mu is an overly pessimistic

upper-bound on the number of edges the bottom-up ap-

proach will check, we use a tuning parameter α. This

results in the condition for switching from top-down to

bottom-up being:

mf >
mu

α
= CTB.

Switching back to the top-down approach at the end

should occur when the frontier is small and there is

no longer benefit to the bottom-up approach. In ad-

dition to the overhead of checking edges outside the

main connected component, the bottom-up approach

becomes less efficient at the end because it scans

through all of the vertices to find any unvisited ones.

The heuristic to switch back attempts to detect when

the frontier is too small, for which we use another tun-

ing parameter β:

nf <
n

β
= CBT .

When switching between approaches, the represen-

tation of the frontier must be changed from the frontier

queue used in the conventional top-down approach to

the frontier bitmap used for the bottom-up approach.

Different data structures are used since the frontiers are

of radically different sizes, and the conversion costs are

far less than the penalty of using the wrong data struc-

ture. The bottom-up approach uses a frontier bitmap to

allow a constant-time test for whether a particular node

is in the frontier. The time to convert the frontier is typ-

ically small, since it should be done when the frontier

is small.

6. Evaluation

6.1. Methodology

We evaluate the performance of our hybrid algo-

rithm using the graphs in Table 1. Our suite of test

graphs includes both synthetic graphs as well as real

social networks. The synthetic graph generators as

well as their parameters are selected to match the

Graph500 Competition [15] (Kronecker (A, B, C) =

(0.57, 0.19, 0.19)) and prior work [1,16] (Uniform

Random and RMAT (A, B, C) = (0.45, 0.25, 0.15)).

The real social networks are taken from a variety of

web crawls [6–8,13,17,22,25,26].

We report results from three multi-socket server sys-

tems (8-core, 16-core, 40-core) as shown in Table 2.

The 16-core system is used for most of the evaluation,

as it is representative of the next generation of com-

pute nodes for clusters. The 40-core system is used to

evaluate the parallel scalability of our approach up to

80 threads. The 8-core system is used to perform a di-

rect comparison with prior work [16] utilizing the same

hardware and input graphs. On all platforms we disable

Turbo Boost to get consistent performance results.
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Table 1

Graphs used for evaluation

Abbreviation Graph # Vertices (M) # Edges (M) Degree Diameter Directed References

kron25 Kronecker 33.554 536.870 16.0 6 N [15,18]

erdos25 Erdős–Réyni (Uniform Random) 33.554 268.435 8.0 8 N [3,14]

rmat25 RMAT 33.554 268.435 8.0 9 Y [3,10]

facebook Facebook trace A 3.097 28.377 9.2 9 N [26]

flickr Flickr follow links 1.861 22.614 12.2 15 Y [22]

hollywood Hollywood movie actor network 1.140 57.516 50.5 10 N [6–8,13]

ljournal LiveJournal social network 5.363 79.023 14.7 44 Y [22]

orkut Orkut social network 3.073 223.534 72.8 7 N [22]

wikipedia Wikipedia links 5.717 130.160 22.8 282 Y [25]

twitter Twitter user follow links 61.578 1,468.365 23.8 15 Y [17]

Table 2

System specifications

Name 8-core 16-core 40-core

Architecture Nehalem-EP Sandy bridge-EP Westmere-EX

Intel model X5550 E5-2680 E7-4860

Release Q1’09 Q1’12 Q2’11

Clock rate 2.67 GHz 2.7 GHz 2.26 GHz

# Sockets 2 2 4

Cores/socket 4 8 10

Threads/socket 8 16 20

LLC/socket 8 MB 20 MB 24 MB

DRAM size 12 GB 128 GB 128 GB

Our algorithm implementations use C++ and

OpenMP, and store the graphs in Compressed Sparse

Row (CSR) format after removing duplicates and self-

loops. For each plotted data point, we perform BFS

64 times from pseudo-randomly selected non-zero de-

gree vertices and average the results. The time for

each search includes the time to allocate and initialize

search-related data structures (including parents).

