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Abstract

We demonstrate that an ordered array of aluminum nanopyramids, behaving as

a phased array of optical antennae, strongly modifies light absorption in thin

layers of dye molecules. Photoluminescence measurements as a function of the

illumination angle are performed using a time-reversed Fourier microscope. This

technique enables a variable-angle plane-wave illumination of nanostructures

in a microscope-based setup. Our measurements reveal an enhancement of

the light conversion in certain directions of illumination, which indicate the

efficient diffractive coupling between the free space radiation and the surface

plasmons. Numerical simulations confirm that surface modes supported by the

periodic array enhance the intensity of the pump field in the space between

particles, where the dye molecules are located, yielding a directional plasmonic-

mediated enhancement of the optical absorption. This combined experimental

and numerical characterization of the angular dependence of light absorption in

nanostructures can be beneficial for the design and optimization of devices in

which the harvesting of light plays a major role.
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1. Introduction

Tailoring the optical absorption using nanostructures is a main goal for several research areas

such as photovoltaics, sensing or photodetection [1–3]. Through the excitation of plasmonic

resonances, i.e. the coherent oscillation of free electrons in metals driven by an external optical

field [4], isolated metallic nanoparticles are capable of producing a high confinement and local

field enhancement of the incident light, offering unprecedented possibilities for the interaction

of light with matter at the nanoscale [5].

Light propagation in metallic nanostructured surfaces has been intensively investigated

since the pioneering works of Wood and Fano [6, 7], offering a playground to yield remarkable

optical phenomena [8, 9]. The radiative coupling between metallic particles arranged in a

periodic array leads to collective modes, known as surface lattice resonances (SLRs) [10], which

strongly depend on the size, shape and permittivity of the nanoparticles [11], as well as on the

geometry and the dielectric environment of the lattice [12, 13]. The hybrid plasmonic–photonic

nature of SLRs results in a spatial distribution of the electric field enhancement that extends

away from the metal in the medium in which the nanoparticles are embedded. SLRs in metallic

arrays were first described in the context of surface-enhanced Raman scattering [11, 14] and

have been accurately characterized during the last few years [15–20].

In the particular case of light emission, plasmonic resonances are capable of modifying

strongly the emission of nanosources [21]. Excited emitters located in the proximity of an

array can decay into SLRs, that radiate into free space, allowing the control of spontaneous

and stimulated emission [22, 23]. The extended field associated to SLRs allows overcoming the

well-known limitation of the critical placement of the emitter relative to the metal nanoparticles

in order to strongly modify the emission [24]. This system behaves as a phased array of optical

antennae in which the radiation pattern of subwavelength sources is modified by the coherent

scattering of the periodically spaced nanoparticles. The coupling of light emitters to SLRs

yields a source with an increased spatial coherence. A very efficient outcoupling of the emission

within narrow angular windows can be attained, enabling the beaming of the emitted light in

specific directions [25]. This allows obtaining a collective enhancement of the emission from

large volumes [26] in defined directions as it has been recently demonstrated in the context of

solid-state lighting [27]. By reciprocity, the absorption of an ensemble of randomly distributed

emitters should be enhanced for specific angles of illumination using a periodic array of metallic

nanoparticles behaving as a receiving antenna.

In this paper, we demonstrate experimentally a strong angular-dependent optical absorption

of dye molecules excited by means of phased arrays of optical antennae using time-reversed

Fourier microscopy (TRFM). Fourier microscopy (FM) allows the characterization of the

directionality of the emission from light sources sited in the vicinity of nanophotonic

structures [28–33]. A microscope objective decomposes the incident light into plane waves

and focuses each of them on distinct points of the back focal plane (BFP) of the objective

lens. FM relies on imaging the BFP typically using a camera as a detector. An image of the

