
Abstract

This paper investigates the effect of the prefabricated
routing track distribution on the area-efficiency of FPGAs.
The first question we address is whether horizontal and
vertical channels should contain the same number of
tracks (capacity), or if there is a density advantage with a
directional bias. Secondly, should the channels have a uni-
form capacity, or is there an advantage when capacities
vary from channel to channel? The key result is that the
most area-efficient global routing architecture is one with
uniform (or very nearly uniform) channel capacities
across the entire chip in both the horizontal and vertical
directions. Several non-uniform and directionally-biased
architectures, however, are fairly area-efficient provided
that appropriate choices are made for the pin positions on
the logic blocks and the logic array aspect ratio.

1 Introduction

In recent years Field-Programmable Gate Arrays
(FPGAs) have seen explosive market growth because they
offer instant manufacturing and much lower non-recurring
engineering costs than Mask-Programmed Gate Arrays.
FPGAs enable fast manufacturing and low development
costs because their logic and routing resources are prefab-
ricated and are customized in the field by the designer [1].

The prefabrication of routing resources in an FPGA
implies that the number of routing tracks in each channel
is set by the manufacturer. It is vital that these routing
resources be distributed in a manner that allows their effi-
cient utilization by the largest class of circuits. If there are
too few tracks in some area of the chip then many circuits
will be unroutable, while if there are too many tracks, they
may be wasted.

This paper addresses several questions concerning the
distribution of routing tracks across an FPGA. First,
should the number of tracks in the horizontal channels be
different from the number in the vertical channels? We
refer to this as adirectional bias; Figure 1(a) illustrates an
example directionally-biased FPGA. In essence, we are
investigating if there is an intrinsic property of circuits that
makes a directional bias more area efficient. If so, what
amount of bias is best? Commercial FPGAs with both
unbiased routing [2, 3] and biased routing [4, 5] exist, so
this question has clear commercial relevance.

Second, should all channels in the same direction in
an FPGA be the same width or should some channels be
wider than others to facilitate routing in congested
regions? We refer to architectures in which the channels in
some regions are wider than the channels in others asnon-
uniform routing architectures; Figure 1(b) depicts an
example.1 Many in the FPGA community believe that
most routing congestion occurs near the center of an
FPGA, and hence channels in this region should be wider
than the channels near the edges. In fact, the Lucent Tech-
nologies (formerly AT&T) ORCA 2C series FPGAs have
an extra-wide channel in the center of the chip to improve
routability [6]. In addition, board-level constraints often
force designers to fix the position of an FPGA’s I/Os, and
some believe that this increases congestion near the chip
edges so that the channel between the pads and the logic
should be made extra wide. The Xilinx 5000 series FPGA
has a wide channel between the pads and logic, at least
partially to improve routability when the I/O locations are
fixed [7]. In this paper, we determine the best distribution
of tracks across an FPGA both when the I/O assignment to
pads is unconstrained and when it is fixed in a poor config-
uration.

We evaluate FPGA architectures experimentally;
benchmark circuits are placed and routed into FPGAs with
different global routing architectures to determine the rela-
tive area consumed by the circuit in each architecture. To

1. Note that any given channel will always have the same number of
tracks along its entire length. We did not consider varying the channel
capacity along its length as this makes it very difficult, and likely imprac-
tical, to lay out the FPGA.

(a) Directionally-Biased (b) Non-Uniform

Figure 1: Types of Global Routing Architectures.
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obtain meaningful results, the CAD tools used to place and
route these circuits must take advantage of the biased and
non-uniform nature of these architectures. Accordingly,
we have created a new placement and routing tool which
aggressively seeks to minimize congestion and fully uti-
lize the channels of the specified architecture during both
placement and global routing.

The organization of this paper is as follows. Section 2
outlines the CAD flow used to evaluate the different
FPGA architectures. Section 3 describes the custom place-
ment and routing CAD tools. We evaluate the area-effi-
ciency of FPGAs with differing amounts of directional
routing bias in Section 4. In Section 5 we address the uni-
form vs. non-uniform channel thickness question. Finally,
we summarize our results and conclusions.