To benchmark performance, we calculate the search

rate in Millions of Edges Traversed per Second

(MTEPS) by taking the ratio of the number of edges in

the input graph to the runtime. This metric is artificial

in the sense that either the top-down approach or the

hybrid approach might not check every edge, but this

standardized performance metric is similar in spirit to

measuring MFLOPS for optimized matrix multiplica-

tion in terms of the classic O(N3) algorithm.

6.2. Tuning α and β

First we determine values of α and β to use for

hybrid-heuristic, our hybrid implementation of BFS

described above. We first tune α before tuning β, as

it has the greatest impact. Sweeping α across a wide

Fig. 8. Performance of hybrid-heuristic on each graph relative to its

best on that graph for the range of α examined. (Colors are vis-

ible in the online version of the article; http://dx.doi.org/10.3233/

SPR-130370.)

range demonstrates that once α is sufficiently large

(>12), BFS performance for many graphs is relatively

insensitive to its value (Fig. 8). This is because the

frontier grows so rapidly that small changes in the tran-

sition threshold do not change the step at which the

switch occurs. When trying to pick the best value for

the suite, we select α = 14 since it maximizes the

average and minimum. Note that even if a less-than-

optimal α is selected, the hybrid-heuristic algorithm

still executes within 15–20% of its peak performance

on most graphs.

Tuning β is less important than tuning α. We se-

lect β = 24, as this works well for the majority of the

graphs (Fig. 9). The value of β has a smaller impact on

overall performance because the majority of the run-

time is taken by the middle steps when the frontier is at

its largest, even when those steps are accelerated by the

bottom-up approach. We explore a much larger range

for β since it needs to change by orders of magnitude

in order to have an impact on which step the heuristic

will switch.
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Fig. 9. Performance of hybrid-heuristic on each graph relative

to its best on that graph for the range of β examined. (Colors

are visible in the online version of the article; http://dx.doi.org/

10.3233/SPR-130370.)

6.3. Comparing algorithms

We first compare our own implementations of dif-

ferent algorithms on a range of graphs. As a baseline,

we use two top-down parallel queue implementations.

The top-down implementation uses a typical parallel

queue, much like the omp-csr reference code [15].

We also create an optimized version, top-down-check,

which adds a bitmap to mark completed nodes. To de-

termine the maximum benefit of our hybrid approach

and to evaluate the effectiveness of our on-line heuris-

tic (hybrid-heuristic), we also develop hybrid-oracle,

which repeatedly runs the algorithm trying all possible

switch points and then reports the best-performing to

represent an oracle-controlled hybrid.

We use the 16-core machine to compare both hybrid

implementations (hybrid-heuristic and hybrid-oracle)

against both baselines (top-down and top-down-check)

in Fig. 10. The hybrid provides large speedups across

all of the graphs, with an average speedup of 3.9 and

a speedup no lower than 2.4. The on-line heuristic of-

ten obtains performance within 10% of the oracle. Also

notice that the speedups are far greater than the impact

of a mistuned α or β in the heuristic. The bottom-up

approach by itself yields only modest speedups or even

slowdowns, which highlights the importance of com-

bining it with the top-down approach for the hybrid.

6.4. Explaining the performance improvement

The speedup of the hybrid approach demonstrated

in Fig. 10 is due to the reduction in edge examinations

(Fig. 11). In a classical top-down BFS, every edge in

the connected component containing the starting ver-

tex will be checked, and for an undirected graph, each

edge will be checked from both ends. The bottom-

up approach skips checking some edges in two ways.

First, it passes the responsibility of setting the par-

ents variable from the parent to the child, who can

stop early once a parent is found. Secondly, it skips all

of the edges in the frontier on the step that transitions

from top-down to bottom-up. As shown by Fig. 11, the

edge examinations skipped are roughly split between

those skipped in the transition and those skipped by

the first bottom-up step. Since the bottom-up approach

is used when the frontier is large, the top-down ap-

proach in the hybrid implementation processes only a

small fraction of the edges. Every edge examination

after the first bottom-up step is redundant, since the

first bottom-up step will have attempted to examine ev-

ery edge attached to an unvisited vertex. Since the size

of the frontier decreases so rapidly, this redundancy

is typically negligible. Unsurprisingly, the graphs with

the least speedup (flickr and wikipedia), skip

fewer edges and check the most redundant edges. They

have a substantially higher effective diameter, so there

is a longer tail after the apex of the frontier size.