BFP, thus, represents a projection of the reciprocal space on the plane of the camera and the

intensity collected by each pixel in the camera is proportional to the emission intensity of the

light source in a particular direction. In a TRFM the optical paths are time-reversed, which

enables an angle-controlled plane wave illumination of a nanostructure investigated using a

microscope objective. Herein we measure a square array of aluminum nanoparticles with the

shape of nanopyramids on which a dye-doped polystyrene layer is deposited. The dimensions
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Figure 1. (a) A schematic representation of the aluminum nanoparticle array covered
by a dye-doped polymer layer. Relevant angles, i.e., the elevation angles of illumination
(θex), emission (θem) and scattering (θsc), are signaled. (b) Scanning electron microscope
image of a top view of the array of aluminum nanopyramids. Scale bar represents 2 µm.
(c) Normalized absorbance (black) and PL (gray) spectra of the red dye.

of the aluminum nanoparticles and the geometry of the array have been designed such that

the structure supports SLRs at the frequency of the excitation of the dye. SLRs enable a very

efficient coupling between free-space radiation and localized surface plasmons which gives

rise to a large enhancement of the optical near-field that extends into the surroundings of the

nanoparticles, where the emitters are located. We will demonstrate that this effect is highly

directional because of the dispersive character of the SLRs which renders the system into a

receiving phased array of optical antennae. Numerical simulations will confirm that the coupling

of the pump light to the collective modes supported by the array leads to an enhanced optical

absorption in the emitting layer for defined directions of illumination. Finally, we will show

that the enhancement of the optical pump field at 532 nm yields an overall fivefold emission

enhancement when the plasmonic array is illuminated at 5.5◦ from the sample normal with

p-polarized light.

2. Aluminum nanopyramid array

A schematic representation of the investigated structure is shown in figure 1(a). Aluminum

nanopyramids, 140 nm in diameter at their base and 80 nm at their top, and 140 nm in height,

arranged in a square array with lattice constant a = 340 nm were fabricated using substrate

conformal imprint lithography in combination with reactive ion etching [34]. A scanning

electron microscope image of a top view of such array is displayed in figure 1(b). The array

is fabricated on top of a fused silica substrate. Aluminum supports plasmon resonances in

the blue-to-ultraviolet region of the electromagnetic spectrum. In contrast to silver, aluminum

self-passivates which facilitates its processing. The combination of aluminum and nanoimprint

technology allows the fabrication of nanometer-precision replicas of plasmonic nanostructures

over large areas using standard and inexpensive processes [27]. However, only very recently

aluminum has been regarded as a plasmonic material [27, 35, 36]. A 250 nm-thick polystyrene

layer containing dye molecules of Lumogen F Red 305 (BASF) at a concentration of 3 wt%,

was applied by spin coating over the aluminum nanoparticles. The normalized absorbance and

emission spectra of the dye are shown in figure 1(c). This red dye is characterized by a bright

photoluminescence (PL) in the red part of the optical spectrum, a large stability and a high PL

quantum yield which makes it highly interesting for solid-state lighting applications.
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In order to understand the plasmonic resonances of the array, we have first simulated the

response of an individual aluminum nanopyramid and an array of them. Three-dimensional

electromagnetic simulations were performed with the finite-difference in time-domain method

(FDTD).4 To simplify the analysis, the nanoparticles are considered to be embedded in a

homogeneous medium with a refractive index of 1.46. Figure 2(a) presents the scattering cross

section (σsc) as a function of the free-space wavelength for an isolated aluminum nanopyramid

(dashed black curve) and the extinction spectrum, which is defined as one minus transmittance

(T ), calculated at normal incidence when the nanoparticle is part of a square array (solid gray

curve) with a = 340 nm. Several features may be noted in figure 2(a). Firstly, the scattering cross

section of the isolated nanoparticle displays two distinct broad plasmonic resonances centered

at 423 and 571 nm. Secondly, an extra feature is observed when the nanoparticles are arranged

in a periodic lattice: a very sharp and intense peak emerges in the extinction spectrum in the

long wavelength tail of the higher-energy resonance and close to the Rayleigh anomaly (RA),

i.e. the onset of diffraction, of the (±1, 0) and (0, ±1) diffracted orders (indicated by a vertical

red-dashed line), which are degenerated at normal incidence.