2 Experimental Methodology

To compare the area-efficiency of the different global
routing architectures we technology-map, place and route
26 of the largest MCNC benchmark circuits [8] into each
architecture. In this section we describe the CAD flow, the
area-efficiency metric used to compare architectures, and
several important architectural details.

2.1 CAD Flow

 Figure 2 summarizes the CAD flow. First, the circuit
is optimized by SIS [9]; next it is technology-mapped by
Flowmap [10] into four-input look-up tables (4-LUTs) and
flip flops. The logic block used in these experiments con-
tains a 4-LUT and a flip-flop, as illustrated in Figure 3. A
custom-built program (blifmap) packs the 4-LUTs and flip
flops together into these logic blocks.

The netlist of logic blocks and a description of the
FPGA global routing architecture are then read into the
placement and global routing tool, VPR. This program
places the circuit, and then repeatedly routes (or attempts
to route) the circuit with different numbers of tracks in
each channel (channel capacities). VPR performs a binary
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search on the channel capacities, increasing them after a
failed routing and reducing them after a successful one,
until it finds the minimum number of tracks required for
the circuit to route successfully on a given global routing
architecture. While the absolute number of tracks per
channel is adjusted upwards or downwards after each
attempted routing, therelative numbers of tracks in the
various channels across the FPGA are always kept at the
values specified by the FPGA architecture. For example,
VPR’s first attempt at routing a circuit in an architecture
with a two-to-one directional bias might assume horizontal
channel capacities of twelve tracks and vertical channel
capacities of six tracks. If this routing was successful,
VPR would next attempt to route the circuit in an FPGA
with horizontal channel capacities of six tracks and verti-
cal channel capacities of three tracks, and so on until the
minimum number of tracks required for routing is deter-
mined.

The benchmark circuits used in this study consist of
14 combinational and 12 sequential MCNC benchmark
circuits [8], which vary in size from 222 to 1878 of our
logic blocks.

2.2 Area-Efficiency Metric

Our goal is to measure the area-efficiency of different
global routing architectures without reference to the
detailed routing architecture (e.g. segmentation and switch
block topology). At this level, it is the amount of “global
wiring” that changes as we vary the architecture. A simple
track count will not accurately represent the wiring area of
rectangular FPGAs, as the tracks in one direction are
longer than those in the other. Accordingly, we define a
track segment to be a prefabricated wire that spans one
logic block; a channel of width W tracks that spans L logic
blocks contains WL track segments. The total number of
track segments an FPGA must contain to globally route a
circuit is a representative metric of the “global wiring”
area. In order to average the results from circuits of differ-
ing sizes we use the average number of track segments per
tile (i.e. per logic block) as our area measure. For example,
in a square N x N uniform FPGA with W tracks in each
channel, the total number of track segments is 2WN2, and
the number of tracks per tile is 2W. Note that the routing
area is given by the total number of track segments in the
entire FPGA, and not the number of track segments which
are actually used by a circuit.

2.3 Significant FPGA Architectural Details

Several architectural parameters other than the global
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routing architecture must be specified in order to define an
FPGA. We set these parameters to be as close to those of
commercial FPGAs as possible.

First, the size of the FPGA array used for a given cir-
cuit (i.e. the number of logic blocks) is set to be thesmall-
est FPGA with the desired aspect ratio (number of
columns / number of rows) with sufficient logic blocks to
accommodate the circuit. This situation, in which there is
minimal “spare room” in the FPGA, presents the greatest
challenge to routing completion and is normally the case
manufacturers wish to optimize.

 In this study the number of I/O pads that can fit into
the height or width of a logic block is set to two. This
number is commensurate with the relative sizes of I/O
pads and 4-LUTs in current FPGAs [2, 3, 5] and ensures
that none of the 26 benchmarks is pad-limited.

