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Abstract Bicubic interpolation is a standard method in image interpolation field 

because of its low complexity and relatively good results. But as it only 

interpolates in horizontal and vertical directions, edges easily suffer from artifacts 

such as blocking, blurring and ringing. This paper proposed a new method of 

image super-resolution which is named directional bicubic interpolation. 

According to local strength and directions, different ways are used to interpolate 

missing pixels. Compared with bicubic interpolation, the proposed method can 

preserve sharp edges and details better. Experiment results show that the proposed 

method is better than existing edge-directed interpolations in terms of subjective 

and objective measures, and its computation complexity is low. 

Keywords Bicubic · Local gradients · Direction extraction · Edge 

strength·Direction parameter 

1  Introduction 

As high-resolution (HR) images can provide more details and better perceptual 

quality, image interpolation is required to produce a HR image from its low-

resolution (LR) counterpart in many fields, such as medical images, HD videos, 

satellite imaging, mobile devices (e.g. iphone, ipad, etc) and so on.  
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Traditional polynomial-based interpolations include bilinear, bicubic [1] and 

cubic spline interpolation [2], which have low computation complexity, but easily 

suffer from artifacts along edges or textures. To remedy this disadvantage, many 

edge-directed interpolations are proposed. They try to interpolate missing pixels 

along edges as much as possible. Jensen and Anastassiou [3] detect edges by using 

an edge fitting operator. Li and Orchard [4] estimate local covariance of HR 

images with the help of the local LR covariance to match the edge directions. 

Yang [5] detects local gradient direction with principal components analysis 

(PCA) as the direction of the edge. Zhou [6] compares gradients of two orthogonal 

directions to compute local edge strength and direction and use different ways to 

interpolate missing pixels with different strengths and directions.  

Compared with traditional interpolation methods, edge-directed interpolations 

can preserve shape edges better, but may also generate some artifacts in texture 

areas. In this paper, we propose a novel method of image super-resolution for 2D 

images. Simulation results show that compared to existing edge-directed 

interpolations, our proposed method achieves better results, and at the same time, 

its computation complexity is low. 

2  Proposed Algor ithm 

1D bicubic only interpolates along horizontal or vertical directions, which results 

in non-horizontal or non-vertical being smoothed. To solve this problem, we first 

estimate edge strength and direction through local image gradients. Then for 

pixels on strong edges or on weak edges and textures, interpolate by different 

ways. 

2.1  Local Edge Direction  

Before interpolation, the first step is to detect local edge direction. As gradients 

across edges are larger than along edges, local gradients are used for detecting 

edge directions. For a digital image, four directions (0°, 45°, 90°and 135°) are 

considered in a 7×7 neighborhood as follows: 
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(1) 

Suppose the direction across edge is between the biggest two gradients 

1max
G ,

2max
G  of  13509450

,,, GGGG . Compute the ratio of
1max

G ,
2max

G , where 1 is 

added to avoid division by zero. If ( ) ( ) TGG >++
2max1max

11 , pixel ( )ji,  is on a 

strong edge, the direction of the edge is across
1max

G ; otherwise, pixel ( )ji,  is on a 

weak edge, the direction of the edge is across a direction between the two 

gradients. 

2.2  Algorithm Description  

In the paper, we divide pixels into two classes: pixels on strong edges and pixels 

on weak edges or textures. Take the interpolation of pixel ( )jiI
HR

2,2 for example. 

 For pixels on strong edges, 1D bicubic interpolation is used along edge 

directions directly. As shown is (2) [5], if edge direction is 45° or 135°, we 

choose four nearest pixels along the direction and the coefficients are[-1, 9, 9,  

-1]/16. While if edge direction is 0° or 90°, we choose eight nearest pixels 

perpendicular to the direction, and coefficients are [-1, 9, 9, -1, -1, 9 , 9 ,-1]/32. 