To further assign the origin of the spectral features associated to the different plasmonic res-

onances, in figures 2(b)–(f), simulations of the spatial distribution of the intensity enhancement

(IE)—i.e., total electric near-field intensity normalized by the incident intensity—are shown.

Figures 2(b) and (c) display the IE calculated for an isolated nanoparticle at 423 and 571 nm,

respectively. The field intensity is enhanced in the proximity of the nanoparticle, as expected

for a localized surface plasmon polariton. The height of the nanoparticle and its tapering mod-

ify the distribution of the local field intensity around the nanoparticle. The intensity is more

concentrated at the top of the nanopyramid for the resonance at 423 nm than for the resonance

at 571 nm, whose field intensity is mainly concentrated in the base of the nanoparticle. The

blue-shift of the 423 nm resonance compared to the one at 571 nm, is consistent with the higher

field intensity in the top of the nanoparticle which is slightly smaller in size than the base of the

nanoparticle. Figures 2(d)–(f) present the spatial distribution of the electric near-field intensity

enhancement for the array of aluminum nanoparticles at three different wavelengths: 385, 502

and 565 nm, respectively. We consider a plane wave incident normal to the array. Numerical sim-

ulations reveal that the broad peaks in extinction observed at 385 and 565 nm can be associated

to the localized resonances in the top and in the base of the aluminum nanoparticle, respec-

tively. The simulation of the spatial intensity profile at 502 nm, presented in figure 2(e), shows a

drastic redistribution of the near-field intensity with an enhancement that extends away from the

4 FDTD Solutions (Lumerical Solutions Inc.) www.lumerical.com/. In order to calculate the scattering cross

section of the individual nanopyramid, a simulation box size of 1 × 1 × 1 µm3 with perfectly matched layer

conditions on every boundary was used. The light source was a broadband (350–750 nm) plane wave, with normal

incidence to the substrate. The mesh grid was set to 5 nm over the entire simulation volume, with a refinement

of 1 nm over the volume occupied by the nanoparticle. The total-field scattered-field method was used to directly

calculate the scattered power by means of frequency-domain transmission monitors positioned in the scattered field

region. A two-dimensional frequency-domain field monitor cross-cutting the nanoparticle in its center was used to

calculate the spatial distribution of the local electric field intensity. In order to calculate the transmittance of the

periodic array, the box size was equal to a × a × 1 µm and periodic boundary conditions were used in the in-plane

directions. The transmittance spectra was directly calculated with a frequency-domain transmission monitor. To

calculate the spatial distribution of the local electric field intensity, a three-dimensional frequency-domain field

monitor and a three-dimensional refractive index monitor that contain both the layer of refractive index 1.59 and

the metallic nanoparticle were employed. The optical constants of Al were taken from [37].
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Figure 2. (a) FDTD simulations of the scattering cross section (σsc) spectra of an
aluminum nanopyramid embedded in a homogeneous medium with a refractive index
of 1.46 (dashed black curve). FDTD simulated extinction spectrum at normal incidence
of the same nanopyramids ordered in a square array with a lattice constant of 340 nm
(gray curve). The red dashed line corresponds to the Rayleigh anomaly calculated
for the (±1, 0) and (0, ±1) beams diffracted in a medium with a refractive index of
1.46. (b), (c) FDTD simulations of the spatial distribution of the total electric field
intensity enhancement for the isolated nanoparticle at a wavelength of (b) 423 nm and
(c) 571 nm. The color plot indicates the total electric field intensity (|E2|) normalized to
the incident intensity (|E2

0 |) on the plane intersecting the nanoparticles at y = 0. (d)–(f)
FDTD simulated spatial distribution of the total electric field intensity enhancement
(|E2|/|E2

0 |) for an square array of the nanoparticles simulated in (a). The simulations
consider a plane wave incident normal to the array with a wavelength of (d) 385 nm, (e)
502 nm and (f) 565 nm. The color plot indicates the intensity enhancement on the plane
intersecting the nanoparticles at y = 0 in a unit cell of the array. The nanopyramids are
outlined using gray curves.

nanoparticle in the surrounding medium. The sharp peak of high extinction, shown in figure 2(a)

close to the RAs, originates from the coupling of localized surface plasmon polaritons supported

by the individual nanopyramids to diffracted orders propagating in the plane of the array.