Finally, we do not route the clock net in sequential cir-
cuits, since this net is normally distributed through a spe-
cial clocking network in commercial FPGAs.

3 Tuned Placement and Routing Algorithms

In FPGA architecture explorations of this kind [1] one
must ensure that the CAD tools used are responsive to the
architectural parameters being varied. To ensure a fair
comparison between different global routing architectures,
we created a new placement and global routing tool which
directly exploits biased and non-uniform routing architec-
tures. As this CAD tool is capable of mapping to a wide
variety of FPGA architectures, we named it VPR, short for
Versatile Place and Route; it is publicly available from
http://www.eecg.toronto.edu/~jayar/software.html.

3.1 Global Routing Resource-Aware Placement

We employ the simulated annealing algorithm [11] for
placement. The key to a routing-resource-aware placement
tool is ensuring that the cost function correctly models the
relative difficulty of routing connections in regions with
different channel widths. After significant experimentation
with many alternatives [15], we have developed alinear
congestion cost function which provides the best results in
reasonable computation time. Its functional form is

where the summation is over the M nets in the circuit. For
each net, bbx and bby denote the horizontal and vertical
spans of its bounding box, respectively. The q(n) factor
compensates for the fact that the bounding box wire length
model underestimates the wiring necessary to connect nets
with more than three terminals, as suggested in [12]. Its
value depends on the number of terminals of net n; q is 1
for nets with 3 or fewer terminals, and slowly increases to
2.79 for nets with 50 terminals. Cav,x(n) and Cav,y(n) are
the average channel capacities (in tracks) in the x and y
directions, respectively, over the bounding box of net n.

Costlinear q n( )
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This cost function penalizes placements which require
more routing in areas of the FPGA that have narrower
channels. The exponent,α, in the cost function allows the
relative cost of using narrow and wide channels to be
adjusted. Whenα is zero the linear congestion cost func-
tion reverts to the standard bounding box cost function.
The larger the value ofα, the more wiring in narrow chan-
nels is penalized relative to wiring in wider channels; we
have experimentally found that settingα to 1 results in the
highest quality placements.

Since Cav depends only on the channel capacities,
which do not change during a placement, and on the maxi-
mum and minimum coordinates of the bounding box, we
precompute all possible Cav,x and Cav,y values. Conse-
quently, recomputing this cost function is essentially as
fast as recomputing the traditional bounding box cost
function.

In an FPGA where all channels have the same capac-
ity, Cav is also a constant and hence the linear congestion
cost function reduces to a bounding box cost function. In
non-uniform and directionally-biased FPGAs, however,
this cost function results in higher quality placements than
a bounding box cost function. The exact amount of
routability improvement depends on the precise global
routing architecture used; as one would expect, those in
which there is a large difference between the widths of
channels in different regions show the largest improve-
ment. For the architectures studied in this paper, place-
ments produced with the linear congestion cost function
typically require 5 to 10% fewer tracks to route than place-
ments produced with a bounding box cost function.

We also implemented the cost function of [12], which
we call anon-linear congestion cost function. This cost
function divides the FPGA into an array of N x N regions
and attempts to model the routing resource demand and
supply in each of these regions. When a placement causes
the routing resource demand to exceed the supply in some
regions, the placement is heavily penalized. We found that
this non-linear congestion cost function, when computed
on a 4 x 4 grid (16 regions), generally produces place-
ments which require 2 to 4% fewer tracks to route than
those produced by the linear congestion cost function.
However, keeping track of the routing resource demand in
the various chip regions is computationally expensive, and
placement with this cost function requires five times
greater CPU time than the linear congestion function.
Dividing the FPGA into smaller subregions to make local-
ized congestion more visible did not work well; a non-lin-
ear congestion cost function computed on a 16 x 16 grid
(256 regions) performs only marginally better than a cost
function computed on a 4 x 4 grid, yet consumes sixteen
times the CPU time.