( )32,32 −− jiI H R

( )miIHR 2,2

( )12,32 +− jiI H R

( )32,12 ++ jiI H R

( )32,12 +− jiI H R

( )12,12 ++ jiI H R

( )12,12 +− jiI H R
( )32,12 −− jiI H R

( )12,12 −− jiIH R

( )12,12 −+ jiI H R
( )32,12 −+ jiI H R

( )32,32 ++ jiI H R
( )12,32 ++ jiI H R

( )12,32 −+ jiI H R
( )32,32 −+ jiI H R

( )32,32 +− jiI H R
( )12,32 −− jiI H R

 

Fig. 1 Illustration of interpolating model of ( )jiI
HR

2,2  

472



   

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )






























=

−++−

=

−++−

−++−

=

−++−

=

−++−

−++−

=

++++−−−−

+++++−+−

−+−+−−−−

+−+−−+−+

++++−+−+

+−+−−−−−









135

16

1

16

9

16

9

16

1

90

32

1

32

9

32

9

32

1

32

1

32

9

32

9

32

1

45

16

1

16

9

16

9

16

1

0

32

1

32

9

32

9

32

1

32

1

32

9

32

9

32

1

32,3212,1212,1232,32

12,3212,1212,1212,32

12,3212,1212,1212,32

32,3212,1212,1232,32

32,1212,1212,1232,12

32,1212,1212,1232,12

2,2

θ

θ

θ

θ

jiHRjiHRjiHRjiHR

jiHRjiHRjiHRjiHR

jiHRjiHRjiHRjiHR

jiHRjiHRjiHRjiHR

jiHRjiHRjiHRjiHR

jiHRjiHRjiHRjiHR

jiHR

IIII

IIII

IIII

IIII

IIII

IIII

I  (2) 

 For pixels on weak edges or textures. Firstly, interpolate along directions 

across the two biggest gradients
1max

G ,
2max

G  as (2) respectively. Then merge 

them with proper weights. Suppose 
1

p ,
2

p  are bicubic results corresponding to 

1max
G  and 

2max
G , weights can be computed as 
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where k is an exponent parameter, and 1 is added to avoid division by zero. 

The interpolation result p of pixels on weak edges or textures can be estimate 

as 

( ) ( )
212211 wwpwpwp ++=                                (4) 

To summarize the method, an informative description of our method is given as 

follows: 

Input: low resolution image
LR

I . 

Output: high resolution image
HR

I . 

Begin 

 Initialization. Enlarge LRI  to HRI  through ( ) ( )jiIjiI
LRHR

,12,12 =−− , 

NjMi ≤≤≤≤ 1,1 , where M, N is the size of LR image. 
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 Interpolating pixels ( )jiI
HR

2,2 . Before interpolating, first compute its local 

varianceσ . If σσ T< , use bilinear interpolation directly. Otherwise: 

 Compute gradients of four directions as (1). 

 Extract the two biggest gradients 
1max

G ,
2max

G , and  interpolate the pixel p as 

follows: 
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( ) ( )
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          where
1

p ,
2

p  are the bicubic interpolation results corresponding to 
1max

G  

and
2max

G . Here threshold σT , parameter k in (3) and threshold T in (5) 

are predefined as 10, 5 and 1.15 respectively, in which σT  is chosen 

based on experience and the others are chosen by training 20 images. 

 Interpolating pixels ( )jiI
HR

2,12 − and ( )12,2 −jiI
HR

. Interpolation is 

conducted in the same way as step 2 except rotating the axis by 45°. 

End 

3  Exper iments and Analyses 

In this section, we compare our results with four methods: Bicubic interpolation 

[1], NEDI [4], PCAI [5] and DCCI [6]. Fig.2 displays the test images. 

  
(a)                                             (b)                                                      (c)  

 
(d)                                             (e)                                                       (f) 

Fig.2 Test images. (a) Men (512×512). (b) Woman (384×512). (c) Airplane (384×512). (d) Baby 

(602×620). (e)  Model (384×512). (f) Doll (455×620) 
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3.1  Experiment Results 

Table 1 reports the PSNR results under five methods for two times zoom. It can be 

observed that the proposed method has the best result, which is 0.46dB, 0.44dB, 

0.42dB, 0.15dB higher than Bicubic [1], NEDI [4], PCAI [5] and DCCI [6] 

respectively. Table 2 and Table 3 compare structural similarity (SSIM) [7] and 

feature similarity (FSIM) [8] results, which also show that our method is better. 