In the experiments, the particle array is not homogeneously surrounded by the same

dielectric. The particles are on a fused silica substrate with a slightly lower refractive index

(1.46) than the polystyrene layer (1.59), which is 250 nm thick. Figure 3(a) shows the extinction

spectrum simulated for such system (gray curve) and compared with the measurement (black

curve). The extinction spectrum was measured by illuminating the sample with the collimated
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Figure 3. (a) FDTD simulated (gray curve) and measured (black curve) extinction
spectra at normal incidence of a square array of aluminum nanopyramids with a lattice
constant of 340 nm on a fused silica substrate and covered by a 250 nm thick dye-doped
polymer layer. The red dashed line corresponds to the Rayleigh anomaly calculated
for the (±1, 0) and (0, ±1) beams diffracted in a medium with refractive index 1.46.
(b) FDTD-simulated spatial distribution of the total electric field intensity enhancement
(|E2|/|E2

0 |) for the square array of the nanoparticles. The simulations consider a plane
wave incident normal to the array with a wavelength of 508 nm. The color plot indicates
the intensity enhancement on the plane intersecting the nanoparticles at y = 0 in a unit
cell of the array. The nanoparticle and the different dielectric interfaces are outlined
using gray lines.

beam from a halogen lamp at normal incidence. The intensity of the transmitted beam in the

forward direction was collected using a fiber-coupled spectrometer. For the sake of clarity, the

simulated extinction spectrum has been vertically shifted by 0.5 in figure 3(a). The main features

in the measurements are reproduced in the simulations. The broad peak in extinction around

592 nm corresponds to the excitation of a plasmonic resonance in the aluminum nanopyramid,

whereas the narrower resonance observed at 508 nm arises from the diffractive coupling of the

nanoparticles in the square lattice. The spatial distribution of the IE simulated at 508 nm—see

figure 3(b)—further confirms the collective nature of this mode with an IE that extends away

from the nanopyramids both in the polymer layer and in the substrate. As it is demonstrated

in what follows, light can couple very efficiently to these lattice-induced modes, enabling

the effective coupling between far-field and near-field, which renders the periodic array in a

receiving collective optical antenna. The delocalized and dispersive character of SLRs allows

designing the interaction of these modes with light emitters sited in the proximity of the array

such that a resonant enhancement of the optical absorption occur for specific directions of

illumination.

3. Time-reversed Fourier microscopy

The principle of FM stems from the Fourier transformation properties of lenses. In a nutshell,

imaging the BFP of a lens allows mapping the incoming wave field in the reciprocal space. For

high numerical apperture (NA) and high-magnification objectives, the BFP is usually located

within the body of the objective. Using an additional lens, the so-called Fourier lens, an enlarged

image of the BFP, the so-called Fourier plane, can be created further away from the objective.
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Figure 4. (a) Schematic respresentation of the working principle of a TRFM. (b),
(c) Polar plot of the scattered intensity measured as a function of the scattered angle
(θsc, φsc) from a square array of aluminum nanoparticles with 340 nm of lattice constant.
The array is illuminated with a 450 nm laser source at an angle (b) (θex, φex) =
(45◦, 0◦) and (c) (θex, φex) = (35◦, 270◦) using a TRFM. Calculated diffractive orders
are indicated with open symbols. (0, 0), specular reflection, is signaled as an open circle
and the (−1, 0) and (0, −1) orders as open squares in (b) and (c), respectively.