We considered the reductions in track count achieved
by the non-linear congestion cost function too small to
warrant the additional CPU time, so the results presented
in this study all use the linear congestion cost function.
Nonetheless, we did rerun a few of our experiments with
the non-linear congestion cost function and found that its



use did not change any of the architectural conclusions
presented below.

3.2 Congestion-Driven Global Routing

It is crucial for the global router to leverage the differ-
ences in the capacities of the various FPGA channels. The
global router developed for this study employs a variant of
the PathFinder negotiated congestion algorithm [13]. This
algorithm consists of routing each net with a maze router
[14], then ripping up and rerouting each net in sequence
several times. In each of these subsequent routing itera-
tions, the cost of using a node (which iseither a channel
segment or a logic block input pin) is modified, based on
the competition for that node in both the current iteration
and all previous iterations. A channel segment is the
length of channel that spans one logic block; in an FPGA
composed of an N x N array of logic blocks each channel
contains N segments. We define the cost of a routing node
somewhat differently than [13]; the cost of using routing
noden is

The pn term is a measure of the present congestion at
this node. It is updated every time any net is ripped-up and
rerouted. The value of pn is equal to the overuse of this
node that would occur if one more route were to use it,
since the decision we are making during routing is whether
another net should go through this node or not. For exam-
ple, consider a channel with a capacity of six tracks and a
segment of this channel in which all six tracks are cur-
rently used. The pn value of this channel segment is one,
since routing one more net through this channel will result
in an overuse of one.

The hn term accounts for the historical, or past, con-
gestion at this node. It is updatedonly after an entire rout-
ing iteration is completed; i.e. after every net in the circuit
has been ripped up and rerouted. Initially hn is 0; at the end
of each routing iteration hn is increased by the amount by
which demand for this node outstrips its capacity.

The bn,n-1 term penalizes bends, since global routes
with many bends in them present a more difficult detailed
routing problem in FPGAs with segmented routing, and
will generally lead to detailed routes that are both slower
and require more tracks. The value of bn,n-1 is one if mak-
ing the connection from node n-1 to node n implies a bend
(i.e. node n-1 is a horizontal channel segment and node n
is a vertical channel segment or vice versa), and is zero
otherwise. Including this bend cost in the total cost of
using a node produces routes with very few unnecessary
bends and increases the global routing track count very lit-
tle.

The key idea of Pathfinder is that the pfac term is 0 for
the first routing iteration, and is gradually increased in suc-
cessive iterations. Hence, each net is initially routed by the
shortest path found. In successive iterations, the pfac term
is gradually made larger so that congestion becomes more
expensive and those nets which have alternate routes move

cn 1 hn hfac⋅+( ) 1 pn pfac⋅+( )× bn n 1−, .+=

out of the congested areas. The history term, hfac, allows
information from previous routing iterations to affect the
current routing, further improving the router’s ability to
find and avoid congestion. By treating both channel seg-
ments and input pins as routing nodes, this algorithm
makes use of the functional equivalence of LUT input pins
in a very natural way. Initially, each connection uses the
logic block input pin which leads to the shortest route. As
the cost of congestion increases, nets are gradually forced
to use unique input pins.

In our implementation each channel can have a differ-
ent capacity. Since the cost of a channel segment is based
on the amount by which routing demand exceeds its
capacity, this router will automatically act to relieve pres-
sure on narrow channels by rerouting nets through wider
channels whenever necessary.

Considerable effort was spent tuning therouting
schedule (the values of pfac and hfac over the course of the
iterations). The best routing schedule we found set pfac to
0 for the first iteration, 0.5 for the second iteration, and 1.5
times the previous pfac value for all subsequent iterations.
The value of hfac was set to 0.2 for all iterations; the fact
that hn can only increase from iteration to iteration pro-
vides sufficient increase in the historical congestion pen-
alty. This routing schedule increases the cost of congestion
slowly enough that the net ordering is not very important -
- nets with the most alternate routes move out of congested
areas first. Increasing the cost of congestion more slowly
than this reduced the number of tracks required only by 1 -
2% while increasing the CPU time by a factor of 2 to 3.
Setting hn to 0 so that the router has no information about
past congestion increased the number of tracks required by
15%.