Examining where the time is spent during an en-

tire search reveals the majority of it is spent in the

bottom-up implementation (Fig. 12). Since the bottom-

up approach skips so many examinations, the effective

search rate for the bottom-up steps is much higher (or-

der of magnitude) than the top-down approach. Con-

version and mf calculation take a non-negligible frac-

tion of the runtime, but this overhead is worthwhile

due to the extreme speedup provided by the bottom-

up approach. The nearly constant degree of erdos25

results in a steady but modest growth of the frontier,

so more steps will be run top-down and with a larger

frontier, resulting in more work at the conversion point,

more degrees to sum each step, and more edge checks

run in top-down mode.

Figure 13 plots the speedups for the suite com-

pared to the reduction in number of edges checked.

The speedup is reasonably correlated with the reduc-

tion in edges checked, and the slope of a best-fit line

is approximately 0.3. The slope is less than 1.0 due

to a variety of overheads. While the bottom-up ap-

proach skips edges, it reduces the spatial locality of the

remaining memory accesses, which impacts memory

performance in modern processors that bring data from

memory in units of cache blocks rather than individual

words. Conversion between frontier data structures and

mf calculation add other overhead. Using top-down-

check as a baseline rather than top-down, further re-
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Fig. 10. Speedups on the 16-core machine relative to Top-down-check. (Colors are visible in the online version of the article; http://dx.doi.org/

10.3233/SPR-130370.)

Fig. 11. Breakdown of edge examinations. (Colors are visible in the

online version of the article; http://dx.doi.org/10.3233/SPR-130370.)

Fig. 12. Breakdown of time spent per search. (Colors are visi-

ble in the online version of the article; http://dx.doi.org/10.3233/

SPR-130370.)

Fig. 13. Speedups on the 16-core system for Hybrid-heuristic com-

pared to the reduction in edges checked. (Colors are visible in the

online version of the article; http://dx.doi.org/10.3233/SPR-130370.)

duces the relative advantage since edge examinations

become less expensive in the baseline as they will often

hit the bitmap in the last-level cache.

6.5. Scalability

We evaluate the scalability of our Hybrid-heuristic

implementation on the 40-core system in a fashion

similar to prior work [1]. Our approach sees paral-

lel speedup with each additional core, but does not

gain much from hyperthreading on the 40-core sys-

tem (Fig. 14). Our approach does benefit from larger

graphs with more vertices, as more computation helps

to amortize away the overheads (Fig. 15). Increasing

the degree is particularly beneficial for our approach

because this does not significantly increase the runtime

but does increase the number of input edges, which re-

sults in a higher effective search rate.
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Fig. 14. Parallel scaling of Hybrid-heuristic on the 40-core system

for an RMAT graph with 16M vertices and varied degree. (Colors are

visible in the online version of the article; http://dx.doi.org/10.3233/

SPR-130370.)

Fig. 15. Vertex scaling of Hybrid-heuristic on the 40-core system for

an RMAT graph with varied degree. (Colors are visible in the online

version of the article; http://dx.doi.org/10.3233/SPR-130370.)

6.6. Comparison against other implementations

We also compare our hybrid implementation against

previous state-of-the-art shared-memory implementa-

tions. We begin with the multicore implementation

from Hong et al. [16]. Note the implementation by

Hong et al. [16] is faster than that of Agarwal et al. [1]

even while using slower hardware. We use the exact

same model hardware and the same graph generator

source code (SNAP [3]) to provide a point-for-point

comparison as shown in Fig. 16. Our implementation

is 2.4× faster on uniform random (erdos25) and

2.3× faster on scale-free (rmat25). Our implemen-

tation experiences a slowdown after 8 threads due to

the switch to hyperthreads in our tightly synchronized

approach, but using 16 hyperthreads is still noticeably

faster than just 8 hyperthreads on the 8 available cores.

Fig. 16. Search rates on the 8-core system on erdos25 (Uni-

form Random with 32M vertices and 256M edges) and rmat25

(RMAT with 32M vertices and 256M edges). Other lines from Hong

et al. [16]. (Colors are visible in the online version of the article;

http://dx.doi.org/10.3233/SPR-130370.)