The concept of FM can be reversed by applying the reciprocity theorem [38]. In a TRFM,

instead of imaging the BFP of the lens, a point source of monochromatic light can be generated

in the BFP by focusing a laser beam to a spot in the Fourier plane. The emission of this point

source is transmitted through the Fourier lens which transforms the spherical wavefronts into

a plane wave. The direction of propagation of this plane wave (Ek-vector) is determined by the

location of the point source in the BFP. The accurate control over the position of this point

in the BFP leads to a tailor-made plane-wave illumination of a nanostructure that is examined

with a microscope objective. The so-called Fourier illumination achieved using a TRFM is

schematically depicted in figure 4(a). TRFM offers the unique possibility of illuminating

nanostructures with a well-defined wave vector using a microscope-based setup.

The level of accuracy of this optical tool can be tested by characterizing the diffraction

displayed by the square array of aluminum nanoparticles shown in figure 1(b), and collected

with a conventional FM when the array is illuminated using a TRFM. If a periodic lattice is

shined with a plane wave, light will be diffracted into several beams that propagate in different

directions. The conservation of the parallel component of the wave vector in the plane of the

array leads to

Ek‖sc = Ek‖ex + p EGx + q EG y, (1)

7
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where Ek‖sc and Ek‖ex are the parallel components of the scattered and the incoming wave vectors

and p and q are the two integers defining a particular diffracted order. For a square lattice,

the reciprocal lattice vectors are given by EGx = 2π

a
Eex and EG y = 2π

a
Eey with Eex and Eey the unitary

vectors along the x and y axes, respectively. Figures 4(b) and (c) show the Fourier images of the

scattering from the sample when it is illuminated with λ = 450 nm laser light at two different

angles, specifically (θex, φex) = (45◦, 0◦) and (θex, φex) = (35◦ and 270◦), respectively. The

Fourier images of the scattered intensity are recorded using a charge-coupled device camera and

are plotted in polar coordinates, where the radius and the polar angle correspond, respectively,

to the elevation (θsc) and the azimuthal (φsc) angle of the light scattered by the square lattice.

The NA of the microscope objective determines the angular range in which the FM and the

TRFM operate. In particular, a 0.95 NA microscope objective allows collecting light from the

structure with large angles of scattering limited by a marginal ray at θsc = 72◦ from the normal

to the sample. Analogously, the maximum angle of illumination that can be attained using such

objective with the TRFM is θex = 72◦. The position of the diffracted orders on the reciprocal

space can be calculated according to equation (1). The calculated directions of the zeroth

and first-order beams diffracted by the array are displayed as green open circles and squares,

respectively. A good agreement between the measured and the calculated angular position of

the different diffracted orders is attained.

4. Plasmonic-mediated directional enhanced absorption

In order to demonstrate the enhanced and angle-dependent optical absorption in the dye-doped

polymer layer by the array of aluminum nanopyramids, PL measurements were performed using

a TRFM. Notice that the time reversal refers to the optical technique rather than to the emission

process itself. To quantify the improvement introduced by the plasmonic structure on the light

absorption and emission, we define the PLE as the PL intensity measured from the emitting layer

deposited over the array normalized by the PL of the same layer in the absence of the array. The

PLE is measured for each angle of illumination (θex, φex). The emitting layer is excited using

a multimode continous wave λex = 532 nm diode laser and the PL is collected by a 0.95 NA

microscope objective and dispersed in a spectrometer.

In general, the PLE accounts for phenomena occurring at the excitation and at the emission

frequencies of the randomly distributed dye molecules. Thus the PLE can be expressed as

PLE (λex, �ex) =

∫
V

H (Er) |E (Er , λex, �ex)|
2
, dV∫

V
Href (Er) |Eref (Er , λex, �ex)|

2
dV

, (2)

where �ex is the solid angle associated to the elevation and the azimuthal angle of excitation

(θex, φex), E(Er , λex, �ex) is the local field at the wavelength λex and at the position Er where each

dye molecule is located that results from the illumination along �ex. V is the volume of the

emitting layer. Eref(Er , λex, �ex) corresponds to the local field in the absence of the nanoparticle

array. The term H (Er) corresponds to the emission and can be expressed as

H (Er) =

∫
λem

∫
�em

η (Er , λem, �em) dλem d�em. (3)