4 Experimental Results for FPGAs with
Directionally-Biased Routing Resources

The experimental framework and tools described
above were employed to answer the questions posed in the
introduction to this paper: first, is there an area-efficiency
advantage to a directionally-biased architecture? Recall
that in a directionally-biased FPGA the number of routing
tracks in the horizontal and vertical directions are differ-
ent. In essence, we are investigating if there is an exploit-
able directional bias in the basic nature of circuits. We
characterize directionally-biased FPGAs by the ratio of the
width of a horizontal channel to the width of a vertical
channel, denoted as Rh. For example, Figure 1(a) depicts
an FPGA with a 2:1 directional bias, i.e. Rh = 2.

We need to define an additional architectural feature
which markedly affects our results: the positioning of the
pins on the logic block. The two main cases of interest are
illustrated in Figure 4. In Figure 4(a), the logic block input
and output pins are distributed evenly around the entire
perimeter of each logic block. We call this thefull-perime-
ter pin positioning, and it is similar to the pin positioning
used in Xilinx and ORCA FPGAs [2, 3]. Figure 4(b) illus-
trates thetop/bottom pin positioning, which restricts the



logic block input pin locations to lie only on the top and
bottom of the logic block; it is similar to the pin position-
ing used in Actel FPGAs [4]. In all the results we show in
this paper, each logic block pin appears (physically) on
only one side of a logic block. We have found that for the
channel connectivity values (Fc [1]) found in today’s com-
mercial FPGAs this leads to the most area-efficient FPGAs
[15].

We have also found that the ratio of the number of
columns to the number of rows in an FPGA, which we call
the aspect ratio, significantly affects area efficiency. Since
most FPGAs have the same number of rows and columns,
we first present the results for square (aspect ratio 1)
FPGAs, before discussing the more general case of rectan-
gular FPGAs in Section 4.2.

4.1 Results for Square FPGAs

Twenty-six large MCNC benchmarks were passed
through the experimental flow of Figure 2 for values of Rh
ranging from 1 to 4. As discussed in Section 2, the result
for each circuit is the number of track segmentsper tile
needed to successfully global route the circuit in an
FPGA2 with the specified value of Rh. Figure 5 is a plot of
area-efficiency versus the degree of routing direction bias,
Rh, for both types of pin positioning. The vertical axis is
the average number of tracks per tile required to success-
fully route the 26 benchmarks.

For the full-perimeter logic pin positioning, the best

2. Track segments are counted whether or not they are actually used, so
this is a true representation of the area that must be devoted to routing in
the layout.
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Figure 4: Logic Block Pin Position Alternatives.
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Figure 5: Area-Efficiency vs. Directional Bias for Square
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architecture has no directional bias. However, when the
pins are restricted to the top and bottom of the logic block,
the most efficient architecture has horizontal channels
which are roughly twice as thick as the vertical channels.
An important conclusion is that the best full-perimeter
architecture is about 8% more area-efficient than the best
top/bottom pin architecture.

The full-perimeter architecture is more area-efficient
because there is a greater chance that the block input pins
are closer to their desired connections when they are in
this configuration than when they are in the top/bottom
configuration. For example, consider the two routings of a
multi-terminal net shown in Figure 6. The top/bottom pin
configuration needs six track segments to route this net,
while the full-perimeter configuration requires only five.
By making use of the functional equivalence of LUT input
pins during routing, the router can often connect to a logic
block pin adjoining a track segment it needs to use for
other connections, essentially making the connection to
this logic block for free. Since the top/bottom pin configu-
ration has input pins bordering on only the horizontal
channels, such “free” connections into logic blocks are
less frequent, reducing area-efficiency.