Table 1 Comparison of five different methods in PSNR (dB) 

Images Bicubic[1] NEDI[4] PCAI[5] NCCI[6] Proposed 

Men 26.44 26.70 26.43 26.70 26.79 

Woman 35.43 35.30 35.35 35.57 35.79 

Airplane 29.32 29.74 29.66 30.14 30.22 

Baby 32.08 32.18 32.13 32.42 32.52 

Model 31.63 31.63 31.45 31.74 31.82 

Doll 28.32 27.76 28.43 28.50 28.83 

Average 30.54  30.55  30.58  30.85  31.00  

Table 2 Comparison of five different methods in SSIM [7] 

Images Bicubic[1] NEDI[4] PCAI[5] NCCI[6] Proposed 

Men 0.7983 0.8014 0.7963 0.8032 0.8059 

Woman 0.9029 0.9014 0.8982 0.9007 0.9051 

Airplane 0.9261 0.931 0.9291 0.9348 0.9364 

Baby 0.8968 0.8969 0.8924 0.8948 0.8989 

Model 0.9246 0.9217 0.9230 0.9250 0.9253 

Doll 0.8542 0.8487 0.8543 0.8551 0.8617 

Average 0.8838  0.8835  0.8822  0.8856  0.8889  

Table 3 Comparison of five different methods in FSIM [8] 

Images Bicubic[1] NEDI[4] PCAI[5] NCCI[6] Proposed 

Men 0.9619 0.9621 0.9595 0.9627 0.9634 

Woman 0.9564 0.9540 0.9573 0.9579 0.9581 

Airplane 0.9429 0.9506 0.9485 0.9538 0.9540 

Baby 0.9468 0.945 0.9472 0.9481 0.9485 

Model 0.9865 0.9856 0.9853 0.9864 0.9866 

Doll 0.9733 0.9701 0.9713 0.9731 0.9746 

Average 0.9613  0.9612  0.9615  0.9637  0.9642  
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Fig.3 shows partition results of ‘Airplane’. It can be seen that the proposed 

method has the best results. Bicubic interpolation [1] has the most severe blurring 

(Fig. 3(b)). NEDI [4] breaks the geometric duality between the LR covariance and 

HR covariance, and generates speckle noise (Fig. 3(c)). PCAI [5] simply divides 

directions into four classes which doesn’t match the structure of real images, and 

has obvious blurring artifacts (Fig. 3(d)). DCCI [6] generates shape edges but has 

weak subjective results (Fig. 3(e)). Fig.4 and Fig.5 are partition results of 

‘Airplane’ and ‘Doll’, which also show similar results.  

 
(a)                        (b)                        (c)                         (d)                        (e)                         (f) 

Fig. 3 The portion result of ‘Airplane’ image under five methods. (a)Original image. (b) Bicubic [1]. 

(c) NEDI [4]. (d) PCAI [5]. (e) DCCI [6]. (f) Proposed 

 
(a)                        (b)                        (c)                         (d)                        (e)                         (f) 

Fig. 4 The portion result of ‘Men’ image under five methods. (a) Original image (b) Bicubic [1]. (c) 

NEDI [4]. (d) PCAI [5]. (e) DCCI [6]. (f) Proposed 

 
(a)                        (b)                        (c)                         (d)                        (e)                         (f) 

Fig. 5 The portion result of ‘Doll’ image under five methods. (a) Original image (b) Bicubic [1]. (c) 

NEDI [4]. (d) PCAI [5]. (e) DCCI [6]. (f) Proposed 

3.2  Computation Complexity  

To decrease computation complexity, we dramatically use bilinear interpolation 

based on varianceσ . Table 4 is the average percentage of pixels interpolated by 

bilinear and the proposed method about 6 test images in this paper. It can be seen 

that about 33.50% of the pixels can use bilinear interpolation directly. 
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Table 4 Average percentage of pixels interpolated by bilinear interpolation and the proposed 

method  

Percentage Bilinear Proposed 

Average 33.50% 66.50% 

4  Conclusion 

In this paper, directional bicubic interpolation — a novel method of image super-

resolution is proposed. Unlike 1D bicubic interpolation [1] which only interpolates 

along horizontal and vertical directions, the proposed method increases flexibility 

to interpolation along arbitrary directions. Experiments show that the proposed 

method is better than modern edge-directed interpolations in both subjective and 

objective measures. Moreover, as we dramatically use bilinear interpolation based 

on local image variance, the computation complexity is low and this method can 

be used in real time.  
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