This term is due to the combined effect of (i) the local density of optical states at Er to which an

emitter can decay emitting radiation at the wavelength λem; and (ii) the outcoupling of this

emission to free space radiation in the solid angle �em associated to the elevation and the

8
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Figure 5. (a) PLE measured as a function of the illumination angle (θex, φex) from an
array of aluminum nanopyramids on a fused silica substrate covered with a 250 nm-thick
dye-doped polystyrene layer. The emitting layer is excited with a 532 nm laser using a
time-reversed Fourier microscope. Results are displayed in polar coordinates, where the
radius represents the elevation angle of excitation (θex) and the polar angle corresponds
to the azimuthal angle of excitation (φex). Discontinous gray curves correspond to the
Rayleigh anomalies calculated at a wavelength of 532 nm for the (±1,0), (0, ±1) (dotted
curves) and (±1, ±1) (dashed curves) diffracted orders in a medium with a refractive
index of 1.46. (b) Detail of (a) in the region close to θex = 0 deg where the largest PLE
is found.

azimuthal angle of emission (θem, φem). Href(Er) represents the same physical quantity than H(Er)

in the absence of the nanoparticle array. Note that both H(Er) and Href(Er) are assumed to be

independent of �ex. This assumption is not valid when λex = λem. Therefore, the dependence

of the PLE on the excitation angle is solely due to the local field intensity enhancement at the

wavelength of excitation (λex).

Figure 5(a) displays the PLE integrated throughout the emission spectrum of the dye

(between 575 and 725 nm) as a function of the excitation angle (θex,φex). Results are displayed

in polar coordinates, where the radius represents the elevation angle of the excitation (θex)

and the polar angle corresponds to the azimuthal angle of the excitation (φex). Due to the

intrinsic polarization of the laser source, the incident light appears to be preferentially polarized

along φex = 90◦ and 270◦. This gives rise to the small asymmetry of the emission with a

higher intensity along this direction of excitation. The measurements reveal a strong directional

response with bands of enhanced PL that are associated to SLRs at the wavelength of excitation.

The RAs are plotted as discontinuous gray curves in figure 5(a). Specifically, they correspond

to the onset of (±1,0), (0, ±1) and (±1, ±1) diffracted orders, calculated at a wavelength of

532 nm, assuming that the array is embedded in a medium with a refractive index of 1.46.

The coupling of the 532 nm light to these lattice-induced modes gives rise to narrow bands

of enhanced directional light conversion that follow the dispersion of the SLRs, being slightly

shifted from the RAs. Figure 5(b) shows that a 3.5-fold PLE is attained when the structure is

pumped close to θex = 5.5◦ and φex = 90◦ or 270◦.

Figure 6(a) shows the PLE as a function of θex along φex = 90◦ using a λ = 532 nm laser

source linearly polarized along this φex. To ensure this polarization, a λ/4 plate and a linear

polarizer were employed. Due to the orientation of the transmission axis of the polarizer, the

excitation of the laser light is p-polarized along φex and s-polarized along the orthogonal

9
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Figure 6. (a) PLE measured as a function of the excitation angle (θex) along φex = 90◦

from an array of aluminum nanopyramids on a fused silica substrate covered with a
250 nm-thick dye-doped polystyrene. The emitting layer is excited with a p-polarized
532 nm laser source using a time-reversed Fourier microscope. The inset shows the
result for s-polarized illumination. (b) FDTD simulated AE, i.e. the total electric field
intensity integrated in a layer with a refractive index of 1.59 that covers an array of
aluminum nanoparticles on a medium with refractive index of 1.46 normalized to the
total electric field intensity integrated in the same layer deposited over the same medium
in the absence of the metallic nanoparticles. The simulations consider a 532 nm p-
polarized plane wave incident to the array forming an angle θex with the z-axis. The
inset shows the result for s-polarized illumination. The red dashed line in (a) and (b)
correspond to the Rayleigh anomaly calculated for the (0,1) diffracted order in a medium
with a refractive index of 1.46. (c, d) FDTD simulation of the spatial distribution of the
intensity enhancement for a square array of aluminum nanopyramids on a medium with
a refractive index of 1.46 covered by a 250 nm-thick layer of refractive index 1.59. The
simulations consider a 532 nm p-polarized plane wave incident to the array forming an
angle (c) θex = 0◦ and (d) θex = 5.5◦ with respect to the z-axis. The color plot indicates
the intensity enhancement on the plane intersecting the nanoparticles at y = 0 in a unit
cell of the array. The nanoparticle and the different dielectric interfaces are outlined
using gray curves.