The full-perimeter pins configuration achieves the
highest area-efficiency when there is no directional bias to
the routing because this makes the difficulty of routing to
each of a logic block’s nearest neighbors roughly equal.
Consequently, the placement software can use all the
nearby logic block locations equally to cluster the fanout
of a net around its driver. Essentially, this allows one to
cluster tightly coupled portions of logic in the smallest
possible area. The top/bottom pins configuration, on the
other hand, prefers a 2:1 directional bias because every
connection to a logic block pin must come from a horizon-
tal channel. This extra pressure on the horizontal routing
resources is significant, since the typical distance routed
between pins is only about 3 track segments.

4.2 Rectangular FPGAs

In order to increase the IO-to-logic ratio, FPGA man-
ufacturers may want to build rectangular FPGAs, as this
increases the die perimeter and hence the number of pads.
In this case the channels in one direction are longer and
have more blocks connected to them than the orthogonal
channel, so the best amount of directional bias may
change. We refer to the ratio of the number of columns in
an FPGA to the number of rows as its aspect ratio. Figure

(a) Full-Perimeter Pins. (b) Top/Bottom Pins.

Figure 6: Example Multi-Terminal Net Routing.



7 depicts an FPGA with an aspect ratio of two.
Figure 8 is a plot of the required tracks per tile versus

Rh for various chip aspect ratios for an FPGA with the
full-perimeter logic block pin positioning. There are two
features of interest in Figure 8. First, notice that the mini-
mum of the aspect ratio = 1 curve is the lowest of the
three, indicating that a square FPGA is most area-efficient.
Secondly, the value of Rh at which the minimum area
occurs increases as the aspect ratio increases. As the
aspect ratio increases, the horizontal channels become
longer than the vertical channels and this results in greater
demand for horizontal track segments. The best value of
Rh increases from 1 for a square FPGA to 1.33 and 1.59
for aspect ratios of 2 and 3, respectively.

The solid curve in Figure 9 shows how area-efficiency
varies with aspect ratio when we set Rh to the most appro-
priate value for each aspect ratio. The dotted curve in Fig-
ure 9 keeps Rh fixed at 1, which is the best value for a
square FPGA. The routing resource requirements increase
moderately with aspect ratio; an FPGA with an aspect
ratio of 3 requires 18% more tracks per tile than a square
FPGA when Rh is 1. When the most appropriate value of
Rh is used for each aspect ratio, however, an FPGA with
an aspect ratio of 3 requires only 4% more track segments
than a square FPGA. Thus we conclude that, as long as the
horizontal and vertical channel widths are appropriately
balanced, chip aspect ratios, and hence I/O counts, can be
increased with little impact on the core area.

The variation of core routing area with aspect ratio is
similar for FPGAs that use the top/bottom logic block pin
positioning [15]. In this case an FPGA with an aspect ratio
of 3 requires only 5% more tracks per tile than a square
FPGA. For FPGAs of this type, however, the increase in

m rows

2m columns

Figure 7: An FPGA with an Aspect Ratio of 2.
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Figure 8: Area-Efficiency of Rectangular FPGAs with
Full-Perimeter Pins.

the best value of Rh as aspect ratio increases is less dra-
matic. The best square FPGA with top/bottom pins has
horizontal channels which are twice as wide as vertical
channels; the thicker horizontal channels are better able to
cope with the increased pressure for horizontal tracks as
aspect ratio increases.

5 Experimental Results for FPGAs With
Non-Uniform Routing

The second key issue we explore concerns the area-
efficiency obtained when the channels in different regions
of an FPGA have different capacities. We only investigate
FPGAs which use the full-perimeter pin positioning, as
Section 4 showed that this pin positioning is best.