Table 3

Performance in MTEPS of Hybrid-heuristic on the 8-core system

compared to Chhugani et al. [11]

rmat-8 rmat-32 erdos-8 erdos-32 orkut facebook

Prior 750 1100 295 505 2050 460

8-core 1580 4630 850 2250 4690 1360

Notes: Synthetic graphs are all 16M vertices, and the last number

in the name is the degree. Due to differences in counting undirected

edges for TEPS, we have scaled erdos and facebook appropriately.

Furthermore, our CPU implementation using 16 hyper-

threads is even faster than the GPU–CPU hybrid im-

plementation presented by Hong et al. [16], despite the

GPU having greater memory bandwidth and support-

ing more outstanding memory accesses. Note also that

not all of the graphs in our study above would fit in the

reduced memory capacity of the GPU, and that our im-

plementation records a full parent pointer rather than

just the BFS depth [16].

We attempt to compare against Chhugani et al. [11]

in Table 3. Compared to 8-core, their platform has a

higher clockrate (2.93 GHz vs. 2.67 GHz) and more

memory (96 GB vs. 12 GB), but should otherwise be

similar (Intel X5570 vs. Intel X5550). For the synthetic

graphs, we compare against those with 16M vertices

since they are the largest that fit in our memory. De-

spite using a slower system, hybrid-heuristic is faster,

and sometimes by a significant degree. In general, the

highest degree graphs seem to enjoy the greatest rela-

tive speedups.

We compare our results to that of Merrill et al. [21].

which is the highest published performance for shared

memory (Table 4). Our Hybrid-heuristic performs well

due to the high input degrees of the graphs used in spite

of the memory bandwidth advantages of the GPUs.
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Table 4

Hybrid-heuristic on multicore systems in this study compared to

GPU results from Merrill et al. [21] (in GTEPS)

kron_ random. rmat.

System g500-logn20 2Mv.128Me 2Mv.128Me

GPU results from Merrill et al. [21]

Single-GPU 1.25 2.40 2.60

Quad-GPU 3.10 7.40 8.30

Hybrid-heuristic results on multicore

8-core 7.76 6.75 6.14

16-core 12.38 12.61 10.45

40-core 8.89 9.01 7.14

The GTEP rates for the GPUs for kron_g500-

logn20 have been halved since we calculated search

rates for undirected graphs based on the number of

undirected edges.

7. Related work

Buluç and Madduri [9] provide a thorough taxon-

omy of related work in parallel breadth-first searches.

In this section we focus on the work most relevant to

this study, principally parallel shared-memory imple-

mentations.

Bader and Madduri [2] demonstrate large parallel

speedups for BFS on an MTA-2. Parallelism is ex-

tracted both at the level of each vertex as well as at each

edge check. The fine-grained synchronization mecha-

nisms of the MTA are used to efficiently exploit this

parallelism. Since the MTA does not use caches and

instead uses many hardware threads to hide its shared

main memory latency, the implementation does not

need to optimize for locality.

In contrast, Agarwal et al. [1] optimize for locality to

push the limits of a quad-socket system built from con-

ventional microprocessors, and show speedups over

previous results from clusters and custom supercom-

puters, including the MTA-2 [2]. Careful programming

is used to reduce off-socket traffic (memory and inter-

socket) as much as possible. Threads are pinned to

sockets and utilize local data structures such that all the

work that can be done within a socket never leaves the

socket. Bitmaps are used to track completed vertices to

avoid reading DRAM. Whenever an edge check must

go to another socket, it utilizes a custom inter-socket

messaging queue.

Hong et al. [16] improve upon Agarwal et al. with

hybrid algorithms that utilize multiple CPU implemen-

tations and a GPU implementation. As in our work,

the algorithms switch at step boundaries and make de-

cisions based on on-line heuristics, but in this case to

select between CPU and GPU implementations of a

purely top-down approach. The CPU implementation

is accelerated by the read-array approach, which com-

bines the frontier with the output array. The output pro-

vided is the depth of each node rather than its parent,

and by bounding the depth to be less than 256, the out-

put array can be compacted by storing it as bytes. In-

stead of appending vertices to a frontier, their output is

set to depth + 1. On each step, all vertices are scanned

searching for the current depth, and then visits are per-

formed from any vertex found in the frontier. By us-

ing the output array to act as the frontier, duplicate en-

tries are squashed, and spatial locality is increased due

to the sequential array accesses to the graph. The GPU

implementation outperforms the CPU implementation

for a sufficiently large frontier, and heuristics select

which implementation to use. In Section 6.6, we com-

pare our new scheme directly against the performance

in [16] utilizing the same synthetic data on the same

model CPU hardware, but without the GPU. Note our

scheme retains full parent information, not just search

depth.