direction. A detailed explanation of the polarization analysis of FM can be found elsewhere [39].

A five-fold PLE is found when the emitting layer is excited at θex = 5.5◦ using a p-polarized

wave. This remarkable pump enhancement attained from a large volume of emitting material

using aluminum nanopyramids is attributed to a SLR associated to the (0,1) diffracted order. The

dashed red line in figure 6(a) correspond to the RA calculated for the (0,1) beam diffracted in

10
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a medium with a refractive index of 1.46. The enhancement is reduced when pumping off-

resonance, being 2.5 at θex = 0◦. The PLE for s-polarized excitation, shown in the inset of

figure 6(a), reaches a factor of 2.3 independently of θex which shows that the SLR directional

enhanced absorption is absent for s-polarization. The omnidirectional enhancement of the

absorption of s-polarized light can be attributed to an increased scattering of the optical pump

by the array. Out of resonance, the periodic array roughly behaves as a scattering mirror that

increases the optical path of the pump field.

The absorption of the emitting layer, and consequently its PL, increases by the

enhancement of the total electric near-field intensity at the pumping frequency in the regions

of space where the dye molecules are located. Figure 6(b) displays the simulated absorption

enhancement (AE), i.e., |E(Er , λex, �ex)|
2

integrated in the emitting layer over the nanoparticle

array normalized by |Eref(Er , λex, �ex)|
2
, as a function of θex for p-polarized 532 nm light.

Simulations for s-polarized excitation are presented as an inset of figure 6(b). Note that

good agreement is found between the PLE measurements and the AE simulations shown in

figures 6(a) and (b), respectively. The spatial distribution of the IE simulated in the xz plane

intersecting the particles at y = 0 in a unit cell of the array are displayed in figures 6(c) and (d)

for θex = 0◦ and 5.5◦, respectively. Figure 6(d) shows that, at resonance, the near-field intensity

is enhanced throughout the emitting layer in the space between the aluminum nanopyramids.

This intensity enhancement leads to the increase of the optical absorption in a volume of the

dye layer larger than the typical associated to a localized plasmonic resonance. SLRs in phased

arrays of optical antennae make dye-doped polymer layers deposited over periodic arrays of

metallic nanoparticles efficient light converters at selected frequencies and angles.

5. Conclusions

The optical absorption of a thin layer of polymer containing dye molecules can be strongly

enhanced using a periodic array of aluminum nanopyramids that behaves as a receiving phased

array of optical antennae. Lattice-induced modes supported by such arrays, known as SLRs,

yield an electric near-field intensity enhancement in the media surrounding the nanoparticles

where the dye molecules are located. The collective and dispersive nature of SLRs enables

an efficient coupling between the far-field illumination and the near-field excitation of the dye

molecules that is angular selective. To investigate the directional enhanced optical absorption,

TRFM was employed. This technique allows the illumination of nanostructures using a well-

defined wave vector in a microscope-based setup. PL measurements as a function of the

illumination angle reveal a fivefold emission enhancement for p-polarized light when the

emitting layer is illuminated at a direction close to the sample normal. Numerical simulations

confirm that the PLE originates from an enhanced optical absorption due to a near-field intensity

enhancement mediated by the array of nanopyramids. These results may open new possibilities

for the angular control and optimization of the optical absorption and light conversion in

plasmonic-based devices. We envisage that TRFM will provide a wealth of new opportunities

for the investigation of the angular dependence of light-matter interaction in nanostructures.
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