We define a non-uniform routing architecture to be
one in which the number of tracks per channel changes
from channel to channel across an FPGA. For example,
Figure 1(b) illustrates a non-uniform FPGA in which the
channels near the chip center are wider than those near the
periphery. If congested regions of a circuit can be local-
ized and placed in the portions of the FPGA with the wid-
est channels, a non-uniform FPGA could have better area
efficiency than a uniform FPGA. We will investigate two
types of non-uniform FPGAs: one in which we vary the
center/edge channel capacity ratio, and one in which we
vary the I/O channel capacity.

5.1 Center/Edge Capacity Ratio

There is a widespread belief that most congestion
occurs in the center of FPGAs, and hence having wider
channels near the FPGA center and narrower channels
near the edges is expected to improve area-efficiency. To
keep the layout problem tractable, we restrict ourselves to
FPGAs which use channels of only two different widths.
We can describe global routing architectures of this form
with two parameters. Let Rw be the ratio of the widths of
the channels near the center of the FPGA to the widths of
the channels near the FPGA edges, i.e. Wcenter / Wedge. Let
Rc be the ratio of the number of channels with width
Wcenter to the total number of channels. For example, the
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FPGA of Figure 1(b) has Rw = 2 and Rc = 0.5.
Using the flow of Section 2, we again implemented 26

benchmark circuits in several architectures to determine
their area-efficiency. We examined FPGAs with Rw equal
to 0.75, 1.18, 1.33, and 2, and with Rc values varying from
0 to 1. The relative density of FPGAs with Rw = 1.33 and
Rw = 2 is summarized in Figure 10. Note that the points at
which Rc equals 0 or 1 correspond to a uniform FPGA.

The results generally show that the less uniform the
channel widths, the worse the FPGA area-efficiency. The
worst area-efficiency with Rw = 2 occurs when Rc is 0.5,
meaning that half the FPGA channels are twice as wide as
the other half. In fact, only two non-uniform FPGAs show
even marginal area-efficiency improvements over the uni-
form case and both these FPGAs are very close to a uni-
form architecture. In one, the 10% of channels nearest the
center are 33% wider than the other channels, while in the
other the 90% of channels closest to the center are 33%
wider than the channels nearest the edges. The reduction
in tracks per tile over a uniform FPGA is less than 1% for
both of these FPGAs, so the improvement is not sufficient
to justify the extra layout effort required in the physical
design of such an FPGA.

We also evaluated FPGAs in which only the center-
most channel in each direction was extra-wide, since a
commercial FPGA of this architecture has recently been
introduced [6]. A uniform FPGA outperformed this non-
uniform architecture as well [15].

These results are significant because there is a com-
mon belief among FPGA architects that there would be
significant benefit to these kinds of non-uniform architec-
tures. The fundamental reason they do not show any bene-
fit is that there is not much more congestion in the center
of an FPGA than there is near its edges. In order to deter-
mine the “natural” routing demand distribution of circuits,
we placed and routed the 26 benchmark circuits with all
congestion avoidance features disabled, so that placement
minimized wirelength and the router connected each net
by the shortest path. Figure 11 plots the maximum and
average number of tracks required by the horizontal chan-
nels as a function of the channel position within the
FPGA, averaged over the 26 benchmark circuits. The

Fraction of Channels with Width Wcenter (Rc)

Average
Tracks
per Tile

13.4

13.6

13.8

14

14.2

14.4

14.6

14.8

0 0.2 0.4 0.6 0.8 1

g
g

g

g

g

g

gg

g

g

g

g

g
g

Rw = 2

Rw = 1.33

Figure 10: Area-Efficiency vs. Routing Architecture.

results for individual circuits closely parallel these overall
averages. Demand for routing tracks is relatively constant
over the middle 90% of the FPGA, and there is only a
moderate decrease as one gets very close to the chip edges.

In addition, typical circuits contain numerous local
congestion “hotspots” (small regions where all the chan-
nels are full) and some of these hotspots occur quite close
to the FPGA edge. Consequently, in order for an FPGA
with thicker channels near its center to use fewer routing
resources, the placement software must move all of these
hotspots into the FPGA center. As discussed in Section
3.1, we spent considerable time investigating placement
cost functions that modelled congestion well. The more
advanced, and computationally expensive, cost functions,
however, improved the performance of the uniform FPGA
more than they did the non-uniform FPGA. We believe it
is therefore more effective for CAD tools to attempt to
spread out congestion as much as possible, rather than to
try to localize it to a designated portion of a chip.