Merrill et al. [21] improve the performance of BFS

on GPUs through the use of prefix sum to achieve

high utilization of all threads. The prefix sum is used

to compute the offsets from the frontier expansion,

which reduces the contention for atomic updates to the

frontier queue. This allows the graph exploration to

have little control divergence between threads. They

also leverage various filtering techniques enabled by

bitmaps to reduce the number of edges processed.

This approach is beneficial for all diameters of graphs,

and they present results indicating they are the fastest

published for shared memory systems, especially with

their quad-GPU parallelization. Our approach is ad-

vantageous for low diameter graphs, and as shown in

Section 6.6, our approach even outperforms their quad-

GPU implementation when using the 16-core platform.

Chhugani et al. [11] perform a multitude of opti-

mizations to improve memory utilization, reduce inter-

socket traffic, and balance work between sockets. Their

memory performance is improved by reordering com-

putation and data layout to greatly increase spatial lo-

cality. The load balancing techniques proposed are dy-

namic, and can adapt to the needs of the current graph.

Furthermore, they demonstrate an analytic model de-

rived from the platform’s architectural parameters that

accurately predicts performance. Many of these opti-

mizations are complementary to our work and could be
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added on top of our implementation. In Section 6.6 we

compare directly against them using a slightly slower

system with the same graphs and demonstrate reason-

able speedups.

An early implementation of our algorithm on the

mirasol system reached 17th place in the Novem-

ber 2011 rankings of the Graph500 competition [5,15].

This earlier implementation used a cruder heuristic

and included an alternate top-down step that integrated

the conversion for bottom-up. It achieved the high-

est single-node performance and the highest per-core

processing rate. Using just a single quad-socket sys-

tem similar to the 40-core system, the hybrid BFS al-

gorithm outperformed clusters of >150 sockets and

specialized architectures such as the Cray XMT2 [23]

and the Convey HC-1ex [12]. Its processing rate per-

core was over 30× the top-ranked cluster system, high-

lighting the performance penalty a cluster experiences

when crossing the network. This implies that scaling

across a cluster should be used to solve larger problems

(weak scaling) rather than solving fixed-size problems

faster (strong scaling), indicating large shared-memory

systems are still useful for irregular difficult-to-scale

problems like BFS.

8. Conclusion

Performing a BFS in the bottom-up direction can

substantially reduce the number of edges traversed

compared with the traditional top-down approach. A

child needs to find only one parent instead of each

parent attempting to claim all possible children. This

bottom-up technique is advantageous when the search

is on a large connected component of low-effective

diameter, as then the frontier will include a substan-

tial fraction of the total vertices. The conventional top-

down approach works well for the beginning and end

of such a search, where the frontier is a small frac-

tion of the total vertices. We have developed a hy-

brid approach to effectively combine these two al-

gorithms, using a simple heuristic to guide when to

switch. We believe this hybrid scheme yields the cur-

rent best-known BFS performance for single shared-

memory nodes.

The results of this work demonstrate the perfor-

mance improvement potential of integrating the

bottom-up approach into BFS, but it will not always

be advantageous. Fortunately, the same top-down im-

plementation that is used for the steps when the fron-

tier is small can be used for entire searches when the

bottom-up approach is not advantageous. The heuris-

tic will allow this to happen automatically, as searches

that do not generate a massive frontier will not trigger

the switch. In this sense, the bottom-up approach can

be seen as a powerful way to accelerate a BFS on a

low-diameter graph.

High-diameter graphs will not benefit from the

bottom-up approach, but they are much easier to par-

tition and thus easier to parallelize than low-diameter

graphs. This work presents an algorithmic innova-

tion to accelerate the processing of more difficult-to-

parallelize BFS.
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