5.2 I/O Channel

Another major FPGA vendor has added routing
resources to the “I/O-channel” that runs between the I/O
pads and the logic blocks, at least in part to ensure that
fixed I/O pad placement does not impact routability and
speed [7]. We define Rio to be the ratio between the width
of this outermost channel and the width of the other chan-
nels. Figure 12 is a plot of the average tracks/tile required
for the 26 benchmarks circuits versus Rio. The solid line in
Figure 12 shows the trend when the I/O locations are cho-
sen by the placement tool, while the dashed line is found
when the I/O pads are “fixed” in a random location, to
model the effect of poor (from the FPGA’s point of view)
pin constraints.

There are several features of interest in Figure 12.
First notice that fixing the I/O locations increases the num-
ber of routing tracks required by 12% on average. Archi-
tects must take this into account when designing FPGAs.
Secondly, the curve where the I/O locations are chosen by
the placement tool has its minimum value when Rio = 1,
again showing that it is best to spread routing resources
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Figure 11: Average over Benchmarks of Track Demand
vs. Position for Horizontal Channels.
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evenly across the chip. Fixing the I/O pins shifts the mini-
mum in the tracks per tile curve slightly so that it now
occurs when Rio = 1.25. While fixing the I/O pins leads to
a significant increase in the number of routing tracks
required, this increase is, for the most part, spread over the
FPGA and not confined to the channels connecting to the
I/O pads. Consequently, one should not make very wide
channels adjoining the pads in order to improve routability
with pin constraints, although a small increase in the I/O
channel capacity is a net benefit.

6 Conclusions

The most interesting (and unexpected) conclusion of
this work is that the most area-efficient global routing
structure is one with completely uniform channel capaci-
ties across the entire chip and in both horizontal and verti-
cal directions. The basic reason is that most circuits
“naturally” tend to have routing demands which are evenly
spread across an FPGA. The only (slight) exception we
found to this “uniform is better” rule occurred when the
I/O locations of circuits were fixed by board-level con-
straints. In this case making the I/O channel 25% wider
than the other channels was a net benefit.

Of almost equal note, the area-efficiency is decreased
only slightly by some non-uniform or directionally-biased
architectures, provided the pin placement on the logic
blocks is well-matched to the channel capacity distribu-
tion. Hence if such architectures are desirable for other
reasons the impact on core area doesn’t preclude their use.
For example, one reason for widening the center-most
channel is to provide the extra routing required by a larger
FPGA while reusing the basic tile layout created for
smaller members of the FPGA family.

More specifically, of the FPGA architectures studied,
a full-perimeter pin position FPGA with no directional
routing bias and uniform channel widths is most area-effi-
cient. Employing a logic block with the top/bottom pin
position requires approximately 8% more routing
resources than full-perimeter FPGAs, and the most area-
efficient top/bottom FPGA has twice as many horizontal
routing tracks as vertical ones. We also found that one can
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construct rectangular FPGAs which are only slightly less
dense than square FPGAs provided one adjusts the degree
of directional bias in the routing resources to best match
the chip aspect ratio.

Our experimental results in this paper were gathered
with the linear congestion cost function in the placement
tool because we felt the non-linear cost function was too
slow to be commercially viable. However, it is interesting
to note that while the non-linear function improved the
routability of circuits for all FPGA architectures, it
improved routability the most for uniform routing archi-
tectures. Apparently it is easier for advanced CAD tools to
spread out congested regions than it is to localize them to
designated portions of a chip that have extra routing
resources. Consequently, we expect that future advances in
CAD tools will tend to slightly increase the advantages of
uniform routing architectures over their non-uniform
counterparts.
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